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The considerable impact of congestion on transportation networks is reflected by the vast amount
of research papers dedicated to congestion identification, modeling, and alleviation. Despite
this, the statistical characteristics of congestion, and particularly of its duration, have not been
systematically studied, regardless of the fact that they can offer significant insights on its formation,
effects and alleviation. We extend previous research by proposing the autoregressive conditional
duration (ACD) approach for modeling congestion duration in urban signalized arterials. Results
based on data from a signalized arterial indicate that a multiregime nonlinear ACD model best
describes the observed congestion duration data while when it lasts longer than 18 minutes, traffic
exhibits persistence and slow recovery rate.

1. Introduction

Congestions impact on transportation networks are of particular importance for both plan-
ners and users. Congestion leads to longer travel times and limited reliability of the trans-
portation system; further, during congestion, users experience delays, inability to forecast
travel conditions, increased transportation cost, emissions, and so on [1]. The dynamics of
congestion duration may contain useful information about intraday traffic operations and
should be further explored.

Regardless of its significance for all aspects of traffic operations, the investigation of
congestion duration’s statistical characteristics has attracted only limited attention in the
literature. During the last two decades, focus has been given to developing short-term
prediction models for accurately forecasting the volume, occupancy, and speed, and
determining the anticipated traffic flow conditions in urban road networks; existing literature
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is quite extensive and covers a broad range of statistical and artificial intelligence models
developed for short-term predictions [2]. However, short-term prediction research does have
certain shortcomings; first, approaches are not efficient during congested-unstable traffic
conditions [3, 4]. Second, most traffic prediction models do not cope with the transitional
nature of traffic flow and, consequently, may fail at accurately detecting traffic congestion.
Recent empirical evidence has clearly demonstrated that traffic possesses complex statistical
characteristics and strong transitional behavior that cannot be tackled by a single prediction
model of traffic variables [5, 6]. Third, even the more sophisticated prediction approaches fail
to incorporate the effects of signalization on traffic prediction (for a recent review see [7]).

These shortcomings suggest the importance of predicting congestion duration in
urban signalized road networks; to this end, Stathopoulos and Karlaftis [8] applied the
principles of parametric duration modeling to analyze the duration of congestion in signal-
ized arterials. They tested several functional forms for the duration models and concluded
that the Loglogistic functional form best describes congestion duration. Their approach,
however, resulted in static models in which the effects of previous congestion occurrences
have not been taken into account. In this paper, we extend the conceptual framework of past
research by introducing the autoregressive conditional duration models for modeling urban
congestion duration that account for the time-series dimension of congestion events and their
duration. We propose and evaluate several duration models that allow for the conditional
expected congestion duration to be a nonlinear function of past information while we also
address nonlinearity issues and the manner in which they impact congestion duration.

2. The Autoregressive Conditional Duration Models

Duration models have been applied to problems in many scientific fields such as medicine,
economics, and transportation to investigate phenomena in which their temporal char-
acteristics (durations for example) are of primary importance [9–13]. However, in classical
econometric techniques, time-series are often taken to be sequences of data points separated
by uniform time intervals; as noted by Tsay [14], “traditional” duration models do not
account for the possibility of a time-series dimension in these models and the related
phenomena (an excellent example of such a phenomenon are stock transactions as discussed
in [15, 16]). Congestion events are typical of such behavior; congestion occurs in unequally
spaced time intervals; classical duration modeling may not be adequate to model such
events.

Using concepts similar to the generalized autoregressive conditional heteroskedastic
(GARCH) models, Engle and Russell [15] proposed the autoregressive conditional duration
(ACD)model to describe the evolution of data that arrive in unequally spaced time intervals.
Let ti the time of congestion occurrence, with 0 = t0 < t1 < · · · < tN and Xi = ti − ti−1 be the
duration congestion events. Associated with the arrival times is the counting function N(t)
which is the number of events that have occurred by time t. Let ψi be the expectation of the ith
duration given by ψi ≡ E[Xi | Xi−1, . . . ,X1; θ1] with parameter θ1. The basic assumption of the
ACD model is that the standardized durations are independent and identically distributed
[15]:

Xi

ψi
≡ εi ∈ i.d.d.D(θ2), (2.1)
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where D is the general distribution over (0,∝) with mean equal to one and parameter vector
θ2. From the above, it appears that there is a number of potential ACDmodels that vary with
respect to the different specification of the expected durations, as well as the distribution of
the εi.

In order to define the conditional intensity or hazard function, let p0 be the density
function of εi and let S0, the associated survival function then

λ0(t) =
p0(t)
S0(t)

(2.2)

is the baseline hazard utilized to express the hazard function as [15]

λ
(
t | N(t), t1, . . . , tN(t)

)
= λ0(t)

(
t − tN(t)

ψN(t)+1

)
1

ψN(t)+1
. (2.3)

Equation (2.3) implies that the past history influences conditional intensity by both a
multiplicative effect and a shift in the baseline hazard [15]; Engle and Russell call this model
The “accelerated failure time” model since the past information influences the rate at which
time passes [15]. This is in line with most observations in traffic flow theory; sometimes flow
changes rapidly and time between congestion occurrences flows rapidly while in other cases
the opposite applies. In this case, the rate of time flow depends on the past event arrival times
through the function ψi.

An ACD(p, q) model specifies the conditional mean duration ψi as a linear function of
p lagged durations and their q conditional expectations [14]

ψi = ω0 +
p∑

m=1

γmXi−m +
q∑

n=1

ωnψi−n. (2.4)

Once a parametric distribution of εi has been specified, maximum likelihood estimates of
θ can be obtained by using different numerical optimization algorithms. When the error
distribution εi is exponential, the resulting model is called an EACD model. Similarly, if εi
follows a Weibull distribution, the model is referred to as a WACD(p, q) model, and so on.
We focus on theWACD(1, 1)model that is (a) flexible in terms of hazard distribution features,
(b) straightforward to estimate, and (c) can account for serial dependence in high frequency
data [15, 17]. In the case of Weibull distribution with parameters (k, a), the hazard function
is

h(x) = kaxa−1a, (2.5)

and the conditional intensity function is [15]

λ
(
t | xN(t), . . . , x1

)
=
(
Γ
(
1 +

1
a

)
ψ−1
N(t)+1

)a(
t − tN(t)

)a−1
a, (2.6)

where Γ(·) is the Gamma function. Equation (2.6) shows that the conditional intensity is
now dependent on two parameters (k, a) which, in turn, indicate that either increasing
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or decreasing hazard functions may result; this makes especially long durations more or
less likely than for the exponential depending on whether a is less or greater than unity,
respectively [15]. The log likelihood for the Weibull ACD is [14]

N(T)∑

i=1

ln
(
a

xi

)
+ a ln

(
Γ(1 + 1/a)xi

ψi

)
−
(
Γ(1 + 1/a)xi

ψi

)a

(2.7)

The Weibull distribution reduces to the exponential distribution if α equals 1, but allows for
an increasing (decreasing) hazard function if α > 1 (α < 1) [14].

The ACD models can be modified to account for nonlinearities that are quite
common in high-resolution datasets. Zhang et al. [18] extend the ACD model to account
for nonlinearity and structural breaks in the data. A threshold autoregressive conditional
duration (TACD) model allows for the expected duration to depend nonlinearly on past
information variables. A positive stochastic process {Xi} follows a jth regime threshold ACD
model when the threshold variable Zi−d ∈ Rj :

Xi

ψi
≡ εi ∈ i.d.d. D(θ2),

ψi = ω
(j)
0 +

p∑

m=1

γ
(j)
m Xi−m +

q∑

n=1

ω
(j)
n ψi−n,

(2.8)

where the delay parameter d is a positive integer, ψi is the conditional mean of Xi, Ri =
[rj−1, rj), j = 1, 2, . . . , J for a positive integer, − ∝ = r0 < ri < · · · < rj < ∝ are the threshold
variables [18]. Based on the TACD formulation, the different regimes of a time-series
dataset are allowed to have different duration persistence and error distributions, making
modeling more flexible and efficient. However, in such models, the proper selection of the
number of regimes is critical as it significantly affects the estimation process; Zhang et
al. [18] underline the computational difficulty in estimating a 3-regime TACD(1,1) model
for financial transaction duration data. Further specifications and details on ACD model
development, estimation, and testing can be found in [14, 16, 17].

3. Modeling Congestion Duration

3.1. The Data

Data from Athens (Greece) are used for modeling traffic congestion duration. The urban
arterial examined has signalized intersections with link lengths varying from 150 to 500m
while there are three lanes for through traffic per direction. Traffic data on arterial links
are collected using a system of loop detectors located around 90m from stop lines; volume
and occupancy data are extracted every 90 sec. Figure 1 depicts the time-series of volume
and occupancy for a typical day. We examine the temporal dependence of both time-series
via the autocorrelation function (Figure 2), where it is apparent that both volume and
occupancy possess strong long memory characteristics reflected in the hyperbolic decay of
their autocorrelation structure [19].
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Figure 1: Time-series of volume (vehicle/90 sec) and occupancy (%) for a typical day.

In order to determine the periods of congestion from the available data, it is
necessary to identify congestion occurrences. The identification of congestion is based on
a methodology developed using an advanced artificial intelligence approach to detect and
cluster the transitional characteristics of volume and occupancy [20]; this approach is found
to be consistent with a kinematic wave theoretic model and can identify the spillover region
(the region where queues occurring are longer than the signalized arterial links). As can
be observed in Figure 3, congested conditions (spillover region) and the critical area before
congestion are separated by the spillover line

Osp =
LeffV

uf
+
r

C
, (3.1)

where V is the volume (veh/time interval), Leff the typical vehicle length, uf the free-flow
speed (km/h), C the cycle length, and r the red phase duration. Equation (2.5) is applied to
extract the duration of congestion episodes. Table 1 summarizes the parameter values that
will be used for congestion (spillover) detection. Figure 4 demonstrates the distributions of
congestion duration. Figure 5 shows the distribution of the congestion durations observed
and Figure 6 the autocorrelation function graph for the observed congestion durations time
series. Summary statistics for the congestion data are presented in Table 2; the high Ljung-Box
statistics, which is a χ2

L distributed statistic given byN(N + 2)
∑L

j=1 r
2
j /(N − j) , where N is

the series length, rj is the ACF of the jth lag sample. L is the degrees of freedom, show strong
serial correlation.
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Figure 2: Autocorrelation function of the time-series of volume and occupancy.

Table 1: Parameter values used for congestion detection.

Parameter Vas. Konstantinou Ave., Athens (Greece)
uf 50 km/hr
r 40 sec
c 90 sec
Leff 6m

Table 2: Statistical specifications of (a) congestion duration data and (b) the duration of related
uncongested traffic periods.

Congestion duration (periods)
Mean 4.69
Standard deviation 7.41
Variance 54.97
Skewness 4.78
Excess kurtosis 32.14
Q(10) 60.366
LM ARCH (4) 17.871

3.2. Congestion Duration Models: Specifications, Estimation, and
Diagnostics

For the estimation of congestion duration, an autoregressive conditional durationmodel with
the Weibull distribution describing the errors (WACD) is considered. The estimated values
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Figure 3: Volume-occupancy relationship for two consecutive signalized arterial links (the black thick line
represents the boundary of the congestion area after which queue spillovers are observed in the arterial
link).

of the fitted models are presented in Table 3. The model’s parameters are significant at the 5%
level. The fitted models have a Weibull error distribution with parameter α = 0.991(0.021);
the estimated value of the Weibull distribution is very close to 1, indicating a conditional
hazard function that monotonously decreases at a slow rate. The sum of ω1 and γ1 is less than
1, pointing to an ergodic process. The Ljung-Box statistics for the residuals series show that
the standardized innovations are not significantly correlated.

The fitted WACD model is contrasted to two parametric duration models previously
applied in congestion modeling [8]. Comparisons are established based on the adjusted
Anderson-Darling test statistics (AD) and the correlation coefficients (COR); the best fitted
model will have the lowest value of AD and the highest COR value. Table 4 shows the
goodness-of-fit tests for the three models. Although all COR values are relatively high, there
exists a difference with respect to the AD values; the best fitted model is the WACD. Based on
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Figure 4: Congestion duration data time-series for a typical day in one of the arterial links under
investigation.

Table 3: Estimation results for WACD(1, 1) and T-WACD(1, 1) models for the observed congestion
duration.

Variable WACD(1, 1)
T-WACD(1, 1)

Regime 1 (t∗ ≤ 18min) Regime 2 (t∗ > 18min)

Coefficient (st. error)

ω0 = 0.867(0.145) ω
(1)
0 = 0.579(0.149) ω

(2)
0 = −3.287(1.407)

γ1 = 0.185(0.035) γ
(1)
1 = 0.542(0.0556) γ

(2)
1 = 0.157(0.055)

ω1 = 0.542(0.056) ω
(1)
1 = 0.185(0.035) ω

(2)
1 = 0.994(0.332)

a = 0.991(0.026) a(1) = 0.991(0.030) a(2) = 1.268(0.325)
AIC∗ 4.227 3.411

Q(10) 10.477 5.156

Q(20) 31.610 12.534

Nonlinearity test (4) 1.587(0.082) 1.023(0.503)

LM ARCH test (4) 5.099(0.276) 0.546(0.651)

MAPE (%) 21.68 17.26
∗AIC = −2(log l −k)/T , log l is the log-likelihood value, k is the number of parameters, and T is the number of observations.

the results presented on Tables 3 and 4 some interesting remarks are extracted; first, none of
the models presented in Table 4 has AD values below the critical value at 95% confidence level
(2.492) [21]. Second, the nonlinearity test (the null hypothesis is that the true model is an AR
process.) conducted [22] suggests that some nonlinearities remain in the residuals (Table 3).
Third, Engle’s LM ARCH test (the null hypothesis is that there is no ARCH effect in the time-
series under study (constant conditional variance.)) [23] points towards a heteroscedastic
behavior for the residuals (Table 3). All the above indicate the need to further refine the
model.

In order to account for the remaining nonlinearities and the ARCH effect in the
residuals, a threshold conditional duration model with Weibull distribution for the error (T-
WACD) is developed. A recursive approach is used to identify the number and magnitude—
with respect to the congestion duration boundaries—of regimes that best describe the
available congestion duration data. Results for the model are summarized in Table 3. Figure 7
shows the scatter plot of the actual versus estimated congestion durations for WACD(1, 1)



Journal of Probability and Statistics 9

Table 4: Goodness-of-fit test for different congestion duration models.

Models AD COR
Exponential 127.45 n/a
Weibull 98.24 0.89
WACD(1, 1) 12.83 0.91
Note: n/a: not applicable.
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Figure 5: Congestion duration distribution.

and T-WACD(1, 1); both models fit data well. Moreover, based on the results the mean
absolute percent error (MAPE) is calculated (Table 3). Although results show superiority
of the TR-WACD model over the WACD model, the error levels cannot be fully evaluated as
no MAPE results for duration modeling have been reported in previous researches.

A thorough investigation of the results shows that the T-WACD model provides
a better fit to the original data when compared to the single regime WACD model. The
T-WACD(1, 1) can explain most of the temporal dependence in the congestion duration
periods; additionally, most of the nonlinearities and ARCH effects are efficiently addressed.
Some differences may also be identified in the regimes. For example, the estimated Weibull
distribution parameter α monotonically decreases at a slow rate during congestion episodes
that last up to 18 minutes whereas the Weibull distribution monotonically decreases for
congestion episodes of 18 minutes and above. Moreover, a significant observation refers to
comparing the value of the sum of ω1 + γ1 across the two identified regimes; for the regime
1, the estimated model returns ω(1)

1 + γ
(1)
1 < 1 while the opposite applies for the second

regime. This suggests that the first regime—indicating congestion events that last up to 18
minutes—describes a stationary process while congestion durations longer than 18 minutes
are governed by nonstationary dynamics.
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Figure 6: Autocorrelation function graph for the observed congestion duration data.

3.3. Understanding the Nonlinear Dynamics of Congestion and Its
Implications on Traffic

Modeling the duration of traffic congestion as both a linear and a nonlinear autoregressive
process enables a more efficient description of the duration between consecutive congestion
occurrences and yields useful information on the dynamics of traffic flow. A first important
finding refers to the need to study the structural properties of the congestion duration data
in relation to structural breaks. When contrasting the WACD(1, 1) model that accounts for
the overall process of congestion duration to the 2-regime T-WACD(1, 1) model, it becomes
evident that the system’s (i.e., overall congestion duration data) stationarity does not imply
any subsystem’s stationarity. This is a critical finding as it reflects the occurrence of structural
breaks in the traffic flow evolution or possible changes in the traffic demand in an intraday
microscale level.

Focusing on the sum of ω1 + γ1 which indicates the stability of the congestion duration
process, the modeling effort exhibits significant differences across regimes, indicating
differences with respect to traffic flow evolution and persistence. Based on the estimated
models for each regime, it appears that when congestion durations equal or are less than
18 minutes, congestion is not persistent and traffic will not remain congested for long. In
the case of longer congestion durations, the large value of ω1 + γ1 suggests that traffic
becomes persistent and congestion is magnified at an exponential rate. Figure 8 depicts the
hazard function for the two regimes in the T-WACD(1, 1) congestion duration model. The
conditional intensity of the two congestion duration models is different, suggesting different
dynamics for congestion duration in the two regimes; in the case of high congestion durations
(over 18 minutes) traffic becomes persistent. These results have significant implication to
the modeling of short-term traffic flow and are in line with recent evidence on the memory
properties of traffic flow time-series [19].

4. Conclusions

High-frequency traffic flow data have offered transportation researchers the opportunity to
understand the dynamics of certain nonrecurrent events such as the duration of congestion.
A study of the related microstructures of traffic flow time-series has been proven to be quite
informative with respect to the pattern-based evolution of traffic flow and the volatility of
traffic phenomena. A significant consideration in traffic flow analysis is the frequency and the
manner congestion occurs in urban networks; to this end, we proposed linear and nonlinear
autoregressive conditional duration models which are a novel methodological approach in
transportation applications.
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Figure 7: Actual versus estimated congestion durations for the WACD(1, 1) and T-WACD(1, 1)models.

Results from an urban signalized arterial indicated that congestion duration data
are typically nonlinear and volatile. We showed that a multiregime nonlinear ACD model
fits the observed data best. The estimated model suggests—for the specific application—
the existence of two distinct congestion duration regimes; in congestion incidents that last
up to 18 minutes, traffic is most likely to quickly exit congestion, whereas in congestion
duration longer than 18 minutes, traffic exhibits persistence and congestion is expected to
last. It is worth noting that although the results cannot claim transferability with regards to
differences in arterial geometry, traffic demand, and signalization plans, the multi-regime
nature of traffic flow is both well mathematically established in the proposed models and
supported by the estimation results. From a methodological perspective, the paper’s novelty
is that models applied allow for the conditional expected duration to be a nonlinear function
of the past duration incidents. Additionally, we considered possible nonstationarity that may



12 Journal of Probability and Statistics

0

0.2

0.4

0.6

0.8

1

1.2

H
az

ar
d

0 4 9 14 18 23

t (periods)

Regime 1 (t∗ ≤ 18 minutes)
Regime 2 (t∗ > 18 minutes)
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lie in the microstructure of traffic congestion occurrences. Nevertheless, regardless of the
flexibility of the nonlinear ACD models, there is still important information that has to be
considered in modeling; for example, other distributional error forms should be considered
including the gamma and loglogistic functional forms.
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