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Nonparametric estimators for average and quantile treatment effects are constructed using Fractile
Graphical Analysis, under the identifying assumption that selection to treatment is based on
observable characteristics. The proposed method has two steps: first, the propensity score is
estimated, and, second, a blocking estimation procedure using this estimate is used to compute
treatment effects. In both cases, the estimators are proved to be consistent. Monte Carlo results
show a better performance than other procedures based on the propensity score. Finally, these
estimators are applied to a job training dataset.

1. Introduction

Econometric methods for estimating the effects of certain programs (such as job search
assistance or classroom teaching programs) has been widely developed since the pioneering
work of Ashenfelter [1], LaLonde [2], and others. In this case, a treatment refers to a
certain program whose benefits are potentially obtainable by those selected for participation
(treated), and it has no effect on a control group (nontreated).

Estimating average treatment effects (ATEs), which refers to the mean effect of the
program on a given outcome variable in parametric and nonparametric environments (see
[3,4]), has been a central issue in the literature. Lehmann [5] and Doksum [6] introduced the
concept of quantile treatment effects (QTEs) as the difference of the quantiles of the treated
and control outcome distributions. In this case, it is implicitly assumed that individuals have
an intrinsic heterogeneity which cannot be controlled for using observables. Bitler et al. [7]
discuss the costs of focusing on average treatment estimation instead of other statistics.
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Provided that in nonexperimental settings selection into treatment is not random,
ordinary least squares (OLSs) and quantile regression techniques are inconsistent. As stated
by Heckman and Navarro-Lozano [8], three different approaches were used to overcome this
problem. First, the control function approach explicitly models the selection mechanism and
its relation to the outcome equation; second, instrumental variables; third, local estimation
and aggregation. In the latter, under the unconfoundedness assumption, which states that
conditional on a given set of exogenous covariates (observables) treatment occurrence is sta-
tistically independent of the potential outcomes, local unbiased estimates can be obtained by
conditioning on this set of covariates. The identification strategies that we follow relies on this
assumption. Rosenbaum and Rubin [9, 10] show that, adjusting solely for differences between
treated and control units in a scalar function of the pretreatment covariates, the propensity
score also removes the entire bias associated with differences in pre-treatment variables.

Several estimation methods have been proposed for estimating ATE by conditioning
on the propensity score. Matching estimators are widely used in empirical settings and
in particular propensity score matching. In this case, each treated (nontreated) individual is
matched to a nontreated (treated) individual (or aggregate of individuals) by means of their
proximity in terms of the propensity score. Only in a few cases matching on more than
one dimension has been used (see, e.g., [11]) because of the computational burden that
multivariate matching requires. Moreover, Hirano et al.’s [12] method uses a series estimator
of the propensity score to obtain efficient (in the sense of Hahn [13]) ATE estimators.

Estimation of QTE has been developed using the minimization of convex check
functions as in Koenker and Bassett [14]. Abadie et al. [15] and Chernozhukov and Hansen
[16, 17] develop this methodology using instrumental variables. On the other hand, Firpo
[18] does not require instrumental variables, and his methodology follows a two-step
procedure: in the first stage, he estimates the propensity score using a series estimator, while,
in the second, he uses a weighted quantile regression method. Bitler et al. [7] compute QTE
using the empirical distribution function and derives an equivalent estimator. Diamond [19]
uses matching to construct comparable treated and nontreated groups, and, then computes
the difference between the matched sample quantiles.

An alternative source of heterogeneity comes from the consideration of observables
only. Treatment effects may vary depending on the amount of human capital or on the income
and job status of their families. Differences in terms of these covariates determines that one
may be interested in the conditional treatment effect that is conditional on some value of
the observables. For instance, in terms of the propensity score, individuals are more likely to
receive a treatment may have a different effect than those are less likely to receive it. As we
show in this paper, how observables are treated determines differences in the parameter of
interest for QTE but not for ATE. We define the average conditional quantile treatment effect
as our parameter of interest, which can be described as the average of local QTEs. This
parameter is equivalent to the standard unconditional QTE only in the case that the quantile
treatment effect is constant.

In many cases, one would be more interested in the dependence of the outcome vari-
able on the fractiles (i.e., quantiles) of the covariates rather than the covariates themselves.
Mahalanobis’s [20] fractile graphical analysis (FGA) methodology was developed to account
for this heterogeneity in observables. This method has awaken recent interest in the literature
as a nonparametric regression technique [21, 22].

For our purposes, this methodology can be used as an alternative to matching, and it
allows not only for estimating average but also quantile treatment effects. The idea is simple:
divide the covariates space into fractiles, and obtain the conditional regression (or quantile)
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by a step function. Provided that the number of fractile groups increases with the number of
observations, we obtain consistent estimates of these functions, as the local estimators would
satisfy the unconfoundedness assumption (quoting Koenker and Hallock [23, page 147]:
“(...) segmenting the sample into subsets defined according to the conditioning covariates
is always a valid option. Indeed, such local fitting underlies all nonparametric quantile
regression approaches. In the most extreme cases, we have p distinct cells corresponding
to different settings of the covariate vector, x, and quantile regression reduces simply to
computing univariate quantiles for each of these cells.”)

FGA can be viewed as a histogram-type smoother, and it shares the convergence rate
of histograms as opposed to kernel-based methods that have a better performance. In the
classification of Imbens [4], it can be associated with the “blocking on the propensity score”
methods. An advantage of this procedure is that only the number of fractile groups needs to
be chosen as a smoothing parameter.

In spirit, this method is very similar to matching. The latter matches every treated
individual to a control (nontreated) individual whose characteristics are similar. Then, using
the unconfoundedness assumption, it integrates over the covariates as the matched sample
is similar to the treated. FGA decomposes the covariates distribution into fractiles. Then
within each fractile, treated and nontreated individuals are compared. Finally, it integrates
over the covariates (in this case over the fractile groups) as matching does. However,
this nonparametric technique allows us to recover the complete graph for the conditional
expectation or quantiles. In the latter, we show that the graph contains more information
than the comparison of treated and nontreated separately.

The propensity score FGA estimators are compared to other estimators based on the
propensity score. In particular we compare it to propensity score matching estimators and
Hirano et al.’s [12] estimator for ATE and to Firpo’s [18] for QTE.

The paper is organized as follows. Section 2 describes the general framework and
defines the parameters of interest. Section 3 reviews the literature on FGA. Section 4 derives
ATE estimators, and Section 5 does it for QTE. Section 6 presents Monte Carlo evidence on the
performance of these estimators, while Section 7 applies them to a well-known job training
dataset. Conclusions appear in Section 8.

2. A General Setup for Nonrandom Experiments and
Main Estimands

2.1. Unconditional Treatment Effects

To more formally characterize the model we follow the potential-outcome notation used in
Imbens [4], which dates back to Fisher [24], Splawa-Neyman [25], and Rubin [26-28], and it
is standard in the literature.

Consider N individuals indexed by i=1,2,...,N who may receive a certain
“treatment” (e.g., receiving job training), indicated by the binary variable W; = 0,1. Each
individual has a pair of potential outcomes (Y7y;, Yy;) that corresponds to the outcome with
and without treatment, respectively. The fundamental problem, of course, is the inability to
observe at the same time the same individual both with and without the treatment effect; that
is, we only observe Y; = W; x Y3; + (1 — W;) x Yy and a set of exogenous variables X;. We are
interested in measuring the “effect” of the W-treatment (e.g., whether job training increases
salaries or the chances of being employed).
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A parameter of interest is the average treatment effect, ATE,
6 =E[Y1-Yo] (2.1)

which tells us whether, on average the W-treatment has an effect on the population.

The key identification assumption is the unconfoundedness assumption(Rosenbaum and
Rubin [9] called this strongly ignorable treatment assignment assumption, Heckman et
al. [29] and Lechner [30, 31] conditional independence assumption) [9, 28], which states
that conditional on the exogenous variables, the treatment indicator is independent of the
potential outcomes. More formally, see the following assumption .

Assumption 2.1 (unconfoundedness). Consider

W1 (Y, Yo) X, (2.2)

where L denotes statistical independence. Under this assumption we can identify the ATE
(see, [4]) if both treated and nontreated have a common support, that is, comparable X-
values

6 =E[Y1-Yo] = Ex[E[Y1 - Y, | X]]
=Ex[E[Y1 | X,W =1]] - Ex[E[Y, | X, W =0]] (2.3)
= Ex[E[Y | X,W =1]] - Ex[E[Y | X,W = 0]].

In some cases, we are interested not only in the average effect but also in the effect
on a subgroup of the population. Average treatment effects do not fully describe all the
distributional features of the W-treatment. For instance, high-ability individuals may benefit
differently from program participation than low-ability ones, even if they have the same value
of covariates. This determines that the effect of a certain treatment would vary according
to unobservable characteristics. A parameter of interest in the presence of heterogeneous
treatment effects is the quantile treatment effect (QTE). As originally defined in the studies
byDoksum [6] and Lehmann [5], the QTE corresponds, for any fixed percentile, to the
horizontal distance between two cumulative distribution functions. Let Fy and F; be the
control and treated distribution of a certain outcome, and let A(y) denote the horizontal
distance at y between Fy and F;, that is, Fo(y) = F1(y + A(y)) or A(y) = Fl‘l(Fo(y)) -y.
We can express this effect not in terms of y but on the quantiles of the same variable, and the
QTE is then

6. = A(Fg'(1)) = F{' (1) - ;' (1) = Qv - Qs (2.4)

where QTj, j =0,1 are the quantiles of the treated and nontreated outcome distributions.
The key identification assumption here is the rank invariance assumption (which is

implied by the unconfoundedness assumption): in both treatment statuses, all individuals

would mantain their rank in the distribution (see [29], for a general discussion about this
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assumption). Therefore, using a similar argument as in the ATE case, Firpo [18] shows that
this assumption provides a way of identifying the QTE:

7= E[P[Y1 < Qu | X]] = E[P[Yo < Quo | X]] .
—E[P[Y < Qu | X,W =1]] = E[P[Y < Q:0 | X, W =0]], '

where the last two expectations can be estimated from the observable data.

In both cases, Assumption 2.1 suggests that, by constructing cells of homogenous
values of X, we would be able to get an unbiased estimate of the treatment effect. However
this becomes increasingly difficult and computationally impossible as the dimension of X
increases. Rosenbaum and Rubin [9] argue that the unconfoundedness assumption can be
restated in terms of the propensity score, p(X) = P[W =1 | X = x], under the following
assumption.

Assumption 2.2 (common support). For all x € domain(X), we have that

0<E§p(x)§;_7<l. (2.6)

In this case, we have the following lemma.

Lemma 2.3. Assumptions 2.1 and 2.2 imply that

WL (Y1, Yo) | p(X). (2.7)

Proof. See the work by Rosenbaum and Rubin [9]. O

Therefore, the problem can be reduced to the dimension of p(X). Through this paper
we consider estimators based only on the propensity score.

2.2, Conditional Treatment Effects

Let Y;(X) = E[Y; | X] and F;(- | X), j = 0,1 be the outcome distribution functions conditional
on X, and let H(-) be the distribution function of X. Then the ATE can be defined as

”f Y1(X)dH(X)]dF1(Y1) _”f YO(X)dH(X)]dFO(YO)
28
- [[[ meoarn 13- [eodrm | )| are. o

Therefore, ATE can be obtained by comparing the unconditional mean outcome for the
treated and nontreated or by obtaining first the conditional ATE and then integrating over the
covariates space.
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Now define
Qﬁu):54w|xzx)zmqanxn|X=x)er ji=0,1, (2.9)
as the conditional Tth quantile. In general
Ex[Qrj(X)] #Qsj, j=0,1. (2.10)

In other words, the above equivalence cannot be applied to QTE: comparing the
unconditional quantiles of the outcome distributions is not equivalent to computing the
conditional quantiles and then aggregating. Chernozhukov and Hansen [16, 17] define the
conditional quantile treatment effect (CQTE) as

67(x) = Qr1(x) = Qro(x). (2.11)
Define the average conditional quantile treatment effect (ACQTE) as
67 = Ex[Qn (X) = Qro(X)]- (2.12)

Strictly speaking, differences in Q.1 (X) — Qro(X) can either be attributed to differences
in the treatment effect or differences in the effect of the X’s on the treated and nontreated.
For instance, in a linear regression setup, we may have Q.;(X) = a(r,X)j + p(7,j)X, j =
0,1. In the job training example, we may have that training increases salaries and returns to
schooling, where years of schooling are X. However, in general, both parameters cannot be
identified separately, and the literature often attributes to the treatment the whole conditional
difference, that is, (7, j) = p(7),j =0, 1.

In order to see these differences consider the following simple example with one
outcome variable. Let X be a uniform random variable on (0,1), and let

0 w%th prob. 0.5 if X <05,
Y(X) = 0.5 with prob. 0.5 (2.13)
0.5 with prob. 0.5 . '
if X >0.5.

1 with prob. 0.5

Here note that E[Y] = E[Ex[Y]] by the Law of Iterated Expectations. Let Q; be the
quantile of the Y distribution, and let Q- (X) be the conditional quantile of Y conditional on
X. In this case,

0 ifT<025,
Q.=105 if025<7<0.75, (2.14)
1 ifr>075.
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But,

025 ifr<0.5,

Ex[Q:(X)] = { . (2.15)
0.75 if T >0.5.

This determines that recovering the complete graph {X,Q.;(X)}, j = 0,1, provides
additional information that cannot be recovered by computing unconditional quantiles. Firpo
[18], Bitler et al. [7], and Diamond’s [19] estimators obtain unconditional quantiles because
their estimators compute the difference between the treated and nontreated quantiles.

If we add X to the model and the treatment effect is constant across X, then we have
the following expression:

Q:(X) = a(t) + B(T)1[X > 05] =05+ 05x 1[X > 05], Vr. (2.16)

However, in this case, we would be attributing no difference across quantiles. If we
consider differences in the treatment effect across X

0 ifr<05

! if X <05,
. > 0. -
Qe(X) = a(z,X) = 02 HT202 (2.17)
05 if7<05 . oo
1 ifr>05 >

We assume that Y;(-), Q-;(-), j = 0,1, can be expressed as a function of p. In particular,
for QTE, we assume that the CQTE is of the form Q.1 (p) — Qro(p) = a(7, p), and therefore the
ACQTE becomes

8r = Ep[Qni(p) - Qro(p)] = En[6:(p)], (2.18)

which is our parameter of interest.

3. Fractile Graphical Analysis

Fractile graphical analysis (FGA) is a nonparametric estimation method developed first
by Mahalanobis [20] based on conditioning on the fractiles of the X’s. It was specifically
designed to compare two populations, where the X variable was influenced by inflation
and therefore not directly comparable. It has the same properties as other histogram-type
estimators [32]. Moreover, Bhattacharya [33] developed a conditional quantile estimation
method based on FGA. Our proposal is to use FGA to develop estimators for both ATE and
QTE. FGA produces a histogram-type smoother by blocking on the fractiles (i.e., quantiles)
of the propensity score.

FGA was originally developed for one covariate (i.e., dim(X) = 1), but Bhattacharya
[33] and others showed that it can be extended to more covariates. However, we will only
consider FGA based on a single covariate, the propensity score. One-dimensional FGA allows
us to recover the graphs {p, y(p)}, where y is any function of the propensity score.
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Assume first that the propensity score is known and it has a distribution function
H(p). Further, assume that H(:) is continuous and strictly increasing, and p satisfies
Assumption 2.2. Construct R fractile groups (indexed by r) on the propensity score:

o _ 4/r-1 /T
Jp = {P S I:E/p] : é(i‘—l)/R < p S gT/ng(r—l)/R = H 1<T>/‘§r/R = H 1<§> }/

r=1,2,...,R,

where H™ (1) = inf{p : H(p) > 7}.

Each fractile group contains a similar number of observations (i.e., about N/R), and
it has an associated interval on the domain of p defined by the order statistics (¢(-1)/r, &/r],
such that P[p € (¢p-1y/r, ér/r]] = 1/R. As the number of fractiles increases, the divergence
in terms of p for all observations within the same fractile group becomes smaller, and
therefore we would be gradually constructing groups with the same p-characteristics. In
that case, estimates within each fractile group asymptotically satisfy the unconfoundedness
assumption, provided that the conditioning set converges to a single propensity score value.

The following lines provide a short review of the asymptotic properties of FGA, which
can be found in the studies by Bhattacharya and Miiller [32] and Bera and Gosh [21]. Let
g(p) = E[Y | P = p] and 0?(p) = VAR[Y | P = p] be the conditional expectation and variance
in terms of the propensity score, and consider the following notation: h(t) = g o H™'(t) and
k(t) = 6> o H'(t) fort = (r -1+ a)/R with 0 < a < 1. Suppose that h(-) has bounded
second derivative and k(-) has bounded first derivative. Then, as N — oo and R — oo so
that R/N — 0 for fixed t, the bias and the variance of an FGA estimator of h(t), fz(t) become

BIAS: E[E(t) - h(t)] = —QR) W1 +0(1)] = o(%),
(3.2)

VARIANCE: VAR|h(t)| = (%) [(1- @)+ 2]k(®[1+0(1)] = o(%),

so that the mean-squared error of his

MSE: MSE[E(t)] - [<4R2>2(h’(t)) + <§>{(1—a)2+a2}k(t) [1+o(1)],  (3.3)

where 0 < a = Rt — [Rt] < 1. Therefore, the best rate of convergence of fractile graphs is
obtained by letting R = O(N'/3), which yields a rate of O(IN~2/3) for the Integrated MSE.

If p is not known, then it has to be estimated. In practice any estimate p = p + 0,(1)
removes the bias. However, they will differ in the variance of the estimator, provided that the
first stage (i.e., the estimation of the propensity score) needs to be taken into account. Hahn
[13] shows that, by using the estimated propensity score, instead of the true propensity score,
efficiency is achieved. Hirano et al. [12] and Firpo [18] use a semiparametric series estimator
of the propensity score which produces this result.

We impose the following assumption regarding the use of the estimated propensity
score.
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Assumption 3.1 (convergence of propensity score fractile groups). Let p be an estimator of the
propensity score. Then, for fixed R and for all r,

lim P[J; = 3;] =1 (3.4)

4, ATE Estimators

FGA ATE estimators are based on imputing the unobserved outcome in each fractile group.
Let

s Y, iftW;=1
o o
Yli if Wi = O,
where Yh' = Z]k\jzl WkYkl[ﬁk S 3;]/ Zl]:il Wkl[ﬁk € 32],
- Y, ifW;=0,
00 =1y . (4.2)
YOi if Wi = 1,
where Yo; = 32, (1 - Wy) Yil[p € 371/ SN (1 -W)1[pk € ugp
Therefore, the FGA ATE estimator is
L1 X
6= NZ YOz = th YOz (43)
i=1
Similarly, it can be expressed as
s_1xzm
== " 44
6 R;a , (4.4)

where

o SNwivalpen] s a-w)vilp e
&0 = Pl Pl (45)
shwilpes|  =Na-woilped)

The logic of this estimator is based on that of Hahn [13] “nonparametric imputation.”
In this case, within each fractile group, E[WY | 3;], E[(1-W)Y | 3,’,], and E[W | 3;] are
estimated nonparametrically using the previously estimated propensity score (p).

Alternatively we construct a similar estimator using the weighting technique
described in the study by Hirano et al. [12]. Let

Yii = {Y" itWi=1, (4.6)

Yli lf Wi = 0,
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where Yi; = 30 (WiYie/pr)[pk € 771,

Yoi = 151 Tf Wi=0, (4.7)
YOi lfWizl,
where Yo; = 3, (1 - Wi)Yi/(1 - pr))1[pk € gl
Then
z_1gzm
- —_— r 4-
6 erf , (4.8)
where
~ REW, RE1-w;
N SN Yivals ey o 2 ivils e 57
5N = Nzl - Yi1[pi € 3 N; 5, Yi[pi e 7). (4.9)

This estimator suffers from the same problems of Hirano et al.’s [12] estimator; that
is, the presence of occasional high/low values of the propensity score produces a very bad
empirical performance.

The following theorem shows that the FGA ATE estimators are consistent. The
intuition behind the proof is that, as N increases, and R does it but at a smaller rate, each
fractile group will have individuals with similar propensity score values. In the limit, the
differences among them is negligible, and therefore the unconfoundedness assumption can
be applied. In this case, the local (i.e., for a given propensity score value) ATE can be
obtained by constructing the difference of the average treated and control individuals with
that propensity score value.

Theorem 4.1 (consistency of ATE estimator). Consider Assumptions 2.1,2.2, and 3.1, and assume
that

(1) the distribution functions of p and (Y1,Yo) | p are continuous and strictly increasing.

(2) E[le] < oo, E[YOZ] < 0.
Then,g L osands L 6as N,R — oo, R/N — 0.

Proof. See Appendix A.1. O

5. QTE Estimators

Define the within fractile conditional quantiles:

0 — angmin ZH 1P WY - ) (-1 2 4])
.1 = argmin
Lo shifpe|w,

7
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SNfp e ja-wy(Yi-q)(r-1[¥; < q])

QW = argmin

a P 1[131' € 3;] (1-wi)
(5.1)
Therefore, the QTE estimator is
i _15z0_1sa0 50
T = EZ T = EZQTl - Q’TO . (52)
r=1 r=1
Similarly we define
() N
Q= argminzigl[ﬁi €| Wi(Yi-g)(r-1[¥i<q]),
q =Pi
50) |
Q) = arg;mnl;l_—ﬁil[pi € Jﬁ] 1-W)(Yi-q)(r-1[Yi<q]), (5.3)

= 18z IS A0 A0
b7 = ﬁZ(ST - EZer = Qrp-
r=1 r=1

The following theorem proves the consistency of both QTE estimators.

Theorem 5.1 (consistency of QTE estimator). Consider Assumptions 2.1, 2.2, and 3.1, and assume
that, the distribution function of p is continuous and strictly increasing. The distribution function of
(Y1, Yo) | p is continuous, strictly increasing, and continuously differentiable.

Then, for T € (0,1), ST LA Oy, and ST LA 6:a8s N,R — oo, R/N — 0.

Proof. See Appendix A.2. O

6. Monte Carlo Experiments

We evaluate the performance of the proposed estimators with respect to other estimators
based on the propensity score. We compute propensity score matching estimators using
nearest-neighbor procedures (with 1, 2, and 4 matches per observation), kernel and
spline estimates. These estimators were designed by Barbara Sianesi for STATA 9.1, and
they are available in the psmatch2 package. Additionally we compute Hirano et al. [12]
semiparametric efficient estimator. In the case of QTE we compute Firpo [18] and Bitler et al.
[7] estimators. We also compute QTE matching estimators following Diamond [19]. In this
case, for each observation, the matching procedure constructs the corresponding matched
pair (i.e., imputes the “closest” observation with the opposite treatment status). Then, we
compute the unconditional quantiles of the imputed treated and nontreated distributions. A
succinct description of some estimators appears in Appendix B.
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Table 1: ATE Monte Carlo simulations.

MSE MAE
Estimator 100 200 500 1000 2000 100 200 500 1000 2000
FGA ATE® 0221 0157 0.079 0.057 0.036 0372 0308 0.221 0.187 0.147
FGA ATE (Rx2)@  0.190 0.109 0.053 0.037 0.023 0346 0261 0.185 0.155 0.121
FGA ATE® 0.686 0.657 0630 0.607 1.699 0464 0456 0369 0.343 0.336

FGA ATE (Rx2)® 0646 0615 0612 0597 1683 0462 0450 0368 0.341 0.335
Hirano et al. [12] 0732 0679 0644 0618 1710 0472 0460 0.371 0.344 0.337
PS matching

Nearest neighbor (1) 0.467 0331 0202 0.145 0.099 0540 0443 0358 0.298 0.251
Nearest neighbor (2) 0.290 0.192 0.126 0.091 0.063 0429 0.347 0.285 0.238 0.198
Nearest neighbor (4) 0.170 0.124 0.074 0.057 0.039 0329 0.281 0217 0.188 0.157
Kernel 0285 0226 0127 0.074 0.033 0418 0369 0283 0217 0.146
Spline 0233 0139 0.058 0.034 0.021 0384 0.297 0.192 0.149 0.117

@ ST, (b) ST. MSE: mean squared error. MAE: mean absolute error. Monte Carlo simulations based on 1000 replications of the
baseline model.

Our baseline model is

XerZI X3/ ue~ N(Or 1)/

W=1[X1—X2+X3+€>0],
6.1)
Y1=6+X1+X2+u,

Y0=X1+X2+X3+u.

In this simple model QTEs are equal to ATE for all quantiles. We set 6 = 2. We generate
1000 replications of the baseline models for sample sizes in {100,200,500,1000,2000}, and
we compute mean square error (MSE) and mean absolute error (MAE). Table 1 reports ATE
estimators, while Table 2 shows QTE estimators for 7 in {.10,.25,.50,.75,.90}. For FGA the
number of fractile groups is R = [N'/3] which minimizes the integrated MSE (see, [32]), and
we also consider doubling the number of fractile groups (i.e., R x 2). We consider the two
FGA estimators discussed above, that is, 6and 6.

The FGA ATE estimator has reasonable good performance in terms of both MSE
and MAE. In almost every case, doubling the number of fractile groups results in a better
performance of the 6 estimator. However, the contrary occurs to the 6 estimator. FGA ATE
5 (R x 2) achieves the same values of the best matching estimators (using 4 neighbors and
splines). Increasing the sample size reduces both MSE and MAE at similar rates in all
estimators. Overall the Hirano et al. [12] and FGA ATE 6 estimators show extremely high
values, mainly because a random draw may contain occasional values of the propensity score
very close to the boundary (i.e., 0 or 1).

FGA QTE 6 estimators outperform that of Firpo [18] for all sample sizes and quantiles.
All the estimators show consistency, although FGA QTE reduces both MSE and MAE at
higher rates than Firpo’s estimator. As in the last paragraph, doubhng the number of
fractile groups improves the estimator performance, and FGA QTE & outperform 5. As
expected, better estimates are found in the median case than in the extreme quantiles.
Matching estimators show a relatively good performance. However, only in a few cases they
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Table 2: QTE Monte Carlo simulations.

MSE MAE
Estimator 100 200 500 1000 2000 100 200 500 1000 2000
7=0.10
FGA QTE® 0964 0585 0328 0247 0.155 0791 0611 0461 0404 0317
FGA QTE (Rx2)@  0.825 0433 0224 0178 0.117 0713 0525 0379 0339 0.279
FGA QTE® 0.863 0.491 0243 0.146 0.090 0.802 0593 0.409 0312 0.241
FGAQTE (Rx2)® 1334 0849 0391 0241 0.146 1.074 0.847 0561 0433 0.339
Firpo [18] 0.879 0.633 0438 0332 0332 0733 0.639 0525 0467 0453
Bitler et al. [7] 0.835 0.628 0432 0332 0332 0733 0.638 0524 0467 0453

PS Matching

Nearest neighbor (1) 0.775 0.649 0455 0.341 0383 0.697 0.636 0.532 0.486 0.478
Nearest neighbor (2) 0.551 0.442 0315 0269 0236 0.603 0.555 0.484 0.462 0.444
Nearest neighbor (4) 0.562 0.429 0309 0285 0259 0591 0557 0492 0494 0484

Kernel 0.748 0566 0467 0401 0361 0.691 0.617 0580 0.587 0.581
Spline 0.626 0519 0400 0.389 0367 0.646 0.622 0.575 0593 0.591
T=0.25
FGA QTE® 0523 0333 0.184 0133 0.083 0.585 0459 0.336 0292 0.230
FGAQTE (Rx2)® 0409 0246 0.131 0.8 0058 0507 0397 0291 0236 0.194
FGA QTE® 0.866 0519 0270 0169 0116 0.823 0.631 0450 0.352 0.290
FGAQTE (Rx2)® 1400 0.867 0462 0292 0.195 1126 0874 0.634 0503 0410
Firpo [18] 0721 0527 0360 0268 0226 0.641 0543 0436 0377 0.338
Bitler et al. [7] 0.687 0527 0360 0268 0226 0.635 0543 0436 0377 0.338
PS Matching

Nearest neighbor (1) 0952 0.757 0471 0309 0209 0731 0.621 0517 0420 0.364
Nearest neighbor (2) 0.563 0.381 0.287 0.195 0.147 0579 0472 0403 0.339 0.306
Nearest neighbor (4) 0.312 0204 0.153 0.110 0.089 0438 0.352 0296 0255 0.231

Kernel 0519 0390 0299 0175 0.101 0553 0469 0.400 0313 0.246
Spline 0491 0274 0154 0104 0.095 0533 0406 0312 0276 0.278
7 =0.50
FGA QTE® 0305 0.191 0105 0.072 0.046 0441 0344 0259 0211 0.168
FGA QTE (Rx2)® 0252 0.143 0.070 0.049 0.029 0.394 0301 0212 0.175 0.138
FGA QTE® 0941 0616 0349 0242 0169 0871 0703 0529 0435 0.367
FGA QTE (Rx2)® 1541 0977 0567 0370 0270 1.187 0940 0716 0576 0.496
Firpo [18] 0.658 0.540 0.358 0249 0206 0.606 0521 0.401 0.332 0.285
Bitler et al. [7] 0.629 0540 0358 0249 0206 0.603 0521 0401 0.332 0.285
PS Matching

Nearest neighbor (1) 1.288 0.748 0443 0271 0.184 0921 0.697 0.534 0423 0.350
Nearest neighbor (2) 0.993 0.608 0.359 0.229 0.152 0.809 0.624 0.489 0390 0.317
Nearest neighbor (4) 0.656 0.465 0292 0.194 0137 0.654 0547 0442 0360 0.298
Kernel 0367 0250 0.130 0.084 0.060 0476 0396 0292 0.234 0.200
Spline 0648 0349 0.181 0121 0.093 0.642 0476 0343 0.285 0.235
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Table 2: Continued.

T=0.75
FGA QTE® 0391 0256 0138 0.092 0.069 0497 0411 0295 0242 0.205
FGA QTE (Rx2)@ 0352 0218 0.112 0071 0051 0466 0376 0267 0215 0.180
FGA QTE® 1.043 0721 0452 0320 0250 0919 0.768 0.610 0515 0461
FGAQTE (Rx2)® 1635 1.094 0675 0486 0368 1229 1.001 0.787 0.670 0.585
Firpo [18] 0.652 0.561 0356 0346 0250 0.615 0548 0.420 0.390 0.322
Bitler et al. [7] 0.652 0.561 0356 0346 0250 0.615 0.548 0.420 0.390 0.322

PS Matching
Nearest neighbor (1) 1.439 1.138 0.710 0492 0317 0888 0.801 0.624 0.532 0.440
Nearest neighbor (2) 0.768 0.647 0509 0.396 0257 0.668 0.599 0.527 0.464 0.387

MSE MAE
Estimator 100 200 500 1000 2000 100 200 500 1000 2000
Nearest neighbor (4) 0.429 0374 0.326 0293 0230 0507 0466 0416 0389 0.349
Kernel 0486 0576 0407 0328 0.255 0534 0556 0484 0445 0.400
Spline 0.713 0596 0342 0284 0258 0.631 0578 0438 0412 0.408
7 =0.90
FGA QTE® 0.711 0398 0229 0.167 0.125 0.666 0505 0.385 0.328 0.287
FGA QTE (Rx2)@  0.707 0333 0.185 0.142 0.100 0.671 0.457 0345 0304 0.257
FGA QTE® 1218 0.837 0560 0417 0345 0979 0824 0.678 0.588 0.544
FGA QTE (Rx2)® 1771 1176 0.809 0589 0473 1269 1029 0860 0.736 0.664
Firpo [18] 0.754 0.717 0444 0462 0.340 0.651 0.625 0479 0461 0401
Bitler et al. [7] 0754 0.717 0444 0462 0340 0.651 0.625 0479 0461 0.401

PS Matching

Nearest neighbor (1) 0.898 0930 0.674 0.789 0.631 0.699 0.690 0.566 0562 0.510
Nearest neighbor (2) 0.424 0370 0.231 0287 0241 0506 0449 0352 0338 0.310
Nearest neighbor (4) 0.337 0204 0.112 0122 0113 0456 0356 0.249 0.228 0.217
Kernel 0.697 0708 0581 0394 0131 0613 0591 0504 0395 0.267
Spline 0432 0287 0105 0.078 0.058 0501 0411 0256 0228 0.209

¥ &,,® &,. MSE: mean squared error. MAE: mean absolute error. Monte Carlo simulations based on 1000 replications of the
baseline model.

outperform the FGA QTE estimator. In particular the spline matching estimator shows an
outstanding performance for 7 = 0.9.

Overall nonparametric FGA estimators, where the propensity score is reestimated
nonparametrically (i.e., 6), show the best performance.

7. Empirical Application

We apply the estimators proposed in the paper to a widely used job training dataset first
analyzed by LaLonde [2], the “National Supported Work Program” (NSW). The same
database was used in other applications such as those of Heckman and Hotz [34], Dehejia
and Wahba [35, 36], Abadie and Imbens [11], and Firpo [18], among others.
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The program was designated as a random experiment for applicants who if selected
would had received work experience (treatment) in a wide range of possible activities, like
learning to operate a restaurant, a child care, or a construction work, for a period not exceed-
ing twelve months. Eligible participants were targeted from recipients of AFDC, former
addicts, former offenders, and young school dropouts. Candidates eligible for the NSW were
randomized into the program between March 1975 and July 1977. The NSW data set consists
of information on earnings and employment in 1978 (outcome variables), whether treated or
not, information on earnings and employment in 1974 and 1975, and background character-
istics such as education, ethnicity, marital status, and age. We use the database provided by
Guido Imbens (http://www.economics.harvard.edu/faculty/imbens/software_imbens/),
which consists of 455 individuals, 185 treated, and 260 control observations. This particular
subset is the one constructed by Dehejia and Wahba [35] and described there in more detail.

We will focus on the possible effect on participants” earnings in 1978 (if any); that
is, we answer the following question: what is the effect of this particular training program
on future earnings? Provided that earnings is a continuous variable, we would be able to
apply quantile analysis. A main drawback of this variable is that those unemployed in 1978
report earnings of zero. In 1978, 92 control and 45 treated individuals were unemployed. The
average (standard deviation) of earnings in 1978 is $5300 ($6631), which breaks into $6349
($578) for treated and $4554 ($340) for control individuals. Without considering covariates,
the difference between treated and nontreated is $1794 ($671), which in a two-sample -
test rejects the null hypothesis of equal values (t-stat 2.67, P value 0.0079). We also observe
differences in terms of the percentiles in the earnings distribution. The 10th percentile for the
treated (control) is $0 ($0); the 25th percentile $485 ($0); the median is $4232 ($3139); the 75th
percentile $9643 ($7292) ; and the 90th percentile is $14582 ($11551). Therefore, assuming
the rank invariance property discussed above, higher quantiles of the earnings distribution
seems to be associated with larger treatment effects.

The propensity score is estimated by a probit model, where the dependent variable
is participation and the covariates used are the individual characteristics and employment
and earnings in 1974 and 1975. Note that the propensity score is of no particular interest by
itself, provided that participants were randomly selected in the experiment. In this case, no
particular covariate is individually significant, and a likelihood ratio test of joint significance
gets chi-squared (8) = 8.30, P value = 0.4050.

As we mention above, a common support in the propensity score domain is necessary
to make meaningful comparisons among treated and nontreated individuals. The empirical
relevance of this assumption was pointed out by Heckman et al. [37], and it was identified
as one of the major sources of bias. In our case, this has special importance since consistent
estimates of treatment effect requires that both the number of treated and control is eventually
large enough to apply large sample theory. Moreover, if there are no treated (controls) in
a given fractile group, no within fractile estimate can be obtained. We use two different
trimming procedures. First, provided that we may assume that Fi(p) < Fo(p), we only
consider propensity score values in the range

p* =min(p;, W; =1) <p <max(p;, W; =0) =p". (7.1)
- P P

By doing this we drop 8 observations, and we refer to this sample as Trim 1. We also
trim 2.5% in each tail of the propensity score distribution (Trim 2) dropping 23 observations.
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Table 3: ATE estimators of the effect of training on earnings.

Nontrimmed Trim 1 Trim 2
Estimator Coef. Average Std.error Coef. Average Std.error Coef. Average Std.error
FGA ATE®@ 1572.2  1589.0 634.0 1608.6 1620.2 6453  1480.9 1565.2 665.8
FGA ATE (Rx2)® 1537.1 16064  659.0 15202 1634.4 659.8  1208.6 1572.4 682.3
FGA ATE® 1584.1 1561.9 616.7 1672.5 1625.7 637.0 1676.1 1536.1 655.5

FGA ATE (Rx2)® 15632 1511.4 606.6 16045 1576.1 627.3  1530.2 1483.4 644.5

Hiranoetal. [12] 15982 16122  631.3 1731.3 16919 661.0 1862.0 1589.1 682.6
PS matching

Nearest neighbor (1) 997.2  1393.8 7364 1101.6 1389.2 721.3 869.8 13344 744.8
Nearest neighbor (2) 156.2 1471.6 710.6  1262.0 1477.8 702.8 9842 14242 729.9
Nearest neighbor (4) 1471.8 1559.0  670.0 1552.7 1571.7 671.6 13465 1525.1 700.4
Kernel 1629.0 1639.6  631.1 16389 1636.3 6343 14824 1590.8 657.3
Spline 1587.0 1616.6 6414 16144 1613.8 638.8  1380.3 1565.6 660.9

v 6, ®5,. Averages and standard errors are obtained using 1000 bootstrapping random samples with replacement of the
original database.

Table 3 reports the propensity score estimates used in the Monte Carlo simulation,
applied to LaLonde’s data set. The first column contains the ATE estimate, while the second
and third contain the average and standard deviation of a bootstrapping experiment with
1000 random samples with replacement of the original database. The last column calculates
the ATE estimator for the two different trimming procedures discussed above. Table 4
estimates the QTE for the same quantiles analyzed in Table 2. The results confirm a positive
average impact of training on earnings. FGA ATE estimators get $1572 and $1537, which are
of the same magnitude as the kernel and spline propensity score matching estimates and the
Hirano et al. [12] estimates. However, nearest-neighbor estimates are below these estimates
by $100.

QTE estimates show considerable variability across quantiles (see Table 4). For the
10th quantile, estimates are not statistically different from zero. The median quantile is almost
two-thirds of the ATE estimates, reflecting the presence of outliers in the sample or different
distributional properties. Finally for the 90th quantile, the estimates produce up to a $3000
impact, twice the ATE. In other words, those who benefit more are those with a high level of
unobservables. Unfortunately, all the estimators show high bootstrap standard errors.

8. Conclusion

FGA provides a simple methodology for constructing nonparametric estimators of average
and quantile treatment effects, under the assumption of selection on observables. In this
paper we develop estimators using the estimated propensity score and we prove its
consistency. Moreover, FGA QTE estimators show a better performance than that of Firpo’s
[18] QTE estimator, which constitutes the most relevant estimator in the literature using the
propensity score.

Similar estimators can be derived for FGA in more than one dimension (see for
instance the discussion in [33]), although its computational burden is unknown. Moreover,
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Table 4: QTE estimators of the effect of training on earnings.

17

Nontrimmed Trim 1 Trim 2
Estimator Coef. Average Std.error Coef. Average Std.error Coef. Average Std.error
7=0.10
FGA QTE® 0.0 149.4 188.2 0.0 146.8 190.9 0.0 145.5 183.0
FGA QTE (Rx2)@ 957 382.5 325.2 78.0 371.3 311.2 1019 3924 340.2
FGA QTE® 0.0 150.9 190.5 0.0 148.6 190.9 0.0 145.0 185.2
FGA QTE (Rx2)® 957  369.7 3177 780  364.6 3120 2401 385.1 335.9
Firpo [18] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bitler et al. [7] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PS matching
Nearest neighbor (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Nearest neighbor (2) 0.0 0.7 15.2 0.0 0.7 15.2 0.0 1.1 21.0
Nearest neighbor (4) 0.0 73.8 184.5 0.0 69.7 179.3 0.0 74.5 188.7
Kernel 0.0 292.5 356.3 0.0 281.0 351.0 0.0 298.9 365.8
Spline 0.0 295.3 355.7 0.0 278.5 349.5 0.0 291.2 361.0
T=0.25
FGA QTE 409.6  653.5 480.2 3764  686.1 475.9 623.2 7017 502.8
FGA QTE (R x 2) 628.8 853.5 546.4 4874 8643 5409 8369 880.2 547.8
FGA QTE® 4142 6498 4880 3619 6858 4842 5009 7058 511.8
FGA QTE (Rx2)® 6945 8433 546.3  363.1 853.3 554.6  856.6 872.1 561.9
Firpo [18] 0.0 295.8 341.3 0.0 291.3 340.4 289.8 276.8 343.2
Bitler et al. [7] 0.0 295.8 341.3 0.0 291.3 340.4 289.8 276.8 343.2
PS matching
Nearest neighbor (1) 0.0 159.1 290.8 0.0 145.5 278.6 0.0 134.9 273.8
Nearest neighbor (2) 1067.5  804.7 523.1 12546 783.1 527.8 1152.1 763.5 763.5
Nearest neighbor (4) 1568.0 1455.8 738.6 16821 1454.2 733.0  803.4 1440.0 748.0
Kernel 3068.7 2808.3 986.1  3180.7 2864.5 9924 30744 28927 1036.1
Spline 2628.7 2363.8  1019.7 27082 2486.6 10235 2715.1 2470.7  1053.1
7=0.50
FGA QTE 1131.0 13799 851.0 1321.2 1404.8 870.5  1026.0 1376.2 869.2
FGA QTE (R x 2) 914.2 1466.4 8873 9655 1501.7 866.6 3855 1488.7 873.5
FGA QTE® 1193.9 14035  871.6 1306.0 14327  891.8 10663 13847 8834
FGA QTE (Rx2)® 1078.8 1476.8 939.7  981.7 1509.1 9199 2625 14926 916.5
Firpo [18] 1063.0 1178.5 901.6 12549 1260.9 938.1 763.8 1257.8 973.9
Bitler et al. [7] 1063.0 1178.5 901.6 12549 1260.9 938.1 763.8 1257.8 973.9
PS matching
Nearest neighbor (1) 5.2 910.5 1034.6 3685 9844 10425 775 9904 1066.2
Nearest neighbor (2) 388.1 1050.9 859.9 5634 1093.0 8775 2844 10884 898.4
Nearest neighbor (4) 695.5 1171.6 810.5 801.8 1210.6 814.5 616.7 1201.0 842.8
Kernel 1567.1 1351.2 7522 1643.1 1365.3 759.6  1587.8 1357.7 783.7
Spline 846.6 1261.7 7769  1843.3 1259.1 7834 1578.1 12723 811.9
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Table 4: Continued.

7=0.75
FGA QTE 2110.9 19489 1180.7 1960.5 1986.9 1190.8 1710.1 1950.1 1233.8
FGA QTE (R x 2) 1614.6 2162.8 1376.1 1640.0 2215.2 1369.5 7426 2131.1 1424.7
FGA QTE® 22409 1968.0 11919 18155 20104 12215 17064 1954.1 1264.7
FGA QTE (Rx2)® 1351.3 2222.8 1447.2 1549.0 2253.0 1440.5 789.2 2159.8 1449.7
Firpo [18] 22741 2060.9 919.6  2258.0 2071.3 9421 22145 2034.2 979.1
Bitler et al. [7] 22741 2060.9 919.6  2258.0 2071.3 9421 22145 2034.2 979.1

PS matching
Nearest neighbor (1) 1537.0 1663.9 1111.7  1921.1 1699.6 1081.8 1263.0 1637.5 1116.7
Nearest neighbor (2) 585.5 1598.8 11064 877.6 1640.8 10974  393.7 1589.5 1115.2

Nontrimmed Trim 1 Trim 2
Estimator Coef. Average Std.error Coef. Average Std.error Coef. Average Std.error
Nearest neighbor (4) 1280.1 1634.1  1046.5 1243.8 16532  1047.7 1239.6 15954  1084.2
Kernel 1399.3 1735.3 9723  1399.5 1754.3 9715 1180.6 1710.6 984.8
Spline 1381.6 1963.1  1088.7 1320.6 19544 10873 1108.5 1870.9  1101.3
7 =0.90
FGA QTE 3093.8 3345.7 23152 34265 34019  2364.0 2789.1 3233.7 24593
FGAQTE (Rx2) 31708 33012 21579 41265 3317.0 21742 41619 31180  2096.5
FGA QTE® 3093.8 3493.2  2421.2 3518.0 35123 24549 31895 31899 24427
FGA QTE (Rx2)® 31421 3343.0 2221.1 48194 33512 22134 39986 31549  2133.0
Firpo [18] 27134 28543  1890.4 2150.6 2797.8  1889.2 21262 27155  1895.0
Bitler et al. [7] 27134 28543  1890.4 2150.6 2797.8  1889.2 21262 27155  1895.0

PS matching

Nearest neighbor (1) 1861.2 2425.7  2150.1 1392.3 2372.7  2111.8 444.7 22494 2130.0
Nearest neighbor (2) 1279.4 2388.4 1915.6 1278.0 2336.6 1900.4 454 21720 1892.5
Nearest neighbor (4) 2047.9 2180.9 1716.8 2153.7 2181.3 17439 2153.7 2030.9 1758.1
Kernel 1750 6915 1389.5 208.0 770.6 1431.7 3276  566.2 1415.4
Spline 5715  881.2 15204 261.8 8994 14779  327.6 7552 1458.8

98, ® 5, Averages and standard errors are obtained using 1000 bootstrapping random samples with replacement of the

original database.

more efficient estimators may be obtained by applying smoothing techniques within or
between fractiles [22].

Appendices
A. Proof of Theorems
A.1. Proof of Theorem 4.1

Proof. Let N — oo, R and r be fixed. Then,
shwxalpes]  =Na-wovalp e

in 50 = 1
p}\l,linof pz\;linoo Zf\:fl Wil[ﬁi € 3;3] Zf\:jl(l - Wi)l[ﬁi € jrg]

(by Law of Large Numbers and Assumptions 2.2 and 3.1)
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E[wxnj;] E[(1—W)xY|3;]
T TPWI] PI-W) 3,

. E[E[WxY|p] |3;,] E[E[(l—W)xY|p] |3;]
- P[W | 3] P[1-W)|3]

by Law of Iterated Expectations
y p

CE[EW Pl <E[vi|p] 13| E[E[1-W)|p] <E[Yo | p] | 3]
- P[W | 3] - P[1-W)| ]

(by Assumption 1.2).
(A1)

Let E[Wp] =p, P[W3,]1 =5, E[Y1p] = g1(p), E[Yo | p] = g0(p), 67 = E[Y1 - Yo | Ty].

Then
_ 50 ; = -
p lim 5 - 5| - E[(p-7 ﬁ()r;gl (p) 1] . E[(p r; _>;S>(p) %]
CoVlp;gi(p) 17|  COV[pigo(p) 1 7] (A2)
) " ! 1-50

IN

\/VAR[p | 3;] xC™,

where

_ \/VAR[gl (P)37] . \/VAR[gO(p)j;

cn — — (A.3)
50 1-50
Now let R, N — o0, R/N — 0. Then
2 1Y e o
|pNh£“5‘6 = "9 m RN ; (5 6 )
1 R(N) (A 4)
Lo ~r 1) :
Jm Ry & VVARIP11C

< &Enmmaxr\/VAR [P 3;] c”.
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By assumptions C") is bounded and 4/VAR[p | 7] < SUP ey (p) — infper; (p) < 1/R,
for all 7. Then 6 — 6 = O,(1/R).

The consistency of 6 can be easily proved by noting that, within each fractile group,
the estimator is equivalent to that of Hirano et al. [12]. O

A.2. Proof of Theorem 5.1

Proof. Note thatas N — oo, Rand r are fixed, by convergence of sample quantiles

QY+ Foiy (1), (A5)
where
Fowa(q) =Py <q13,w=1] =E[1[y <q] |7}, W =1] = E[Wl[;i d |j’r’], (A.6)
and p(r) =P[W = 1|3;] is defined in the proof of Theorem 4.1.
Therefore,
T= E[—l[Y < Q(”] |3f] = [ ’fr>E[1[Y1 < Qﬁf] |p] |3;]. (A7)
P P
However, in general,
T¢E[E [1 [Y1 < Qg’] | p] | 3;] = E[l [n < Qﬁf] | 3;]. (A.8)
This divergence can be expressed as
el < 2] ]| (@)= cov e <] 1] 1 7] < Bk
(A9)

where F,1(q) = P[Y; < q | 95] and K = {/VAR[1[Yo < Q%] | 351/p" is bounded by
assumptions (see Theorem 4.1).
How does this translate into the divergence of Q! and Q")? By Taylor’s theorem,

Q Q(r) Fra <Q§?> -7 . op<lKY)> _ O,,(%), (A.10)



Journal of Probability and Statistics 21

Consider now the case that N,R — oo, R/N — 0,
R(N)

1 A (r 1
v 304 -0 )| -0 (%), a1

where E[1[Y; < Q1(p)] | p] = T for all p € [p, p]. The same argument can be applied to show

the consistency of QTO.

Therefore,
6y = LR(ﬁ)(Qm - Q‘”) =6, +0,(1). (A.12)
T R(N) o Tl 70 p

The consistency of 6, can be easily proved by noting that, within each fractile group,
the estimator is equivalent to that of Firpo [18]. O

B. Other ATE and QTE Estimators

Hirano et al.’s [12] semiparametric efficient ATE estimator is

(M 0oy, o

where p is a semiparametric series estimator of the propensity score.
Bitler et al. [7] QTE estimator is obtained by finding the empirical quantiles of the
weighted empirical distributions:

S5 (A-W)i[Y; <q]/(1-pi))
SN(-W/(1-B))
SN (WilYi < q]/pi)
> (Wi/pi)

130(‘7) =

(B.2)

Fi(q) =

thatis, F;' () and F~1(7).
Firpo [18] obtains the same results by minimizing weighted convex check functions:

- W;
T (- a) (r-1[vi<q)),

1?5 Yr) = argminz

N
q i=1

(B.3)
. W
Fil(r) = argmmZ?(Yi —q) (7= 1[Y; < q]).

9 =1 P
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