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We address a quantile dependent prior for Bayesian quantile regression. We extend the idea of
the power prior distribution in Bayesian quantile regression by employing the likelihood function
that is based on a location-scale mixture representation of the asymmetric Laplace distribution.
The propriety of the power prior is one of the critical issues in Bayesian analysis. Thus, we discuss
the propriety of the power prior in Bayesian quantile regression. The methods are illustrated with
both simulation and real data.

1. Introduction

Quantile regression models have been widely used for a variety of applications (Koenker
[1]; Yu et al. [2]). Like standard or mean regression models, dealing with parameter and
model uncertainty as well as updating information is of great importance for quantile
regression and application. Since Yu and Moyeed [3] Bayesian inference quantile regression
has attracted a lot of attention in the literature (Hanson and Johnson [4]; Tsionas [5]; Scaccia
and Green [6]; Schennach [7]; Dunson and Taylor [8]; Geraci and Bottai [9]; Taddy and
Kottas [10]; Yu and Stander [11]; Kottas and Krnjajić [12]; Lancaster and Jun [13]). These
Bayesian inference models include Bayesian parametric, Bayesian semiparametric as well as
Bayesian nonparametric models. However, almost all these models set priors independent
of the values of quantiles, or the prior is the same for modelling different quantiles. This
approach may result in inflexibility in quantile modelling. For example, a 95% quantile
regression model should have different parameter values from the median quantile, and
thus the priors used for modelling the quantiles should be different. It is therefore more
reasonable to set different priors for different quantiles. In this paper, we address a quantile
dependent prior for Bayesian quantile regression. Our idea is to set priors based on historical
data. Although one can use improper prior in Bayesian quantile regression, the inference on
current data could be more reliable and sensitive if there exist historical data gathered from
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similar previous studies. There are several methods to incorporate the historical data in the
analysis of a current study. One of these methods is the power prior proposed by Ibrahim
and Chen [14] which is constructed by raising the likelihood function of the historical data to
a power parameter between 0 and 1. The power parameter represents the proportion of the
historical data needed in the current study. The a priori idea for the power prior distribution
belongs to Diaconis and Ylvisaker [15] and Morris [16] who studied conjugate priors for the
exponential families, where they considered the power parameter as fixed constant which can
be determined in advance. Ibrahim and Chen [14] developed this idea and considered the
uncertainty case of the power parameter. They applied it in generalized linear mixed models,
semiparametric proportional hazards models, and cure rate models for survival data. Chen
et al. [17] examined the theoretical properties of power prior distribution for generalized
linear models, while Ibrahim et al. [18] studied the optimality properties of the power prior,
and Chen and Ibrahim [19] studied the relation between the power prior and hierarchical
models and provided a formal justification of the power prior by examining formal analytical
relationships between the power prior and hierarchical modelling in linear models.

Following the standard setup and notation for the power prior by Ibrahim and Chen
[14], suppose that there exist historical data gathered from previous studies similar to the
current study denoted by D0 = (n0, y0, x0) along with a precision parameter a0, 0 ≤ a0 ≤ 1,
where n0 denotes the sample size of the historical data, y0 is an n0 × 1 historical data response
vector, and x′

0i = (1, x0i1, x0i2, . . . , x0in) represent the k+1 known covariates from the historical
data. The power parameter a0; represents how much data from the previous study is to be
used in the current study. There are two special cases for a0; the first case a0 = 0 corresponds
to no incorporation of the data from previous study relative to the current study. The second
case a0 = 1 corresponds to full incorporation of the data from previous study relative to
the current study. Therefore, a0 controls the influence of the data gathered from previous
studies that is similar to the current study; such control is important when the sample size
of the current data is quite different from the sample size of the historical data or where
there is heterogeneity between two studies (Ibrahim and Chen [14]). In generalized linear
models, Ibrahim and Chen [14] defined the power prior of unknown parameters β based on
the historical data as

π
(
β | D0, a0

) ∝ [L(β | D0
)]a0π0

(
β | c0

)
, (1.1)

where c0 is a specified hyperparameter for the initial prior. Formulation (1.1) was initially
elicited for a0 as known parameter which can be determined previously, for example, by
using expert beliefs or via a meta-analytic approach. Ibrahim and Chen [14] extend this idea
by treating a0 as random that is why the formulation becomes quite complicated. However, a
random a0 gives the researcher more freedom and flexibility in weighting the data gathered
from previous studies. Thus Ibrahim and Chen [14] proposed a joint power prior distribution
for (β, a0) in generalized linear model of the form

π
(
β, a0 | D0

) ∝ [L(β | D0
)]a0π0

(
β | c0

)
π
(
a0 | γ0

)
, (1.2)

where c0 and γ0 are specified hyperparameter vectors. Power priors (1.1) and (1.2) will not
have a closed form in general; however Ibrahim and Chen [14] suggested using a uniform
prior for π0(β | c0) and a beta prior for π(a0 | γ0), or other choices, such as truncated normal
or gamma priors. The advantage of employing these three priors for π(a0 | γ0) is due to
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their similar theoretical and computational properties. Furthermore, the authors extend the
original power prior to a situation where the set of covariates measured in the previous
study is a subset from a set of covariates in the current data or when the historical data are
not available. In addition they generalized power prior (1.2) to multiple data from previous
studies, and power prior (1.2) becomes

π
(
β, a0 | D0

) ∝
⎧
⎨

⎩

M∏

j=1

[
L
(
β | D0j

)]a0j π
(
a0j | γ0

)
⎫
⎬

⎭
π0
(
β | c0

)
, (1.3)

where M represent the size of previous studies, a0 = (a01, . . . , a0M), D0j is the historical data
for jth study, j = 1, 2, . . . ,M, and D0 = (D01, . . . , D0M).

Section 2 of the paper gives a brief overview of likelihood function based on
asymmetric type of Laplace distribution, and we define the power prior for Bayesian quantile
regression. In Section 3, we discuss the propriety of the power prior. In Section 4 we describe
in detail the location-scale mixture of normal representation, and we propose power priors by
using this representation for Bayesian quantile regression. Section 5 contains two simulation
studies with one real data, and we end with a short discussion in Section 6.

2. The Power Prior

Consider the quantile linear regression model

yi = x′
iβp + εi, (2.1)

where {(xi, yi), i = 1, 2, . . . , n} are independent observations, yi is the response variable, x′
i =

(1, xi1, xi2, . . . , xik) represent the (k + 1) known covariates, β′p = (β0(p), β1(p), . . . , βk(p)) is the
(k+1) unknown parameters, and εi, i = 1, . . . , n, represent error terms which are independent
and identically distributed errors. The distribution of the error is assumed unknown and
is restricted to have the pth quantile equal to zero and 0 < p < 1. Let qp(y | x) represent the
conditional quantile of yi given xi. Then the relation between qp(y | x) and x can be modelled
as qp(y | x) = x′

iβp.
Following Yu and Moyeed [3], we suppose that εi has an asymmetric Laplace

distribution with the density

f
(
ε | p) = p(1 − p) exp

{−ρp(ε)
}
, (2.2)

where

ρp(u) =

⎧
⎨

⎩

p|u| if u ≥ 0,
(
1 − p)|u| if u < 0.

(2.3)
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We refer to Kotz et al. [20] for a nice comprehensive review about the asymmetric
Laplace distribution. The mean and variance of the asymmetric Laplace distribution are,
respectively, given by

E(εi) =
1 − 2p
p
(
1 − p) , Var(εi) =

1 − 2p + 2p2

p2
(
1 − p)2

. (2.4)

It is known that the probability density function of the asymmetric Laplace
distribution of yi given a location parameter μi = x′

iβp is given by

f
(
yi | βp

)
= p
(
1 − p) exp

{
−(yi − x′

iβp
){
p − Iyi≤x′iβp

}}
. (2.5)

Let D = (n, yi, xi) denote the data from the current study. Then, the likelihood function
for the current study is given by

f
(
βp | D

)
= pn

(
1 − p)n

n∏

i=1

exp
{
−(yi − x′

iβp
){
p − Iyi≤x′iβp

}}

= pn
(
1 − p)n exp

{

−
n∑

i=1

(
yi − x′

iβp
){
p − Iyi≤x′iβp

}}

.

(2.6)

Suppose that there exists historical data from a previous study denoted by D0 = (n0, y0, x0)
measuring the same response variable and covariates as the current study, where n0 denotes
the sample size of the previous study, y0 is an n0 × 1 response vector of the previous study,
and x′

i = (1, x0i1, x0i2, . . . , x0ik) represent the k + 1 known covariates from the previous study.
Then the likelihood function based on the data from the previous study is defined by

L
(
βp | D0

)
= pn0

(
1 − p)n0 exp

{

−
n0∑

i=1

(
yi − x′

0iβp
){
p − Iy0i≤x′0iβp

}}

. (2.7)

From Ibrahim and Chen [14] we define the joint prior distribution of βp and a0 for
Bayesian quantile regression as

π
(
βp, a0 | D0

) ∝ [L(βp | D0
)]a0π0

(
βp | c0

)
π
(
a0 | γ0

)
, (2.8)

where L(βp | D0) is the likelihood function for the historical data for quantile regression
which is given by (2.7). We assume that the initial prior for βp is uniform. However, other
choices, including multivariate normal or a double exponential can be used. Yu and Stander
[11] prove that all posterior moments for βp exist under these priors.

3. The Propriety of Power Prior Distribution in Quantile Regression

The power prior proposed by Ibrahim and Chen [14] has been constructed to be a useful
class of informative prior in Bayesian analysis. This prior depends on the availability of
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the historical data, and in the context of Bayesian analysis when such data are available the
prior distribution should be proper because it is well known that any informative Bayesian
analysis requires a proper prior distribution; thus the propriety of the power prior is of
critical importance. In this section we discuss the propriety of the power prior distribution in
Bayesian quantile regression.

Theorem 3.1. Suppose that the initial prior distribution for βp is a uniform prior and a0 has a beta
prior with hyperparameters (δ0 > 0, λ0 > 0). Then, the joint prior distribution (2.8) in quantile
regression for (βp, a0) is proper. In other words

0 <
∫∞

−∞
· · ·
∫∞

−∞

∫1

0

[
L
(
βp | D0

)]a0aδ0−1
0 (1 − a0)λ0−1da0dβp <∞. (3.1)

Proof. See the appendix.

Corollary 3.2. Suppose that the initial prior distribution for βp is a uniform prior and the random
variable a0 has a uniform prior. Then, the joint power prior distribution (2.8) in quantile regression
for (βp, a0) is proper. In other words

0 <
∫∞

−∞
· · ·
∫∞

−∞

∫1

0

[
L
(
βp | D0

)]a0da0dβp <∞. (3.2)

This corollary is derived directly from Theorem 3.1 because the uniform distribution is the special case
of the beta distribution when (δ0 = 1, λ0 = 1) and the proof is omitted.

Corollary 3.3. Suppose that the initial prior distribution for βp is uniform prior and a0 is constant.
Then, power prior (1.1) in quantile regression for βp is proper. In other words

0 <
∫∞

−∞
· · ·
∫∞

−∞

[
L
(
βp | D0

)]a0dβp <∞. (3.3)

This corollary is derived directly from Corollary 3.2, and the proof is omitted. It is straightforward to
verify that the joint prior π(βp, a0 | D0) when βp has a uniform prior is always proper in quantile
regression, which also ensures the proper propriety of the joint posterior of (βp, a0).

Theorem 3.4. Suppose that the initial prior distribution for βp is assumed to be independent, and each
π0(βi(p) | c0) ∝ exp{−(1/λi)|βi(p)−μi|} , a double-exponential with fixed μi, λi > 0, and a0 has a beta
prior with hyperparameters (δ0, λ0). Then, the joint prior distribution (2.8) in quantile regression for
(βp, a0) is proper.

4. Mixture Representation

Consider the linear model for quantile regression (2.1), where the error term ε has an
asymmetric Laplace distribution with the pth quantile equal to zero. The probability density
function of the asymmetric Laplace distribution with location parameter μ and skewness
parameter p, p ∈ (0, 1) is given by (2.2).
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It is well known that the asymmetric Laplace distribution (2.2) can be viewed as a
mixture of an exponential and a scaled normal distribution (Reed and Yu [21] and Kotz et al.
[20]). This can be recognized in the following lemma.

Lemma 4.1. Suppose that X is a random variable that follows the asymmetric Laplace distribution
with density (2.2), ξ is a standard normal random variable, and z is a standard exponential random
variable. Then, one can represent X as a location-scale mixture of normals given by

X =d
1 − 2p
p
(
1 − p)z +

√
2z

p
(
1 − p)ξ. (4.1)

From this result we can equivalently represent the error term εi as a mixture of normal
distributions, given by

εi = θzi + φ
√
ziξi, (4.2)

where

θ =
1 − 2p
p
(
1 − p) , φ2 =

2
p
(
1 − p) . (4.3)

Following Reed and Yu [21], we assume that the conditional distribution of each yi
given zi is normal with mean x′

iβp+θzi and variance φ2zi and the zi given βp are independent
standard exponential variables. Letting y′ = (y1, . . . , yn) and z′ = (z1, . . . , zn), then, the joint
density of (y, z) is given by

f
(
y, z | βp

)
=

n∏

i=1

f
(
yi | βp, zi

)
π
(
zi | βp

)
, (4.4)

f
(
y, z | βp

) ∝
n∏

i=1

(

z−1/2
i exp

{

−
(
yi − x′

iβp − θzi
)2

2φ2zi

}

exp{−zi}
)

=

(
n∏

i=1

z−1/2
i

)

exp

{

−
n∑

i=1

(
yi − x′

iβp − θzi
)2

2φ2zi

}

exp

{

−
n∑

i=1

zi

}

.

(4.5)

We then integrate out the exponential variable z, which leads to the likelihood f(y |
βp), where

f
(
y | βp

)
=
∫
f
(
y, z | βp

)
dz. (4.6)

4.1. The Power Prior for Mixture Representation

Suppose that we are interested in making inference about βp on the normal distribution with
unknown variance, by incorporating both the previous and current studies.
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Following the standard setup and notation for the power prior distribution for mixture
representation, we assume that only one historical data set exists, and it is given by D0 =
(n0, y0, x0), where n0 is the sample size of the historical data, y0 is the n0 × 1 response vector,
and x0 is the n0 × (k + 1) matrix of covariates.

Let z′0 = (z01, . . . , z0n0), where z01, . . . , z0n0 are standard exponential random variables.
As a mixture representation, the joint density for the historical data of y0i given z0i is normal
with mean x′

0iβp + θz0i and variance φ2z0i, and each z0i given βp is independently and
identically standard exponential distribution, which can be viewed as the prior distribution
on z0i. For π0(βp | c0) we choose a normal density as initial prior with mean 0 and variance
B = c0I, that is, π0(βp | c0) ∝ exp(−(1/2c0)β′pβp). The purpose of this choice is due to the
fact that all posterior moments of βp exist under the above prior as provided in the studies
of Yu and stander [11]. It is also convenient if all covariates are measured on the same scale
parameter. As a special case one may choose a uniform improper prior which is special case
of beta distribution when (δ0 = 1, λ0 = 1) for π0(βp | c0), that is, π0(βp|c0) ∝ 1; this corresponds
to c0 → ∞, and this choice is very convenient with the partially Gibbs sampler as provided
by Reed and Yu [21]. We propose a prior distribution of βp taking the form

π
(
βp | D0, a0

) ∝
{

n0∏

i=1

∫

z0i

[
f
(
y0i | βp, z0i

)]a0π
(
z0i | βp

)
dz0i

}

π0
(
βp | c0

)
, (4.7)

where f(y0i | βp, z0i) and f(z0i | βp) are the same f(yi | βp, zi) and f(zi | βp) in (4.4) with
(y0i, z0i) in place of (yi, zi) to represent the historical data. Since we view a0 as a random
quantity, the prior specification is completed by specifying a prior distribution for a0. We
take a beta prior for a0 with parameter (δ0, λ0), or one may choose a uniform prior. Thus we
propose a joint prior distribution for βp and a0 of the form

π
(
βp, a0 | D0

) ∝
{

n0∏

i=1

∫

z0i

[
f
(
y0i | βp, z0i

)]a0π0
(
z0i | βp

)
dz0i

}

π0
(
βp | c0

)
π
(
a0 | γ0

)
, (4.8)

∝
n0∏

i=1

∫

z0i

(

z−1/2
0i exp

{

−a0

(
y0i − x′

0iβp − θz0i
)2

2φ2z0i

}

exp{−z0i}dz0i

)

× exp
{
− 1

2c0
β′pβp

}
× aδ0−1

0 (1 − a0)λ0−1.

(4.9)

We see that (4.8) will not have a closed form in general because it depends on the
initial priors that we choose. Thus the joint posterior distribution of βp and a0 is given by

p
(
βp, a0 | D,D0

) ∝
[

n∏

i=1

f
(
yi | βp, zi

)
]

π
(
βp, a0 | D0

)
. (4.10)

Power prior (4.8) is constructed for one historical data, and this power prior can be easily
generalized to multiple historical data. To generalized power prior (4.8) to multiple historical
data, we assume that there are M historical studies denoted by D0 = (D01, . . . , D0M), where
D0j = (n0j , y0j , x0j) represent the historical data based on the j study, j = 1, . . . ,M. Let z′0j =
(z01j , . . . , z0n0j ), where z01j , . . . , z0n0j are standard exponential random variables. We define a0j
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to be the power parameter for the jth study with beta prior distribution. Hence, the prior can
be generalized as

π
(
βp, a0 | D0

) ∝
M∏

j=1

{ n0j∏

i=1

∫

z0ij

[
f
(
y0ij | βp, z0ij

)]a0j π0
(
z0ij | βp

)
dz0ij

}

× π0
(
βp | c0

)
π
(
a0j | γ0

)
,

(4.11)

where a0 = (a01, . . . , a0M), and each a0j has a beta prior with the same hyperparameters
(δ0, λ0).

4.2. Inference with Scale Parameter

In the previous section, we have considered the power prior distribution in quantile
regression model without taking into account a scale parameter. One may be interested to
introduce a scale parameter into the model for the proposed Bayesian inference. Suppose
that τ > 0 is the scale parameter. From now on, it is more convenient to work with vi = τzi
for the current data and with v0i = τz0i for the historical data. We assume that only one
historical data set exists, and it is given by D0 = (n0, y0, x0). Let v′

0 = (v01, . . . , v0n0). Then, the
conditional distribution for each y0i given v0i, βp, and τ is normal with mean x′

0iβp + θv0i and
variance τφ2v0i, that is, y0i | v0i, βp, τ ∼ N(x′

0iβp + θv0i, τφ
2v0i), and the v0i given βp and τ

are independent and identically distributed exponential variables with rate parameter τ . The
conditional distribution of v0i given βp and τ can be viewed as prior distribution on v0i. It
will be more convenient to work with the following priors:

τ ∼ Γ(l0, s0),

βp | τ ∼Nk(0, B0), B0 = c0I, c0 −→ ∞,
(4.12)

where l0, s0, and B0 are known parameters. For a0 we take a beta prior with parameter (δ0, λ0).
Now, the specification of the power prior distribution is completed, and thus we propose a
joint prior distribution for βp, τ , and a0 of the form

π
(
βp, τ, a0 | D0

) ∝
{

n0∏

i=1

∫

v0i

[
f
(
y0i | βp, τ, v0i

)]a0π0
(
v0i | βp, τ

)
dv0i

}

× π0
(
βp | c0

)
π(τ)π

(
a0 | γ0

)
,

(4.13)

∝
{

n0∏

i=1

∫

v0i

(τv0i)−1/2 exp

{

−a0

(
y0i − x′

0iβp − θv0i
)2

2φ2τv0i

}

τ exp{−τv0i}dv0i

}

× exp
{
− 1

2c0
β′pβp

}
× (τ)l0−1 exp{−s0τ}aδ0−1

0 (1 − a0)λ0−1.

(4.14)
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Then, the joint posterior distribution of βp, τ , and a0 is given by

p
(
βp, τ, a0 | D,D0

) ∝
[

n∏

i=1

f
(
yi | βp, τ, vi

)
]

π
(
βp, τ, a0 | D0

)
. (4.15)

Power prior (4.13) can be easily generalized to M historical data, and the generalized
distribution can be given as

π
(
βp, τ, a0 | D0

) ∝
M∏

j=1

{ n0j∏

i=1

∫

v0ij

[
f
(
y0ij | βp, τ, v0ij

)]a0j π0
(
v0ij | βp, τ

)
dv0ij

}

× π0
(
βp | c0

)
π(τ)π

(
a0j | γ0

)
.

(4.16)

5. Numerical Examples

In this section, our aim is to compare the posterior means of parameters of interest after
incorporating the current and historical data with the mean of true values for both studies.
In addition, we will demonstrate the behaviour of the prior under several choices of prior
parameters.

Example 5.1. We simulate two data sets, the first one for the current study and the second
for the previous study. For the current study we generate 100 observations from the model
yi = μ + εi assuming that μ = 5.0 and εi ∼N(0, 1).

For the historical data we use the same model with 50 observations and μ = 6.0. In
this example we have used only one parameter μ. Table 1 compares the posterior means with
the means of true values for qp(yi) = βp at 5 different quantiles, namely, 90%, 75%, 50%, 25%,
and 10%. We conduct sensitive analysis with respect to five different choices for (δ0, λ0) for
five different quantiles. For computation we construct a Markov chain via the Metropolis-
Hastings (MH) algorithm. We ran the algorithm for 15000 iterations and discarded the first
5000 as burn in. Figures 1, 2, and 3 compare the posterior densities of βp for p = 0.90, 0.50, and
0.10, respectively, for improper prior with the posterior densities of βp for the power prior
with parameters (μa0 , σa0) = (0.50, 0.078) and (μa0 , σa0) = (0.99, 0.010). Clearly, the power
prior is more informative than improper prior, due to the small range of posterior densities.

Note that as shown in Chen et al. [17] it is easier to specify the prior mean and standard
deviation of a0 from the following equations:

μa0 =
δ0

(δ0 + λ0)
,

σa0 =
(
μa0

(
1 − μa0

))1/2(δ0 + λ0 + 1)−1/2.

(5.1)

Furthermore they have shown that the investigator must choose μa0 small if he/she
wishes low weight to the historical data and must choose μa0 ≥ 0.5 if he/she wishes more
weight to the historical data.

In this example we use power prior (2.8), taking uniform prior for βp and beta prior for
a0. Under specific quantile level, we see that as the weight for the historical data increases the
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Table 1: Posterior means, posterior standard deviations (SD), and mean of the true values of β(p).

p (δ0, λ0) (μa0 , σa0) Mean β(p) SD β(p)
Mean of the true

values of β(p)

0.90

(5,5) (0.50, 0.151) 6.410 0.2348

6.7816
(20,20) (0.50, 0.078) 6.735 0.2514

(30,30) (0.50, 0.064) 6.776 0.2326

(50,1) (0.98, 0.019) 6.837 0.2311

(100,1) (0.99, 0.010) 6.843 0.2260

0.75

(5,5) (0.50, 0.151) 5.771 0.1563

6.1745
(20,20) (0.50, 0.078) 5.991 0.1692

(30,30) (0.50, 0.064) 6.025 0.1668

(50, 1) (0.98, 0.019) 6.094 0.1635

(100,1) (0.99, 0.010) 6.109 0.1609

0.50

(5,5) (0.50, 0.151) 5.097 0.1559

5.5000
(20,20) (0.50, 0.078) 5.273 0.1477

(30,30) (0.50, 0.064) 5.316 0.1451

(50,1) (0.98, 0.019) 5.382 0.1424

(100,1) (0.99, 0.010) 5.383 0.1411

0.25

(5,5) (0.50, 0.151) 4.466 0.1622

4.8255
(20,20) (0.50, 0.078) 4.600 0.1464

(30,30) (0.50, 0.064) 4.614 0.1607

(50,1) (0.98, 0.019) 4.645 0.1523

(100,1) (0.99, 0.010) 4.645 0.1437

0.10

(5,5) (0.50, 0.151) 3.911 0.2250

4.2185
(20,20) (0.50, 0.078) 3.993 0.2066

(30,30) (0.50, 0.064) 4.019 0.2014

(50, 1) (0.98, 0.019) 4.038 0.1990

(100,1) (0.99, 0.010) 4.053 0.1965

posterior mean of βp increases. This is a comforting feature because it is consistent with what
we expect from the data. This implies that the posterior mean for the parameters of interest
is quite robust for the different weights for power parameter.

More noticeably, when (δ0 = 100, λ0 = 1), that is, we give more weight to the historical
data, we see that the posterior mean is very close to the mean of the true values. In addition,
under specific quantile level, we found that as the weight for the historical data increases the
standard deviation tends to decrease.

Example 5.2. For a mixture representation with scale parameter, we simulate two data sets, the
first one for the current study and the second for the previous study. For the current study we
generate a data set of n = 50 observations from the model yi = β0(p) + β1(p)xi + 1/11(11 + xi)εi,
where xi are random uniform numbers on the interval (0, 10) and εi ∼ N(0, 1). We restricted
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Figure 1: Plots of posterior densities for β0.90, where the dotted curve is for improper uniform prior, the
dashed and solid curves are for power priors with parameters (μa0 , σa0) = (0.50, 0.078) and (μa0 , σa0) =
(0.99, 0.010), respectively.
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Figure 2: Plots of posterior densities for β0.50, where the dotted curve is for improper uniform prior, the
dashed and solid curves are for power priors with parameters (μa0 , σa0) = (0.50, 0.078) and (μa0 , σa0) =
(0.99, 0.010), respectively.

β0(p) = 10 and β1(p) = −1. For the previous study we generate n0 = 150 observations from the
above model with β0(p) = 9 and β1(p) = −1.2.

We use initial priorN(0, 106) on all regression parameters and Γ(10−3, 10−3) on all scale
parameters. Then we ran MCMC algorithm for 11000 iterations and discarded the first 1000
as burn in. We then compute the posterior means of the parameters at 5 different quantiles,
namely, 90%, 75%, 50%, 25%, and 10%. We conduct sensitive analysis with respect to five
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Figure 3: Plots of posterior densities for β0.10, where the dotted curve is for improper uniform prior, the
dashed and solid curves are for power priors with parameters (μa0 , σa0) = (0.50, 0.078) and (μa0 , σa0) =
(0.99, 0.010), respectively.

different weights for the power parameter, namely, 10%, 25%, 50%, 75%, and 90%. The results
are summarized in Table 2. Based on the results in Table 2 for each quantile, it is consistent in
the sense that the posterior mean of βp either increases or decreases steadily as the weight of
the historical data increases. Under specific quantile level, we also found that as the weight
for the historical data increases the posterior standard deviations for all parameters tend to
decrease.

Example 5.3. We consider data from the British Household Panel Survey. The data were
originally collected by the ESRC Research Centre on Microsocial Change at the University
of Essex and analyzed by Yu et al. [22]. The data represent the wage distribution among
British workers between 1991 and 2001. We use the data for the year 2000 as current data
and for 1994 as historical data. Four covariates and intercept are included in the analysis. The
relation between response variable and covariates are given by the following model:

ln(Yi) = β0 + β1Si + β2Ei + β3E
2
i + β4Di + εi, (5.2)

where Si is the number of years of schooling, Ei is the potential experience (approximated
by the age minus years of schooling minus 6), and Di is equal to 1 for public sector workers
and 0 otherwise. In this example we fixed the power parameter at five weights, namely, 0.10,
0.25, 0.50, 0.75, and 0.90. The results are summarized in Table 3. From Table 3, we see that as
the weight for the historical data increases, the posterior mean for each regression coefficient
either decreases or increases. We also found that as the weight for the historical data increases,
the posterior standard deviations for all parameters tend to decrease.
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Table 2: Posterior means, posterior standard deviations (SD), and mean of the true values of β(p).

p a0 Mean β0(p) SD β0(p)
Mean of the true

values of β0(p)
Mean β1(p) SD β1(p)

Mean of the true
values of β1(p)

0.90

0.10 10.2190 0.4731 10.7816 −1.1840 0.1042

−0.9835
0.25 10.2550 0.2960 −1.1738 0.0591

0.50 10.5200 0.1573 −1.1569 0.0315

0.75 10.7500 0.2127 −1.1060 0.0332

0.90 10.9400 0.1311 −1.0743 0.0194

0.75

0.10 9.7010 0.3316 10.1745 −1.1911 0.0611

−1.0387
0.25 9.7030 0.2934 −1.1869 0.0639

0.50 9.7930 0.2214 −1.1710 0.0455

0.75 10.0100 0.1852 −1.1680 0.0333

0.90 10.1620 0.1636 −1.1652 0.0301

0.50

0.10 9.2095 0.2414 9.5000 −1.1938 0.0275

−1.1000
0.25 9.2560 0.1952 −1.1957 0.0233

0.50 9.2600 0.1046 −1.1958 0.0176

0.75 9.2885 0.0871 −1.1968 0.0143

0.90 9.3080 0.0735 −1.1971 0.0112

0.25

0.10 9.2820 0.3552 8.8255 −1.2590 0.0718

−1.1613
0.25 9.1890 0.2489 −1.2650 0.0462

0.50 8.9910 0.1841 −1.2690 0.0340

0.75 8.8230 0.1660 −1.2760 0.0313

0.90 8.7270 0.1492 −1.2810 0.0279

0.10

0.10 8.8240 0.3272 8.2184 −1.1940 0.0640

−1.2165
0.25 8.6460 0.2171 −1.1920 0.0433

0.50 8.3880 0.1556 −1.2030 0.0292

0.75 8.1900 0.1723 −1.2430 0.0315

0.90 8.0980 0.1171 −1.2600 0.0256

6. Discussion

In this paper, we have demonstrated the use of power prior in Bayesian quantile regression
that incorporates both historical and current data. The advantage of the method is that the
prior distribution is changing automatically when we change the quantile. Thus, we have
prior distribution for each quantile, and the prior is proper. In addition, we proposed joint
prior distributions using a mixture of normal representation of the asymmetric Laplace
distribution. The behavior of the power prior is clearly quite robust with different weights
for power parameter. We use random power parameter in the first example that can be
determined via the hyperparameters of beta distribution, and we compare the posterior
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Table 3: Posterior means of β(p) for the real data. In the parentheses are standard deviations of βp.

p a0 Mean β0(p) Mean β1(p) Mean β2(p) Mean of β3(p) Mean of β4(p)

0.90

0.10 7.2114 (0.432) 0.0237 (0.035) 0.0201 (0.019) −0.0005 (0.017) −0.1036 (0.021)

0.25 7.3455 (0.441) 0.0240 (0.039) 0.0193 (0.013) −0.0002 (0.021) −0.0900 (0.019)

0.50 7.3701 (0.357) 0.0212 (0.031) 0.0109 (0.011) −0.0002 (0.018) −0.0864 (0.013)

0.75 7.3704 (0.332) 0.0210 (0.027) 0.0109 (0.009) −0.0001 (0.014) −0.0819 (0.012)

0.90 7.3732 (0.263) 0.0201 (0.022) 0.0106 (0.009) −0.0001 (0.012) −0.0827 (0.007)

0.75

0.10 6.8264 (0.337) 0.0231 (0.026) 0.0252 (0.013) −0.0005 (0.015) −0.0455 (0.027)

0.25 7.0158 (0.227) 0.0228 (0.011) 0.0252 (0.019) −0.0001 (0.014) −0.0328 (0.022)

0.50 7.0173 (0.316) 0.0216 (0.011) 0.0159 (0.012) −0.0004 (0.010) −0.0145 (0.017)

0.75 7.0408 (0.216) 0.0203 (0.010) 0.0117 (0.010) −0.0004 (0.011) −0.0097 (0.016)

0.90 7.0391 (0.117) 0.0191 (0.010) 0.0112 (0.008) −0.0004 (0.011) −0.0085 (0.013)

0.5

0.10 6.3933 (0.221) 0.0269 (0.013) 0.0354 (0.018) −0.0008 (0.022) 0.0137 (0.024)

0.25 6.7117 (0.117) 0.0250 (0.009) 0.0306 (0.013) −0.0006 (0.020) 0.0471 (0.019)

0.50 6.7130 (0.113) 0.0149 (0.010) 0.0265 (0.012) −0.0006 (0.017) 0.0487 (0.018)

0.75 6.7163 (0.113) 0.0193 (0.008) 0.0110 (0.009) −0.0002 (0.018) 0.0631 (0.016)

0.90 6.7928 (0.105) 0.0136 (0.008) 0.0110 (0.009) −0.0002 (0.012) 0.0633 (0.013)

0.25

0.10 6.2386 (0.328) 0.0216 (0.024) 0.0165 (0.019) −0.0003 (0.019) 0.0794 (0.018)

0.25 6.3479 (0.317) 0.0201 (0.029) 0.0162 (0.017) −0.0002 (0.024) 0.0897 (0.016)

0.50 6.3624 (0.306) 0.0177 (0.018) 0.0139 (0.023) −0.0002 (0.018) 0.0921 (0.011)

0.75 6.3703 (0.219) 0.0167 (0.015) 0.0146 (0.013) −0.0002 (0.014) 0.0937 (0.009)

0.90 6.3986 (0.201) 0.0142 (0.014) 0.0120 (0.012) −0.0004 (0.013) 0.0937 (0.007)

0.1

0.10 5.8857 (0.357) 0.0200 (0.019) 0.0238 (0.025) −0.0006 (0.017) 0.0766 (0.017)

0.25 5.9255 (0.311) 0.0142 (0.018) 0.0301 (0.013) −0.0007 (0.016) 0.1022 (0.023)

0.50 5.9308 (0.299) 0.0114 (0.023) 0.0329 (0.011) −0.0007 (0.015) 0.1239 (0.018)

0.75 5.9550 (0.271) 0.0110 (0.014) 0.0302 (0.015) −0.0006 (0.012) 0.1403 (0.018)

0.90 5.9592 (0.248) 0.0095 (0.013) 0.0366 (0.012) −0.0008 (0.012) 0.1496 (0.014)

mean of the intercept with the mean of true values. In the second example we show the
behavior of the power prior distribution when the power parameter is a fixed parameter and
can be determined using expert beliefs or via a meta-analytic approach, and we compare
the posterior mean of parameter of interest with the mean of true values for both studies.
In the third example, we also use fixed power parameter, and we compare the posterior
mean for different weights for the historical data. The power prior is a very useful class of
informative prior distribution for Bayesian quantile regression. It also seems to be useful in
many applications such as model selection and carcinogenicity studies.
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Appendix

Proof of Theorem 3.1

To prove the joint prior distribution is proper prior, that is,

0 <
∫∞

−∞
· · ·
∫∞

−∞

∫1

0

[
L
(
βp | D0

)]a0aδ0−1
0 (1 − a0)λ0−1da0dβp <∞, (A.1)

note that
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−∞
· · ·
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−∞
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0
ln
[
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(
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=
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· · ·
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−∞
−
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(
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]
dβp
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0
a0da0
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· · ·
∫∞

−∞

∫1

0
ln
[
aδ0−1

0 (1 − a0)λ0−1
]
da0dβp

=
∫∞

−∞
· · ·
∫∞
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ln

{

exp

{

−
n0∑

i=1

(
y0i − x′

0iβp
)[
p − I{y0i≤x′0iβp}

]}}(1
2

)
dβp +K,

(A.2)

where

K =
∫∞

−∞
· · ·
∫∞

−∞

∫1

0
ln
[
aδ0−1

0 (1 − a0)λ0−1
]
da0dβp. (A.3)

Then

∫∞

−∞
· · ·
∫∞

−∞

∫1

0

[
L
(
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)]a0aδ0−1
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{

exp
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−1
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n0∑

i=1
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y0i − x′

0iβp
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p − I{y0i≤x′0iβp}
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dβp.

(A.4)

Following Yu and Moyeed [3], this integral is finite:

0 <
∫∞

−∞
· · ·
∫∞

−∞

∫1

0

[
L
(
βp | D0

)]a0aδ0−1
0 (1 − a0)λ0−1da0dβp <∞. (A.5)
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