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The nonparametric estimation for the density and hazard rate functions for right-censored data
using the kernel smoothing techniques is considered. The “classical” fixed symmetric kernel type
estimator of these functions performs well in the interior region, but it suffers from the problem
of bias in the boundary region. Here, we propose new estimators based on the gamma kernels for
the density and the hazard rate functions. The estimators are free of bias and achieve the optimal
rate of convergence in terms of integrated mean squared error. The mean integrated squared error,
the asymptotic normality, and the law of iterated logarithm are studied. A comparison of gamma
estimators with the local linear estimator for the density function and with hazard rate estimator
proposed by Müller and Wang (1994), which are free from boundary bias, is investigated by
simulations.

1. Introduction

Censored data arise in many contexts, for example, in medical follow-up studies in which
the occurrence of the event times (called survival) of individuals may be prevented by the
previous occurrence of another competing event (called censoring). In such studies, interest
focuses on estimating the underlying density and/or hazard rate of the survival time. Non-
parametric estimation using kernel smoothing method has received considerable attention
in the statistical literature. A popular approach for estimating the density function and the
hazard rate function is done using a fixed symmetric kernel density with bounded support
and a bandwidth parameter. The kernel determines the shape of the local neighborhoodwhile
the bandwidth controls the degree of smoothness. In order to get a reasonable estimator,
these two parameters, the kernel and the bandwidth parameter, have to be chosen carefully.
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For a review about kernel smoothing approaches, we refer the reader to Silverman [1]
and Izenman [2] for uncensored data and Singpurwalla and Wong [3], Tanner and Wong
[4], Padgett and McNichols [5], Mielniczuk [6], and Lo et al. [7] in the case of right
censoring.

It is well known from the literature that the kernel has less impact than the bandwidth
on the resulting estimate. However, when the density function of the data have a bounded
support, using the classical kernel leads to an estimator with a large bias near the endpoints.
The problem of bias, called also the boundary effect, becomes a serious drawback when
a large portion of the sampled data are present in the boundary region. In fact, when we
estimate the underlying function near the endpoints, as the support of the kernel exceeds
the available range of the data, the bias of the resulting estimator becomes larger. This is
especially the case in survival analysis, since the survival time is assumed to be nonnegative
variable. So, near zero, the symmetric kernel estimator of the density and the hazard
functions underestimates the true ones.

For uncensored data, several methods are available in the literature to overcome this
problem, for example, the reflection method of Schuster [8], the smooth optimum kernel of
Müller [9], the local linear estimator of Lejeune and Sarda [10], the transformation approach
of Marron and Ruppert [11], and the boundary kernel of Jones [12] and Jones and Foster [13].
The local linear estimator is a special case of boundary kernel method. The main idea behind
the boundary kernel method is to use an adaptive kernels in the boundary region and to use a
fixed symmetric kernel in the interior region. For nonnegative data and in order to overcome
the boundary bias problem, Chen [14] considers the gamma kernel estimator. Simulation
results of Jones [12] and Chen [14] show that the local linear estimator outperforms the
boundary kernel estimator of Müller [9]. For right-censored data and to resolve this problem,
Müller and Wang [15] propose a new class of polynomial boundary kernel estimator for
hazard rate function, where the kernel and the bandwidth parameter depend on the point
where the estimate is to be evaluated. Hess et al. [16] show numerically its performance via
an extensive simulation study.

In this paper, we adapt the gamma kernel smoothing procedure to estimate the
marginal density and the hazard function of positive independent survival data that are
subject to right censoring. We show that both estimators are robust against boundary
problems. Also, we establish the mean integrated square error, the asymptotic normality,
and the law of iterated logarithm of the two estimators. Furthermore, via a Monte Carlo
study, the finite sample performance of the estimators is investigated under various
scenarios.

The paper is organized as follows. Section 2 introduces the gamma kernel estimators
for the density and the hazard rate functions for right-censored data. In Section 3, we establish
the asymptotic properties of the gamma kernel estimators. In Section 4, we investigate the
finite sample properties of the gamma kernel estimators. Section 5 provides an application
to the classical bone marrow transplant data. The last section is an appendix that gathers the
proofs.

2. Methodology

Let T1, . . . , Tn (survival times) and C1, . . . , Cn (censoring times) be two i.i.d. nonnegative
independent random sequences with distribution functions F and G, respectively. Under the
censoring model, instead of observing Ti, we observe the pair (Xi, δi), where Xi = min(Ti, Ci)
and δi = I(Yi ≤ Ci)with I(·) being the indicator function. We denote by f the density function
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of F and by h = f/(1 − F) the corresponding hazard function. The nonparametric maximum
likelihood approach proposed by Kaplan and Meier [17] leads to the estimator of F given by

̂F(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 −
∏

i:1≤i≤n,X(i)≤x

(

n − i

n − i + 1

)δ(i)

if x < X(n)

1, otherwise,

(2.1)

whereX(1) ≤ · · · ≤ X(n) and δ(1), . . . , δ(n) are the corresponding δi’s. This estimator was studied
by many authors. For reference, we cite Breslow and Crowley [18], Wang [19], and Stute and
Wang [20] among many authors. Lo and Singh [21] expressed the KM estimator as an i.i.d.
mean process with a remainder of negligible order. This result was improved by Lo et al. [7]
and will be useful in this paper to make the connection between the uncensored and censored
case.

From now on, we will denote the right endpoint of a given (sub)distribution L by
TL, that is, TL = sup{t ≥ 0, L(t) < 1}. We will also use the notation L for the corresponding
survival function, that is, L(·) = 1 − L(·). Let H be the distribution function of X, that is,
H = F G. We suppose that TG ≤ TF or equivalently TH = TF . In the remainder of this paper,
except if mentioned otherwise, all the integrations are taken over the interval [0, T], where
T = TF . Based on the smooth kernel technique, we propose to estimate the density by the
gamma kernel estimator defined as follows:

̂fb(x) =
∫

K(x, b)(t)d ̂F(t) =
n
∑

i=1

K(x, b)
(

X(i)
)

� i , (2.2)

where the kernelK is given by

K(x, b)(t) =
tρb(x)−1 exp(−t/b)
bρb(x) Γ

(

ρb(x)
) , ρb(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x

b
if x ≥ 2b

1
4

(x

b

)2
+ 1 if x ∈ [0, 2b),

(2.3)

the weights � i ’s are the jumps of ̂F atXi for i = 2, . . . , n, and 0 < b ≡ bn → 0 is the bandwidth
parameter.

Naturally, the gamma kernel estimator that we propose for the hazard rate h is

hb(x) =
̂fb(x)

(

1 − ̂F(x)
) . (2.4)

As we will see later, those estimators are free of boundary bias; this is due to the fact that
the gamma kernel is defined on the positivereal, and so no weight is assigned outside the
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support of the underlying density and/or hazard rate functions. The shape of the gamma
kernel and the amount of smoothing are not only controlled by the bandwidth parameter,
but also vary according to the position where the function is estimated. For uncensored
data, Chen [14] shows that the gamma kernel density estimator achieves the optimal rate
of convergence for the mean integrated squared error within the class of nonnegative kernel
density estimators. Bouezmarni and Scaillet [22] state the uniform weak consistency for
the gamma kernel estimator on any compact set and also the weak convergence in terms
of mean integrated absolute error. In the next section, we will prove that even when the
data are censored, the gamma kernel estimators perform in the interior and the boundary
regions.

3. Asymptotic Properties

In this section, we state the asymptotic properties of the gamma kernel estimator of the
density and the hazard rate functions. We start with the following theorem which will play
an important role for the remainder of this section. To be concise, in the following, we will
denote by Z either the density or the hazard rate function and ̂Zb either the gamma kernel
estimator for the density or the hazard function.

Theorem 3.1. Assume that f is twice continuously differentiable. If (i) log2n/(nb3/2n ) → 0, then
the integrated mean squared error of ̂Zb is

IMSE
(

̂Zb

)

= b2
∫

B2(x)dx + n−1b−1/2
∫

V (x)dx + o
(

b2
)

+ o
(

n−1b−1/2
)

, (3.1)

where for the density function B and V are given by

Bf (x) =
1
2
xf ′′(x), Vf(x) =

1
2
√
π

x−1/2f(x)

G(x)
, (3.2)

and for the hazard rate function B and V are given by

Bh(x) =
Bf(x)

F(x)
, Vh(x) =

Vf(x)

F
2
(x)

. (3.3)

The optimal bandwidth parameter which minimizes the asymptotic IMSE( ̂Zb) is given by

b∗ =

(

1
4

∫

V (x)dx
∫

B(x)dx

)2/5

n−2/5, (3.4)
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and the corresponding optimal asymptotic integrated mean squared error is

IMSE
(

̂Zb

)

∼ 5
44/5

(∫

V (x)dx
)4/5

(∫

B(x)dx
)1/5

n−4/5. (3.5)

Theorem 3.1 states that the gamma kernel estimators of the density and hazard rate
functions are free of boundary bias and provides the theoretical formula of the optimal
bandwidth. However, in real data analysis, to choose an appropriate bandwidth, one needs to
use a data driven procedure, for example, the cross-validation, the bootstrap, or the method
proposed by Bouezmarni and Scaillet [22]. Of course, all those methods need to be carefully
adapted to the censoring case. Also, from (A.25) in the appendix, the asymptotic variances of
the gamma kernel estimator are of a larger order O(n−1b−1) near the boundaries than those
O(n−1b−1/2) in the interior. However, Theorem 3.1 shows that the impact of the increased
variance near the boundary on the mean integrated squared error is negligible and the
optimal rate of convergence in term of integrated mean squared error is achieved by the
gamma kernel estimators.

The following proposition deals with the asymptotic normality of the gamma kernel
estimators.

Proposition 3.2. Under the same conditions in Theorem 3.1. if (ii) nb5/2 = o(1), then for any x such
that f(x) > 0 and x ≤ T , one has

(

n1/2b1/4
̂Zb(x) − Z(x)
√

V ∗(x)

)

−→ N(0, 1), in distribution, (3.6)

where

V ∗(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

V (x) if
x

b
−→ ∞

Γ(2κ + 1)b−1/2

21+2κΓ2(κ + 1)
2
√
πx1/2V (x) if

x

b
−→ κ.

(3.7)

We establish in the next proposition the law of iterated logarithm of the gamma kernel
estimators. Let Φx(n, b) = 2n−1b−1/2V ∗(x)loglog(n), where V ∗ is defined in Proposition 3.2.

Proposition 3.3. Under the same conditions in Theorem 3.1. if,

(iii) bn/bm → 1, as n,m → ∞ such that n/m → 1, and 2 log4(n)/(nb)2Φx(n, b) →
0.

(iv) bn = o(log log(n)/n)2/5,

then

lim sup
n

(Φx(n, b))−1/2
∣

∣

∣

̂Zb(x) − Z(x)
∣

∣

∣ = 1, a.s. (3.8)
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4. Simulations Results

The finite sample performance of the proposed methodology is studied in this section. Two
models are considered.

(i) Model A: the survival time follows an exponential distribution, and the censoring
times were generated from an uniform distribution [0, c]. c was chosen to be
the solution of the following equation pc + exp(−c) = 1, where p is the desired
percentage of censoring.

(ii) Model B: the survival times follow aWeibull distribution with scale parameter b = 2
and shape parameter a = 1.2, and the censoring times are also generated from
a Weibull distribution with shape parameter a and a scale parameter given by
b((1 − p)/p)1/a. This ensures that the degree of censoring is equal to p.

First, we show the results for the density estimator. To evaluate the performance of the
gamma kernel estimator for the density function, we compare this later with the local linear
estimator of Jones [12] adapted for the right censoring case. The local linear method is known
to be a robust technique against boundary bias problems. We consider different sample sizes,
n = 125, 250, 500, 1000.As a measure of errors of the estimators, we analyze the mean and the
standard deviation of the L2-norm.

Tables 1 and 2 provide the results obtained with 1000 replications for the mean and
the standard deviation, respectively. Firstly and as expected, when the sample size increases,
the mean integrated square error for the two estimators decreases; see Table 1. This is true for
both models and all degrees of censoring. For example, in model A, we can see that with 10%
of censoring and using the gamma kernel estimator, the mean error decreases from 0.0117 to
0.0101 when the sample size goes from 125 to 250. Note that, for the 50% of censoring, the
rate at which the mean error decreases is much smaller. Secondly, except the 50% censoring
case with model A, the gamma kernel estimator outperforms strongly the local linear kernel
estimator. Thirdly, for model B, when the degree of censoring increases the mean integrated
square error increases as expected. In fact, for model B, the cumulative distribution of the
censoring times increases when the degree of censoring p increases. This implies that the
mean integrated squared error of the gamma kernel estimators increases. From Table 2, one
can see that the variance of both models and both estimators decreases with the sample size,
for all the degree of censoring. For model B, the variance of gamma kernel estimator increases
with the degree of censoring. Another point to remark is that, for model B, the local linear
estimator is dominated in terms of variance by gamma kernel estimator in all situations. For
model A, the variance of the gamma kernel estimator is smaller than the variance of the local
linear estimator for p = 0.1 and 0.25, but not for p = 0.5.

For the hazard function, we compare our gamma kernel estimator with the boundary-
corrected hazard estimator of Müller andWang [15]. Table 3 shows themean and the variance
of L2 errors based on 1000 replications for both n = 125 and n = 250. The same data-
generating procedure, as for density function, was used. This results clearly demonstrate that
our method is far more efficient than the method proposed by Müller and Wang [15].

5. Application

To illustrate our approach with real data, we consider the classical bone marrow transplant
study. The variable of interest is the disease-free survival time, that is, time to relapse or
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Table 1: Mean (×10−2) of L2 error for the density function estimators.

n = 125 n = 250 n = 500 n = 1000
Model % cens G LL G LL G LL G LL

A
10 1.17 1.55 1.01 1.41 0.94 1.34 0.93 1.31
25 1.48 1.96 1.27 1.83 1.24 1.80 1.18 1.77
50 3.15 2.01 3.11 1.95 3.09 1.90 3.06 1.85

B
10 1.08 1.44 0.76 1.02 0.58 0.73 0.44 0.52
25 1.65 3.50 1.56 3.22 1.50 2.99 1.42 2.72
50 3.08 9.26 3.04 9.16 3.02 9.13 2.91 9.40

G: gamma estimator; LL: local linear estimator; Model A: exponential survival times with uniform censoring times; Model
B: Weibull survival times with Weibull censoring times. The results are based on 1000 replications.

Table 2: Standard deviation (×10−2) of L2 error for the density function estimators.

n = 125 n = 250 n = 500 n = 1000
Model % cens G LL G LL G LL G LL

A
10 5.67 8.42 4.12 6.97 3.26 5.80 2.99 5.51
25 6.81 9.96 4.91 8.11 4.06 7.02 3.18 6.115
50 8.47 1.14 8.30 1.03 7.99 0.99 7.84 0.93

B
10 5.32 11.23 3.51 8.12 2.81 5.39 2.25 3.125
25 5.30 21.98 4.52 18.6 3.52 14.87 2.64 10.64
50 6.79 13.72 5.13 8.82 4.07 7.77 3.09 5.12

G: gamma estimator; LL: local linear estimator; Model A: exponential survival times with uniform censoring times; Model
B: Weibull survival times with Weibull censoring times. The results are based on 1000 replications.

Table 3: Mean and Standard deviation (×10−2) of L2 error for the hazard rate function estimators.

n = 125 n = 250
Mean Variance Mean Variance

Model % cens G MW G MW G MW G MW

A
10 6.00 12.46 0.36 0.67 3.20 8.09 0.08 0.26
25 5.90 14.04 0.16 0.45 4.95 13.09 0.07 0.30
50 13.20 20.00 0.38 0.64 13.13 19.33 0.22 0.35

B
10 2.32 8.87 0.04 0.27 1.04 5.51 0.02 0.08
25 2.64 10.04 0.03 0.34 2.27 8.49 0.02 0.09
50 8.52 11.87 0.10 0.18 8.93 11.99 0.05 0.09

G: gamma estimator. MW: Müller and Wang estimator. Model A: exponential survival times with uniform censoring times.
Model B: Weibull survival times with Weibull censoring times. The results are based on 1000 replications.

death. Among a total of 137 observations, there are 83 censored times all of them are caused
by the end of the follow-up period. The data together with a detailed description of the
study can be found in [23, Section 1.3]. Figure 1 shows the estimated hazard function using
both our method (G) and that proposed by Müller and Wang [15] (MW) with boundary
correction. For the Muller estimator, we use the data-driven global optimal bandwidth as
proposed by the authors. To calculate the MW estimator and its bandwidth parameter, we
make use of the R package muhaz; see Hess and Gentleman [24]. The estimator of Müller
and Wang [15] shown in Figure 1 is based on the bandwidth b = 204.5 while for the gamma
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Figure 1: Gamma (G) and Müller and Wang (MW) estimators of the hazard function for the bone marrow
transplant data.

kernel estimator b = 153.4. This is a data-driven bandwidth based on the least squared cross-
validation method of Marron and Padgett [25] adapted to our case. Note that this is just
a practical choice and may be far from the optimal one. From Figure 1, one cannot decide
which estimator is better but, given the results of our simulation study, we suspect that the
MW method has a global tendency of underestimating the real hazard function and so the
real risks after a bone marrow transplant.

Appendix

We start this section with some notations. Let

g(t) =
∫ t

0
(1 −H(s))−2dH1(s), (A.1)

where H1(t) := P(Xi ≤ t, δi = 1) =
∫ t

0(1 − G(s))dF(s) denote the subdistribution of the
uncensored observations. For positive real numbers z and x, and δ = 0 or 1, let

ξ(z, δ, t) = −g(z ∧ t) + (1 −H)−1I (z ≤ t, δ = 1). (A.2)

We also set ξi(x) = ξ(Xi, δi, x). First note that

�(ξi(x)) = 0, Cov(ξi(t), ξi(s)) = g(s ∧ t). (A.3)

The following two lemmaswill play an important role in the demonstrations. The first lemma
is a due to Lo et al. [7] which expressed the KM estimator as an i.i.d. mean process with a
remainder of negligible order.
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Lemma A.1 (see [7]). For t ≤ T ,

̂F(t) − F(t) = n−1F(t)
n
∑

i=1

ξi(t) + rn(t), (A.4)

where

sup
0≤x≤T

|rn(x)| = O

(

logn
n

)

a.s., (A.5)

and, for any α ≥ 1,

sup
0≤x≤T

� |rn(x)|α = O

(

[ logn
n

]α
)

. (A.6)

The next lemma gives a strong approximation of the gamma kernel estimator of the
density. This lemma permits us to derive the asymptotic properties of the gamma kernel
estimator for density and hazard rate function.

LemmaA.2. The gamma kernel density estimator fb admits the strong approximation on the interval
[0,T]:

̂fb(x) = f(x) + βn(x) + σn(x) + en(x), (A.7)

where

βn(x) =
∫

f(t)K(x, b)(t)dt − f(x), σn(x) = n−1∑

n

∫

ξi(t)dK(x, b)(t), (A.8)

sup
0≤x≤T

|en(x)| = O

( logn
(nb)

)

a.s. (A.9)

Also, for any α ≥ 1,

sup
0≤x≤T

� |en(x)|α = O

(

[ logn
(nb)

]α
)

. (A.10)

Proof of Lemma A.2. Let us first show that K(x, b)(T) can be made arbitrary small for any x <
T . From

Γ(w + 1) ∼
√
2π exp(w)ww+1/2, as w −→ ∞ (A.11)
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it follows that for s = x − b,

K(x, b)(T) =
Ts/b exp(−T/b)
bs/b+1Γ(s/b + 1)

∼ (bs)−1/2√
2π

exp
{

s

b

(

1 − T

s
+ log

(

T

s

))}

.

(A.12)

Observe that, for any w > 1, 1 − w + log(w) < 0. So, K(x, b)(T) = o(bα) for any α ≥ 1. Now,
using this result, the integration by part, and Lemma A.1, we obtain

̂fb(x) =
∫

K(x, b)(t)d ̂F(t)

≈ −
∫

̂F(t)dK(x, b)(t)

= −
∫

[

F(t) + n−1∑

n

ξi(t) + rn(t)

]

dK(x, b)(t)

≈
∫

f(t)K(x, b)(t)dt − n−1∑

n

∫

ξi(t)dK(x, b)(t) −
∫

rn(t)dK(x, b)(t)

= f(x) + βn(x) + σn(x) + en(x).

(A.13)

We deduce the result of Lemma A.2 by using the following inequality:

∫+∞

0
|dK(x, b)(t)| = b−1

∫+∞

0
|K(x, b)(t) −K(x − b, b)(t)|dt ≤ 2b−1. (A.14)

Proof of Theorem 3.1. We start with the gamma kernel density estimator. From the asymptotic
bias of the gamma kernel estimator for uncensored data (see Chen [14]) and the fact that for
the interior region

log n/(nbn)
n−1/2b−1/4

=
( logn
n1/2b3/4

)

−→ 0, (A.15)

and for the boundary region

logn/(nbn)
n−1/2b−1/2

=
logn

n1/2b1/2
−→ 0, (A.16)
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it can be easily verified that, in our case, the bias is given by

�

(

̂fb(x)
)

− f(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2
xf ′′(x)b + o(b) + o

(

n−1/2b−1/4
)

if x ≥ 2b,

ξb(x)bf ′(x) + o(b) + o
(

n−1/2b−1/2
)

if x ∈ [0, 2b).

(A.17)

where ξb(x) = (1 − x)(ρb(x) − x/b)/(1 + bρb(x) − x).
To calculate the asymptotic variance of the gamma kernel estimator, we only need to

evaluate the variance of σn(x) since the other terms are negligible. We start with the fact that

Var(σn(x)) = n−1
∫ ∫

F(t)F(s)g(t ∧ s)dk(t)dk(s), (A.18)

where k(·) = k(x, b)(·). Using integration by parts, the first integral becomes

∫

F(t)g(t ∧ s)dk(t) =
∫ s

0
F(t)g(t)dk(t) +

∫

t≥s
F(t)g(s)dk(t)

=
[

F(t)g(t)k(t)
]s

0
−
∫ s

0

(

F(t)g(t)
)′
k(t)dt

+ g(s)
[

F(t)k(t)
]

t≥s
− g(s)

∫

t≥s
F(t)′k(t)dt

= −
∫ s

0

(

F(t)g(t)
)′
k(t)dt − g(s)

∫∞

s

F(t)′k(t)dt.

(A.19)

So that,

nVar(σn(x)) = −
∫

F(s)
∫ s

0

(

F(t)g(t)
)′
k(t)dt dk(s) −

∫

F(s)g(s)
∫

t≥s
F(t)′k(t)dk(s)dt

= −
∫

(

F(t)g(t)
)′
k(t)

(∫

s≥t
F(s)dk(s)

)

dt −
∫

F(t)′k(t)

(

∫ t

0
F(s)g(s)dk(s)

)

dt

= −
∫

(

F(t)g ′(t)k(t) + F ′(t)g(t)k(t)
)

(∫

s≥t
F(s)dk(s)

)

dt

−
∫

F(t)′k(t)
∫ t

0
F(s)g(s)dk(s)dt.

(A.20)
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Again, using the integration by parts we obtain,

∫

(

F(t)g ′(t)k(t)
)

(∫

s≥t
F(s)dk(s)

)

dt = −
∫

F
2
(t)g ′(t)k2(t)dt +O(1),

∫

(

F ′(t)g(t)k(t)
)

(∫

s≥t
F(s)dk(s)

)

dt = −
∫

F ′(t)F(t)g(t)k2(t)dt +O(1)

∫

F(t)′k(t)
∫ t

0
F(s)g(s)dk(s)dt =

∫

F ′(t)F(t)g(t)k2(t)dt +O(1).

(A.21)

Therefore, from g ′(t) = f(t)/[G(t)F(t)2], we get

nVar(σn(x)) =
∫

F
2
(t)g ′(t)k2(t)dt

=
∫

f(t)/
[

G(t)
]

k2(t)dt

= Bb(x)IE
(

f
(

ηx

)

G
−1(

ηx

)

)

,

(A.22)

where ηx is a gamma(2x/b + 1, b/2) random variable and

Bb(x) =
b−1Γ(2x/b + 1)

22x/b+1Γ2(x/b + 1)
. (A.23)

From Chen [14], we have that for a small value of b,

Bb(x) ∼

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
2
√
π
b−1/2x−1/2, if

x

b
−→ ∞,

Γ(2κ + 1)
21+2κΓ2(κ + 1)

b−1, if
x

b
−→ κ.

(A.24)

So after some easy development, we get

nVar
(

̂fb(x)
)

∼

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
2
√
π
b−1/2x−1/2 f(x)

G(x)
, if

x

b
−→ ∞,

Γ(2κ + 1)
21+2κΓ2(κ + 1)

b−1
f(x)

G(x)
, if

x

b
−→ κ.

(A.25)

Finally, we derive the integrated mean squared error from (A.25) and (A.17). Now, for the
gamma kernel estimator of the hazard function, we start by the following decomposition:

MSE[hbn(x)] = �[hbn(x) − h(x)]2 = �[I + II + III]2, (A.26)
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where

I = ̂fbn(x)

⎡

⎣

F(x) − ̂F(x)
F(x) ̂F(x)

⎤

⎦,

II =

[

̂fbn(x) − �
(

̂fbn(x)
)]

F(x)
,

III =

[

�

(

̂fbn(x)
)

− f(x)
]

F(x)
.

(A.27)

Observe that �(II · III) = III · �(II) = 0, because the term III is deterministic. Using Schwartz
inequity and the boundedness of the gamma kernel density estimator we found that � |I| =
O(n−1/2) and �[I2] = O(n−1). Now, from the bias formula of the gamma kernel estimator and
the conditions on the bandwidth parameter, we get

�(|I · III|) = |III|� |I| =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

O
(

n−1/2)
(

O(b) + o
(

n−1/2b−1/4n

))

= o
(

n−1b−1/2n

)

, if
x

bn
−→ ∞,

O
(

n−1/2)O(b) + o
(

n−1/2b−1/2n

)

= o
(

n−1b−1n
)

, if
x

bn
−→ κ.

(A.28)

Again, using the Schwartz’s inequality, we obtain

�(|I · II|) ≤
[

�

(

I2
)]1/2

[

Var
(

̂fbn(x)
)]1/2

F(x)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

O
(

n−1/2)O
(

n−1/2b−1/4n

)

= o
(

n−1b−1/2n

)

if
x

bn
−→∞,

O
(

n−1/2)O
(

n−1/2b−1/2n

)

= o
(

n−1b−1n
)

if
x

bn
−→ κ.

(A.29)

Combining these formulas, one can see that

MSE[hbn(x)] = �

(

II2
)

+ �
(

III2
)

+O
(

n−1
)

+ o
(

(nbn)−1
)

= �

(

II2
)

+ �
(

III2
)

+ o
(

(nbn)−1
)

.

(A.30)

Finally, using the expression of the bias and the variance of the gamma kernel density
estimator, we derive the desired result of the gamma kernel estimator for the failure rate
function.

We will only give the proof of the asymptotic normality and the iterated logarithm for
the gamma kernel estimator. Thereafter, the result is straightforward for the gamma kernel
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hazard estimator. The proofs are based on Lemma A.2. Indeed, we only need to prove the
asymptotic normality and the iterated logarithm for σn defined in (A.8) since the other terms
are negligible.

Proof of Proposition 3.2. By (i), see Theorem 3.1, we have n1/2b1/4en(x) = o(1) and under the
conditions on the bandwidth parameter, we have n1/2b1/4βn(x) = o(1).

Therefore, we need to state that

(

n1/2b1/4
σn(x)
√

V ∗(x)

)

−→ N(0, 1), in distribution. (A.31)

But since

σn(x) =
∑

n

Wi(x, b), where Wi(x, b) = n−1
∫

ξi(t)dK(x, b)(t), (A.32)

it suffices to prove that

∑n
i=1 �

(

|Wi|3
)

(n var(W1))3/2
−→ 0. (A.33)

In fact, using inequality (A.14),

supx|Wi(x, b)| = O

(

1
nb

)

. (A.34)

Therefore, from the variance of σn(x),

∑n
i=1 �

(

|Wi|3
)

(n var(W1))3/2
≤ O

(

1
nb

)

(nvar(W1))−1/2 =

⎧

⎨

⎩

O
(

(nb)−3/2
)

if x ≥ 2b,

O
(

n−3/2n−4/5) if x ∈ [0, 2b).

= o(1)
(

since b = o
(

n−2/5
))

.

(A.35)

Proof of Proposition 3.3. Condition (iv) ensures that n1/2b1/4βn(x) = o(1) and n1/2b1/4en(x) =
o(1).

On the other hand, we apply [26, Theorem 1] to Sn =
∑n

i=1 Wi, where Wi is defined as
in the proof of Proposition 3.2; we get under condition (iii) on the bandwidth parameter

lim sup
n

(Φx(n, b))−1/2|σn| = 1, a.s. (A.36)

which concludes the proof of the theorem.
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