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In adaptive optimal procedures, the design at each stage is an estimate of the optimal design
based on all previous data. Asymptotics for regular models with fixed number of stages are
straightforward if one assumes the sample size of each stage goes to infinity with the overall
sample size. However, it is not uncommon for a small pilot study of fixed size to be followed
by a much larger experiment. We study the large sample behavior of such studies. For simplicity,
we assume a nonlinear regression model with normal errors. We show that the distribution of the
maximum likelihood estimates converges to a scale mixture family of normal random variables.
Then, for a one parameter exponential mean function we derive the asymptotic distribution of the
maximum likelihood estimate explicitly and present a simulation to compare the characteristics of
this asymptotic distribution with some commonly used alternatives.

1. Introduction

Elfving [1] introduced a geometric approach for determining a c-optimal design for linear
regression models. Kiefer and Wolfowitz [2] developed the celebrated equivalence theorem
which provides an efficient method for verifying if a design is D-optimal, again for a linear
model. These two results were generalized by Chernoff [3] andWhite [4] to include nonlinear
models, respectively. See Bartroff [5], O’Brien and Funk [6], and references therein for
extensions to the geometric and equivalence approaches. Researchers in optimal design have
built an impressive body of theoretical and practical tools for linear models based on these
early results. However, advances for nonlinear models have not kept pace.

One reason for the prevalence of the linear assumption in optimal design is that the
problem can be explicitly described. The goal of optimal design is to determine precise
experiments. Define an approximate design, proposed by Kiefer and Wolfowitz [7], as ξ =
{xi,wi}K1 , where ξ is a probability measure on X consisting of support points xi ∈ X and
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corresponding design weights wi; wi are rational and defined on the interval [0, 1] and
∑

wi = 1. Then the optimal design problem is to find the design that maximizes precision
for a given experimental interest. Typically, this precision is achieved by maximizing some
concave function, φ, of Fisher’s information matrix. For example, when the estimation of
all the parameters is the primary interest then the D-optimality criteria, where φ is equal to
the determinant of the inverse of Fisher’s information, are the most popular method. See
Pukelsheim [8] for a detailed discussion of common optimality criteria.

The basic principles for nonlinear models are the same as for linear models except
Fisher’s information will be a function of the model parameters. As a result, optimal designs
depend on the parameters and thus are only optimal in the neighborhood of the true
parameters. The term locally optimal design is commonly used for nonlinear optimal designs
to reflect this dependence on the parameters of interest.

To overcome this dependence Fisher [9] and Chernoff [3] suggest using expert
knowledge to approximate the locally optimal design. Ford et al. [10] suggest optimal designs
in nonlinear problems are to be used to provide a benchmark or to construct sequential or
adaptive designs. Atkinson et al. [11] suggest using a polynomial expansion to approximate
the nonlinear model with a linear one.

Stein [12] provides the earliest two-stage procedure in which the information from the
first stage is used to determine design features for the second stage. In this paper we examine
a two-stage adaptive optimal design procedure. An adaptive optimal design uses the data
from all previous stages to estimate the locally optimal design of the current stage. Many,
including Box and Hunter [13], Fedorov [14], White [15], and Silvey [16], have suggested
using such designs. Recently, Lane et al. [17], Dragalin et al. [18], Fedorov et al. [19], Yao
and Flournoy [20], and so forth have investigated the properties and performance of these
procedures.

Lane et al. [17] show that the optimal stage-one sample size is of the order
√
n, where

n is the overall sample size, in a two-stage regression model. Luc Pranzato obtains this
relationship for a more general model (personal communication, 2012). However, in certain
experiments, for example, early phase clinical trials or bioassay studies, it is common to
use designs with very small stage-one sample sizes. Current literature has characterized the
adaptive optimal design procedure under the assumption that both stage-one and stage-two
sample sizes are large.

In this paper we characterize the asymptotic distribution of the maximum likelihood
estimate (MLE) when the stage-one sample size is fixed. The distribution for a nonlinear
regression model with normal errors and a one parameter exponential mean function is
derived explicitly. Then for a specific numeric example the differences between the finite
stage-one sample distribution are compared with other candidate approximate distributions.

2. Adaptive Optimal Procedure for a Two-Stage Nonlinear
Regression Model with Normal Errors

2.1. The Model

Let {yij}ni,2
1,1 be observations from a two-stage experiment, where ni is the number of

observations and xi is the single-dose level used for the ith stage, i = 1, 2. Assume that

yij = η(xi, θ) + εij , εij ∼ N
(
0, σ2

)
, (2.1)
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where η(x, θ) is some nonlinear mean function. In most practical examples it is necessary to
consider a bounded design space, that is, xi ∈ X = [a, b], −∞ < a < b < ∞. It is assumed
that yij are independent conditional on treatment xi, where x1 is fixed and x2 is selected
adaptively. Denote the adaptive design by ξA = {xi,wi}21, where wi = ni/n.

The likelihood for model (2.1) is

Ln

(
θ | y1, y2

)

∝ exp
{

− n1

2σ2

(
y1 − η(x1, θ)

)2 − n2

2σ2

(
y2 − η(x2, θ)

)2
}

,

(2.2)

where yi = n−1
i

∑ni

1 yij are the stage specific sample means, and the total score function is

S =
d

dθ
lnLn

(
θ | y1, y2

)
=

n1

2σ2

(
y1 − η(x1, θ)

)dη(x1, θ)
dθ

+
n2

2σ2

(
y2 − η(x2, θ)

)dη(x2, θ)
dθ

= S1 + S2,

(2.3)

where Si represents the score function for the ith stage.

2.2. The Adaptive Optimal Procedure

Fix the first stage design point x1 and let θ̃n1 represent an estimate based on the first-stage
complete sufficient statistic y1. The locally optimal design point for the second stage is

x∗ = argmax
x∈X

Var
y2|x

(S2) = argmax
x∈X

(
dη(x, θ)

dθ

)2

, (2.4)

which is commonly estimated by x∗|θ=θ̃n1 for use in stage 2. Because the adaptive optimal
design literature assumes n1 is large, theMLE of the second stage design point, x∗|θ=θ̂n1 , where

θ̂n1 is the MLE of θ based on the first stage data, is traditionally used to estimate x∗.
However, when n1 is small the bias of the MLE can be considerable. Therefore,

for some mean functions η using a different estimate would be beneficial. In general, the
adaptively selected stage two treatment is

x2 = argmax
x∈X

(
dη(x, θ)

dθ

)2
∣
∣
∣
∣
∣
θ=θ̃n1

. (2.5)
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2.3. Fisher’s Information

Since x1 ∈ X = [a, b], a bounded design space, but y ∈ R, there is a positive probability
that x2 will equal a or b. Denote these probabilities as πa = P(x2 = a) and πb = P(x2 = b),
respectively. Then the per subject information can be written as

M(ξA, θ) =
1
n
Var(S) =

1
σ2

[

w1

(
dη(x1, θ)

dθ

)2

+w2

(

πa

(
dη(a, θ)

dθ

)2

+ πb

(
dη(b, θ)

dθ

)2

+Ex2

[(
dη(x2, θ)

dθ

)2

I(a < x2 < b)

])]

,

(2.6)

where x2 is the random variable defined by the onto transformation (2.5) of y1.

3. Asymptotic Properties

We examine three different ways of deriving an asymptotic distribution of the final MLE
which may be used for inference at the end of the study. The first is under the assumption
that both n1 and n2 are large. The second considers the data from the second stage alone.
Finally, assume a fixed first-stage sample size and a large second-stage sample size.

3.1. Large Stage-1 and Stage-2 Sample Sizes

If dη(x2, θ)/dθ is bounded and continuous and provided common regularity conditions that
hold,

√
n
(
θ̂n − θt

) D−→ N
(
0,M−1(ξ∗, θ)

)
, (3.1)

as n1 → ∞ and n2 → ∞, where ξ∗ = {(x1, n1), (x∗, n2)}. This result is used to justify the
common practice of using x∗|θ=θ̂n1 to estimate x∗ in order to make inferences about θ. Howev-
er, if dη(x2, θ)/dθ is not bounded and continuous then it is very difficult to obtain the result
in (3.1) and for certain mean functions the result will not hold. In such cases the asymptotic
variance in (3.1)must be replacedwith limn1 →∞M−1(ξA, θ). Lane et al. [17] examine using the
exact Fisher’s information for an adaptive design ξA,M(ξA, θ), instead of M(ξ∗, θ) in (3.1) to
obtain an alternative approximation of the variance of the MLE θ̂n.

3.2. Distribution of the MLE If Only Second-Stage Data Are Considered

Often pilot data are discarded after being used to design a second experiment then the
derivation of the distribution of the MLE using only the second-stage data takes if x2 to be
fixed:

√
n2

(
θ̂n2 − θt

) D−→ N
(
0,M−1

2 (x2, θ)
)
, (3.2)
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as n2 → ∞, where M2(x2, θ) = σ−2(dη(x2, θ)/dθ)
2. The estimate θ̂n2 will likely perform

poorly in comparison to θ̂n if n1 and n2 are relatively of the same size but conceivably may
perform quite well when n1 is much smaller than n. For this reason it represents an informa-
tive benchmark distribution.

3.3. Fixed First-Stage Sample Size; Large Second-Stage Sample Size

When the first-stage sample size is fixed and the second stage is large we have the following
result.

Theorem 3.1. For model (2.1) with x2 as defined in (2.5) if dη/dθ /= 0 for all x ∈ X, θ ∈ Θ, x2 is an
onto function of y1, |dη/dθ| < ∞ and provided common regularity conditions,

√
n
(
θ̂n − θt

) D−→ UQ (3.3)

as n2 → ∞, where Q ∼ N(0, σ2) and U = ((dη(x2, θ))/dθ)
−1 is a random function of y1.

Proof. As in classical large sample theory (cf. Ferguson [21] and Lehmann [22]):

√
n
(
θ̂n − θ

)
≈

(
1/

√
n
)
S

−(1/n)(d/dθ)S, (3.4)

since S(θ̂n) can be expanded around S(θt) as

S
(
θ̂n
)
= S(θt) +

(
θ̂n − θt

) d

dθ
S(θt) +

1
2

(
θ̂n − θt

)2 d2

dθ2
S(θ∗), (3.5)

where θt is the true value of the parameter and θ∗ ∈ (θt, θ̂n). Solving for
√
n(θ̂n − θt) gives

√
n
(
θ̂n − θt

)
=

(
1/

√
n
)
S(θt)

−(1/n)
(
(d/dθ)S(θt) + (1/2)

(
θ̂n − θt

)
(d2/dθ2)S(θ∗)

) . (3.6)

It can be shown that θ̂n is consistent for θt if n2 → ∞ and n1/n → 0 which gives the result in
(3.4).

Now, decompose the right hand side of (3.4) as

(
1/

√
n
)
S

−(1/n)(d/dθ)S =

(
1/

√
n
)
(S1 + S2)

−(1/n)((d/dθ)S1 + (d/dθ)S2)

=

(
1/

√
n
)
S1

−(1/n)((d/dθ)S1 + (d/dθ)S2)
+

(
1/

√
n
)
S2

−(1/n)((d/dθ)S1 + (d/dθ)S2)
.

(3.7)
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As n2 → ∞, S1/
√
n → 0, (n2/n) → 1, and (1/n)(d/dθ)S2 � 0 as n → ∞. Thus, the first term

in (3.7) goes to 0 as n → ∞. Write the second term in (3.7) as

(
1/

√
n
)
S2

−(1/n)((d/dθ)S1 + (d/dθ)S2)
=

(

− (1/n)(d/dθ)S1
(
1/

√
n
)
S2

− (1/n)(d/dθ)S2
(
1/

√
n
)
S2

)−1
. (3.8)

Further as n2 → ∞, (1/n)(d/dθ)S1 → 0 and (1/
√
n)S2 � 0,

(1/n)(d/dθ)S1
(
1/

√
n
)
S2

p−→ 0,

(1/n)(d/dθ)S2
(
1/

√
n
)
S2

=
(1/n)

(
y2 − η(x2, θ)

)(
d2η(x2, θ)/dθ2) +w2

((
dη(x2, θ)

)
/dθ
)2

(
1/

√
n
)
n2
(
y2 − η(x2, θ)

)((
dη(x2, θ)

)
/dθ
)

=
(

1√
n

)
d2η(x2, θ)/dθ2

dη(x2, θ)/dθ
+
√
w2
(
dη(x2, θ)

)
/dθ

√
n2
(
y2 − η(x2, θ)

) .

(3.9)

The first term in (3.9) goes to 0. To evaluate the second term, it is important to recognize that
εi2 = y2 − η(x2, θ) ∼ N(0, σ2/n2) and y1 ∼ N(0, σ2/n1) are independent and thus

y2 − η(x2, θ),
dη(x2, θ)

dθ
(3.10)

are independent. Because of this independence,

√
n2
(
y2 − η(x2, θ)

)
(
dη(x2, θ)

dθ

)−1
∼ UQ, (3.11)

where U is a random function of y1 and Q ∼ N(0, σ2) as determined by ((dη(x2, θ))/dθ)
−1.

Now, with
√
w2 → 1 as n2 → ∞ the result follows from an application of Slutsky’s theorem.

Remark 3.2. Provided dη(x, θ)/dθ is bounded and continuous UQ is the asymptotic
distribution of

√
n(θ̂n − θt) as n → ∞. The important case for this exposition is presented in

Theorem 3.1. However, the two other potential cases can be shown easily.

Case 1. n1 → ∞, n2 → ∞, and n → ∞. As n1 → ∞, x2 → x∗ which implies that U →
((d(x∗, θ))/dθ)−1, a constant, and thusUQ converges to asymptotic distribution of

√
n(θ̂n−θt)

given in (3.1).

Case 2. n1 → ∞, n2 fixed, and n → ∞. Just as in Case 1, U → M−1(x∗, θ), where M(x∗, θ) =
((dη(x∗, θ))/dθ)−2. Note that M(x∗, θ) differs from M(ξ∗, θ) which depends on x1 and x∗.
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Therefore UQ → N(0, σ2M−1(x∗, θ)). Look back at (3.7) in the proof, but now take n2 to be
fixed; (1/

√
n)S2 → 0 and (1/

√
n)(d/dθ)S2 → 0 and the only term left is

(
1/

√
n
)
S1

−(1/n)(d/dθ)S1
. (3.12)

Consider the following: (1/
√
n)S1 → N(0, σ2M−1(x∗, θ)) and (1/

√
n)(d/dθ)S1 → M−1(x∗,

θ) as n → ∞. Therefore,
√
n(θ̂n − θt) → N(0, σ2M−1(x∗, θ)) as n → ∞ which is equivalent

toUQ.

4. Example: One Parameter Exponential Mean Function

In model (2.1) let η(x, θ) = e−θx, where x ∈ X = [a, b], 0 < a < b < ∞ and θ ∈ (0,∞). The
simplicity of the exponential meanmodel facilitates our illustration, but it is also important in
its own right. For example, Fisher [9] used a variant of this model to examine the information
in serial dilutions. Cochran [23] further elaborated on Fisher’s application using the same
model.

For this illustration we use the MLE of the first-stage data to estimate the second-stage
design point. Here,

θ̂n1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− lny1

x
, if y1 ∈

(
e−θx, 1

)
,

0, if y1 ≥ 1,

θ, if y1 ≤ e−θx.

(4.1)

The adaptively selected second-stage treatment as given by (2.5) is

x2 = argmax
x∈X

(
x2e−2θx

)
=

⎧
⎪⎪⎨

⎪⎪⎩

θ̂−1
n1
, if y1 ∈

(
e−a

−1x1 , e−b
−1x1

)
,

b, if y1 ≥ e−b
−1x1 ,

a, if y1 ≤ e−a
−1x1 .

(4.2)

Thus, the exact per subject Fisher information is

M(ξA, θ) =
1
n
Var(S) = w1x

2
1e

−2θx1 +w2πaa
2e−2θa

+w2πbb
2e−2θb +w2Ex2

[
x2
2e

−2θx2 · I(a < x2 < b)
]
.

(4.3)

For this example M(ξA, θ) → M(ξ∗, θ) as n1 → ∞. For more detailed information on the
derivations of (4.1), (4.2), and (4.3) see Lane et al. [17].

The asymptotic distributions of the MLE in Sections 3.1 and 3.2 can be derived easily.
For the asymptotic distribution of theMLE in Section 3.3 consider the following corollary. For
details on the functions h, v1, and v2 see the proof of the corollary.
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Corollary 4.1. If η(x, θ) = e−θx in model (2.1) then

√
n
(
θ̂n − θ

) D−→ UQ (4.4)

as n → ∞, where UQ is defined by

P(UQ ≤ t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P

(

U ≥ t

q
| −∞ < q ≤ 0

)

Φ
(
q
)
, if t ∈ (−∞, 0),

P

(

U ≤ t

1
| 0 < q ≤ ∞

)
(
1 −Φ

(
q
))
, if t ∈ (0,∞),

(4.5)

whereΦ(·) is the standard normal cumulative distribution function. LetΨ(q) = Φ(
√
n(q−η(x, θ))/

σ) and h(s) = s−1eθs. Then if h(a) < h(b),

P

(

U ≥ t

q
| −∞ < q ≤ 0

)

Φ
(
q
)
= Φ
(

t

σh(1/θ)

)

+ [1 − (Ψ(v2(h(a))) −Ψ(v1(h(a))))]

×
[

Φ
(

t

σh(a)

)

−Φ
(

t

σh(1/θ)

)]

+ [Ψ(v2(h(b))) −Ψ(v2(h(a)))]

×
[

Φ
(

t

σh(b)

)

−Φ
(

t

σh(a)

)]

,

P

(

U ≤ t

q
| 0 < q ≤ ∞

)
(
1 −Φ

(
q
))

= Φ
(

t

σh(b)

)

+ [Ψ(v2(h(a))) −Ψ(v1(h(a)))]

×
[

Φ
(

t

σh(1/θ)

)

−Φ
(

t

σh(a)

)]

+ [1 − (Ψ(v2(h(b))) −Ψ(v2(h(a))))]

×
[

Φ
(

t

σh(a)

)

−Φ
(

t

σh(b)

)]

.

(4.6)

If h(b) < h(a), then

P

(

U ≥ t

q
| −∞ < q ≤ 0

)

Φ
(
q
)
= Φ
(

t

σh(1/θ)

)

+ [1 − (Ψ(v2(h(b))) −Ψ(v1(h(b))))]

×
[

Φ
(

t

σh(b)

)

−Φ
(

t

σh(1/θ)

)]

+ [Ψ(v1(h(b))) −Ψ(v1(h(a)))]

×
[

Φ
(

t

σh(b)

)

−Φ
(

t

σh(a)

)]

,
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P

(

U ≤ t

q
| 0 < q ≤ ∞

)
(
1 −Φ

(
q
))

= Φ
(

t

σh(a)

)

+ [Ψ(v2(h(b))) −Ψ(v1(h(b)))]

×
[

Φ
(

t

σh(1/θ)

)

−Φ
(

t

σh(b)

)]

+ [1 − (Ψ(v1(h(b))) −Ψ(v1(h(a))))]

×
[

Φ
(

t

σh(b)

)

−Φ
(

t

σh(a)

)]

.

(4.7)

Proof. First, we find the distribution of U where U = h(z) and the random variable z is
defined by

z =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− x1

lny1
, if y1 ∈

(
e−x1/a, e−x1/b

)
,

− x1

lna
, if y1 ≤ e−x1/a,

− x1

ln b
, if y1 ≥ e−x1/b.

(4.8)

Figure 1 illustrates the map from U to z ∈ [a, b]where θ = 1, σ = .5, a = .25, and b = 4.
Lambert’s product log function (cf. Corless et al. [24]) is defined as the solutions to

wew = c (4.9)

for some constant c. Denote the solutions to (4.9) byW(w). Let

V (c) = argy1

{(

− x1

lny1

)−1
exp
{

θ
−x1

lny1

}

= c

}

. (4.10)

Then

V (c) = exp
{

θx1

W(−θ/c)
}

. (4.11)

The W function is real valued on w ≥ −1/e, single valued at w = −1/e, and double valued
on w ∈ (−1/e, 0). U ∈ {θe,max{h(a), h(b)}}, x1 ∈ [a, b], 0 < a < b < ∞. Therefore V (c) is real
valued for all θ ∈ (0,∞). For simplicity, define v1 = minV (c) and v2 = maxV (c) for a given
c.

We present the proof for the cumulative distribution function (CDF) ofU and the CDF
ofUQ for the case where x∗ ∈ [a, b] and h(a) < h(b). The derivation of the distributions under
alternative cases is tedious and does not differ greatly from this case.
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z

4

6

8

10

12

U
=
h
(z
)

Figure 1: Map of z = −x1/ lny1 for θ = 1, a = .25, and b = 4.

Note in this case the domain of U is [h(1/θ) = θe, h(b)]. If h(1/θ) < U < h(a), then

P(U ≤ t1) = P
(
h
(
y1

)
< t
)
= P
(
v1(t1) < y1 < v2(t1)

)
= Ψ(v2(t1)) −Ψ(v1(t1)). (4.12)

IfU = h(a), then

P(U ≤ h(a)) = Ψ(v2(h(a))). (4.13)

IfU ∈ (h(a), h(b)), then

P(U ≤ t1) = P
(
v1(t1) < y1 < v2(t1)

)
. (4.14)

However, since t1 < h(a) P(y1 < v1(t1)) = 0,

P(U ≤ t1) = Ψ(v2(t1)). (4.15)

IfU ≥ h(b), then

P(U ≤ h(b)) = 1. (4.16)

Thus,

P(U ≤ t1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if t1 ≤ h

(
1
θ

)

,

Ψ(v2(t1)) −Ψ(v2(t1)), if t1 ∈
(

h

(
1
θ

)

, h(a)
)

,

Ψ
(
e−x1/a

)
, if t1 = h(a),

Ψ(v2(t1)), if t1 ∈ (h(a), h(b)),

1, if h(b) ≤ t1 ≤ ∞.

(4.17)



Journal of Probability and Statistics 11

4 6 8 10 12

0.2

0.4

0.6

0.8

1

t

0

P
(U

≤
t)

Figure 2: CDF of U for θ = 1, x1 = 2, n1 = 5, σ = .5, a = .25, and b = 4.

Figure 2 plots the CDF ofU for θ = 1, x1 = 2, n1 = 5, σ = .5, a = .25, and b = 4. The distribution
is a piecewise function with discontinuities at the boundary points a and b.

Now consider the distribution of UQ. Recall q ∼ N(0, σ2) and U and Q are independ-
ent. If t ∈ (−∞, 0), then

P(UQ ≤ t) = P

(

U ≥ t

q
| 0 <

t

q
≤ h

(
1
θ

))
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(
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q
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(
1
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+ P

(
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q
| h
(
1
θ

)

<
t

q
≤ h(a)

)
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(
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(
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)
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(

U = h(a) | t
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= h(a)

)
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(
t
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= h(a)

)
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(

U ≥ t

q
| h(a) < t

q
≤ h(b)

)

P

(

h(a) <
t

q
≤ h(b)

)
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(

U = h(b) | t
q
= h(b)

)

P

(
t

q
= h(b)

)

+ P

(

U ≥ t

q
| h(b) < t

q
≤ ∞

)

P

(

h(b) <
t

q
< ∞

)

.

(4.18)

The distribution is symmetric, thus the derivation of the CDF if t ∈ (0,∞) is analogous.

4.1. Comparisons of Asymptotic Distributions

First, consider the distribution described in (3.1) using M(ξA, θ) in place of M(ξ∗, θ) and
the distribution described in (3.2). When n1 is significantly smaller than n2, M(ξA, θ) and
M(x2, θ) can differ significantly as a function of y1. This is primarily because M(x2, θ) is a
function of x2, whereasM(ξA, θ) is an average over y1. Through simulation it can be seen that
a N(0,M−1(x2, θ)) is a better approximate distribution of

√
n(θ̂n − θ) than N(0,M−1(ξA, θ))

for only a small interval of x2, and this interval has a very small probability. For these reasons
the distribution of the MLE using only the second stage data as described in Section 3.2 is not
considered further.
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Figure 3: In each plot the solid line represents the CDF of
√
n(θ̂n−θ) obtained via Monte Carlo simulations.

The dotted-dashed line is the P(T1 ≤ t), where T1 ∼ N(0,M−1(ξ∗, θ)). The dotted line is the P(T2 ≤ t), where
T2 ∼ N(0,M−1(ξA, θ)). The dashed line is the P(T3 ≤ t), where T3 ∼ Q. Values θ = 1, x1 = 2, n1 = 5, σ = .5,
a = .25, and b = 4 were used.

Now for a set of numeric examples consider three distributions: (3.1), (3.1) using
M(ξA, θ) in place of M(ξ∗, θ) and the distribution of UQ defined in (3.3). An asymptotic
distribution can be justified in inference if it is approximately equal to the true distribution.
In this case the true distribution is that of

√
n(θ̂n−θ). However, θ̂n does not have a closed form

and thus its distribution cannot be obtained analytically or numerically. To approximate this
distribution 10,000 Monte Carlo simulations have been completed for each example to create
a benchmark distribution.

Figure 3 plots the three different candidate approximate distributions, found exactly
using numerical methods, together with the distribution of

√
n(θ̂n − θ) approximated using

Monte Carlo simulations, for θ = 1, x1, σ = .5, a = .25, b = 4, n1 = 5, and n = {30, 1000}. Note
the y-axis represents P(Ti ≤ t), i = 1, 2, 3, where T1 is N(0,M−1(ξ∗, θ)), T2 is N(0,M−1(ξA, θ)),
and T3 isUQ. When n = 30 it is difficult, graphically, to determine if T2 or T3 provides a better
approximation for

√
n(θ̂n − θ). It seems that if t ∈ (−4, 0) the distribution T3 is preferable to

T2; however, when t ∈ (0, 4) the opposite appears to be the case. It is fairly clear that for this
example T1 performs poorly.

When n = 1000, it is clear that T3 is much closer to
√
n(θ̂n − θ) than both T1 and

T2. Further, comparing the two plots one can see how the distribution of
√
n(θ̂n − θ) has

nearly converged to UQ but still differs from those T1 and T2 significantly, as predicted by
Theorem 3.1 and Corollary 4.1.

Using only graphics it is difficult to assess which of T1, T2, and T3 is nearest
√
n(θ̂n − θ)

for a variety of cases. To get a better understanding, the integrated absolute difference of the
CDFs of T1, T2, and T3 versus that of

√
n(θ̂n−θ) for x1 = 2, σ = .5, a = .25, b = 4, n = {5, 10, 15},

and n = {30, 50, 100, 400} is presented in Table 1. First, consider the table where θ = .5. The
locally optimal stage-1 design point is x1 = 2 when θ = .5; as a result this scenario is the most
generous to distribution T1. However, even for this ideal scenario T3 outperforms T1 and T2
for all values of n1. In many cases the difference between T3 and T1 is quite severe. In this
scenario T3 outperforms T2; however, the differences are not great.
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Table 1: Integrated absolute difference of the cumulative distributions (×100) of T1 ∼ N(0,M−1(ξ∗, θ)),
T2 ∼ N(0,M−1(ξA, θ)), and T3 ∼ UQ versus the approximate cumulative distribution of

√
n(θ̂n−θ) obtained

viaMonte Carlo simulations for various n1 and variousmoderate sizes of n. The values θ = 1, x1 = 2, σ = .5,
a = .25, and b = 4 were used.

(a) (θ = .5)

n1
n = 30 n = 50 n = 100 n = 400

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

5 19 24 11 16 17 8 15 16 7 14 15 5
10 11 13 8 9 12 7 9 11 6 7 12 4
15 9 10 8 8 9 6 6 9 5 4 10 3

(b) (θ = 1)

n1
n = 30 n = 50 n = 100 n = 400

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

5 30 33 25 30 27 19 34 24 12 39 21 6
10 40 40 32 26 27 22 23 28 16 26 20 8
15 34 34 33 27 28 24 21 23 17 18 20 9

(c) (θ = 1.5)

n1
n = 30 n = 50 n = 100 n = 400

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

5 32 33 31 39 25 25 42 21 23 42 17 21
10 34 33 22 27 25 16 32 22 10 35 19 12
15 35 35 32 26 26 21 26 22 13 28 21 7

Next, examine the results for θ = 1 and θ = 1.5. Once again T3 outperforms T1 and
T2 in all but 2 cases, where in many cases its advantage is quite significant. Also note that
T2 outperforms T1 about half the time when θ = 1 and the majority of the time when θ =
1.5. This supports our observation that when the distance between x1 and x∗ increases the
performance of T1 compared with T2 and T3 worsens which indicates a lack of robustness for
the commonly used distribution T1. This lack of robustness is not evident for T1 and T2.

One final comparison is motivated by the fact that if n1 → ∞, T1, T2, and T3 have the
same asymptotic distribution. Although our method is motivated by the scenario where n1 is
a small pilot study, there is no theoretical reason that T3 will not perform competitively when
n1 is large. Table 2 presents the integrated differences for the distributions T2 and T3 from√
n(θ̂n − θ) for x1 = 2, θ = 1, σ = .5, a = .25, b = 4, n1 = {50, 100, 200}, and n = {400, 1000}. T1 is

not included in the table due to the lack of robustness; it can perform better or worse than the
other two distributions based on the value of θ. Even with larger values of n1, T3 performs
slightly better when n1 = 50 and 100 and only slightly worse when n = 200 indicating that
using T3 is robust for moderately large n1.

5. Discussion

Assuming a finite first-stage sample size and a large second-stage sample size, we have
shown for a general nonlinear one parameter regression model with normal errors that the
asymptotic distribution of the MLE is a scale mixture distribution. We considered only one
parameter for simplicity and clarity of exposition.
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Table 2: Integrated absolute difference of the cumulative distributions (×100) of T1 ∼ N(0,M−1(ξ∗, θ)),
T2 ∼ N(0,M−1(ξA, θ)), and T3 ∼ UQ versus the approximate cumulative distribution of

√
n(θ̂n−θ) obtained

via Monte Carlo simulations for various n1 and various large sizes of n. The values θ = 1, x1 = 2, σ = .5,
a = .25, and b = 4 were used.

n1
n = 400 n = 1000

T2 T3 T2 T3

50 13 9 13 5
100 10 9 8 4
200 11 14 4 7

For the one parameter exponential mean function, the distribution of the adaptively
selected second-stage treatment and the asymptotic distribution of the MLE were derived
assuming a finite first-stage sample size and a large second-stage sample size. Then the
performance of the normalized asymptotic distribution of the MLE, UQ, was analyzed and
compared to popular alternatives for a set of simulations.

The distribution of UQ was shown to represent a considerable improvement over the
other proposed distributions when n1 was considerably smaller than n. This was true even
when n1 is moderately large in size.

Since the optimal choice of n1 was shown to be of the order
√
n for this model in

Lane et al. [17], the usefulness of these findings could have significant implications for many
combinations of n1 and n.

Suppose it is desired that P(D1 ≤ √
n(θ̂n − θ) ≤ D2 = 1 − α), where α is the desired

confidence level and θt is the true parameter. If one was to use the large sample approximate
distribution given in (3.1),D1 andD2, and therefore n, cannot be determined until after stage
1. However, using (3.1) with M(ξA, θ) in place of M(ξ∗, θ) or by using UQ on can compute
the overall sample size necessary to solve for D1 and D2 before stage one is initiated. One
could determine n initially using (3.1)withM(ξA, θ) orUQ and then update this calculation
after stage-1 data is available. Such same size recalculation requires additional theoretical
justification and investigation of their practical usefulness.

We have not, in this paper, addressed the efficiency of the estimate θ̂n. One additional
way to improve inference would be to find biased adjusted estimates θ̃n that are superior
to θ̂n for finite samples. We have not investigated the impact on inference of estimating
the variances in the distributions of UQ, N(0,M−1(ξ∗, θ)), N(0,M−1(ξA, θ), and N(0,
M−1(x2, θ)). Instead, the distributions themselves are compared. For some details on the
question of estimation and consistency see Lane et al. [17] and Yao and Flournoy [20].
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