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High-dimensional data with a small sample size, such as microarray data and image data, are
commonly encountered in some practical problems for which many variables have to be measured
but it is too costly or time consuming to repeat the measurements for many times. Analysis of this
kind of data poses a great challenge for statisticians. In this paper, we develop a new graphical
method for testing spherical symmetry that is especially suitable for high-dimensional data with
small sample size. The new graphical method associated with the local acceptance regions can
provide a quick visual perception on the assumption of spherical symmetry. The performance of
the new graphical method is demonstrated by a Monte Carlo study and illustrated by a real data
set.

1. Introduction

Studies on highly complicated random systems or structures pose the problem of measuring
a large number of variables simultaneously. Modern technology makes it possible to collect
high-dimensional data. Because of the high cost or the great difficulty in measuring a large
number of variables at the same time, it is quite common that high-dimensional data are
usually associated with small sample size. For example, microarray data are usually obtained
by measuring thousands of variables, but the sample size is possibly less than 100; image
data could be obtained by measuring more than 10,000 variables at the same time but
possibly with sample size of only several hundreds. Analysis of high-dimensional data with
a small sample size has become an important research topic in statistics. Many authors have
been making great efforts in developing various dimension-reduction techniques, among
which sliced inverse regression (called SIR, see, Li [1]) and its extension (Li [2]; Cook [3];
Cook and Li [4]) are powerful. The critical assumption of SIR on population is spherical
or elliptical symmetry. Thus, test of high-dimensional spherical or elliptical symmetry
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will play an important role in practical implementation of those dimension-reduction
techniques.

Data visualization techniques are welcome by data analyst in explaining statistical
ideas and conclusions to nonstatisticians. Although many graphical methods such as the Q-Q
(quantile-quantile) plots have been developed for testing high-dimensional normality (see,
e.g., Healy [5]; Small [6]; Ahn [7]; Koziol [8]; Brown and Hettmansperger [9]; Liang and
Bentler [10]), there is none for testing spherical symmetry except the Q-Q plots proposed by
Li et al. [11]. These existing plotting methods require a sufficiently large sample size to be
used effectively. The goal of this paper is to tackle the challenge of high dimension with a
small sample size in testing spherical symmetry by a plotting method.

Let x be a d-dimensional random vector. x is said to have a spherical distribution
if for any d x d orthogonal constant matrix I', Ix, and x have the same distribution. It is
well known that if a random vector x has a spherical distribution with a density, then its
density must be of the form f(x'x) for some nonnegative scalar function f(-) (see, e.g., Fang
et al. [12]). Many well-known multivariate distributions, such as the multivariate standard
normal distribution, the multivariate ¢-distribution with zero mean and an identity matrix as
its covariance matrix, and any scale mixture of the multivariate standard normal distribution,
are spherical distributions. See Chapter 3 of Fang et al. [12] for more examples of spherical
distributions.

A goodness-of-fit test of spherical symmetry means testing if a set of ii.d. (ie.,
independently identically distributed) d-dimensional (d > 2) sample {x,...,x,} is from a
population with a spherical distribution. Fang and Liang [13] gave an up-to-date overview
of existing methods for tests of spherical symmetry and their extensions to testing elliptical
symmetry. Several other statistics for testing spherical symmetry have been proposed in the
last few years (e.g., Koltchinskii and Li [14]; Diks and Tong [15]). There is no empirical study
on the performance of these existing methods when applied to testing spherical symmetry for
high-dimensional data with a small sample size. It is for this purpose that we develop a new
graphical method in this paper to tackle this problem. The new graphical method integrates
the property of spherical distributions and the idea of the T3-plot, which was proposed by
Ghosh [16] for detecting univariate nonnormality. Hence, we will call this version of the Tz-
plot as STz-plot, where “S” stands for sphericity. The ST3-plot possesses a special property
that it is still useful when the sample size n is smaller than the dimension d of x. This property
gives an superiority of the ST3-plot in the case of high dimension with small sample size. This
will be demonstrated in Section 3.

The main idea to construct the ST3-plot is to project the high dimensional data to one
dimensional space such that the T3 statistic [16] with the projected data behaves like the one
with an i.i.d. sample from the univariate standard normal distribution. Thus, a critical issue
arising from the projection is how to select some “good” projection directions. We address
this issue carefully in Section 2.

This paper is organized as follows. In Section 2 we will give a brief review on Ghosh’s
[16] Ts-plot for detecting univariate nonnormality. The theoretical principle for deriving
the projection directions is discussed. In Section 3, we will provide some local acceptance
regions for the ST3-plot and simulation results on its performance in testing high-dimensional
spherical symmetry based on a Monte Carlo study. An application of the ST3-plot to a real
high-dimensional data set with small sample size is illustrated. Some concluding remarks are
given in Section 4.
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2. The ST;-Plot for Testing High-Dimensional Spherical Symmetry
2.1. Background of the ST;-Plot

The STz-plot is focused on looking for evidence of departure from a spherical distribution
for an ii.d. d-dimensional sample {xi,...,x,}. Spherical distributions possess very similar
marginal distributions to those of the multivariate normal distribution. For example, all
univariate (1-dimensional) marginals of a multivariate normal distribution are still normal.
In comparison with this marginal property, all univariate marginals of a spherical distribution
are scale-invariant. This scale invariance is an important characteristic of the family of
spherical distributions. More discussions and induced results from the scale invariance for
a spherical distribution can be found from Fang et al. [12]. Because most existing plotting
methods for testing goodness of fit are only applicable for univariate distributions, the key
idea of the STs-plot is to extend the existing univariate Tz-plot [16] to testing multivariate
spherical symmetry from some “special principal component” directions by employing the
same idea as in Fang et al. [17]. Section 2.2 gives a simple review on Ghosh’s [16] T3-plot and
Section 2.3 summarizes the theoretical details on the extension of Ghosh'’s [16] T5-plot to the
STs-plot.

2.2. A Review of the T;-Plot

Let x1,...,x, be an ii.d. univariate sample and x = (x,...,x,)". Testing goodness-of-fit for
univariate normality is to test whether the underlying distribution of the sample is normal
N (u, 0%) with unknown y and o?. The EMGF (empirical moment generating function) for
the studentized data is defined as

M(x,t):%iexp{@}, teR!, (2.1)
j=1

where X and s are the sample mean and the sample standard deviation, respectively, R!
stands for the set of all real numbers. Denote the ith derivative of M(x,t) with respect to ¢

by M¥(x,t) (i > 0). Ghosh [16] defined the Té") (x,t) (a function of t for fixed x) as

3

T (x,t) = \/ﬁ%{log M(x, 1)}

(2.2)

=v/nM7?(x, 1) {M ) (x, )M (x, £) - 3MP (x, ) MO (x, ) + 2—MAZ)($':))3 }

The graphical method for detecting nonnormality of the underlying distribution of the
sample {x1,...,x,} is based on TS(") (x,1).

It is noted that T3(n) (x,t) is a stochastic process with an index t € [-a, a] (for some
a > 0). Under the normal assumption, Ghosh [16] obtained the asymptotic distribution of
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T3(")(x,t), which is a zero-mean Gaussian process with a covariance function K(t,s) (t,s €
[-a, a]). In particular,

K(t 1) = (t6 + Ot + 1882 + 6) exp <t2> — 215, (2.3)

The behavior of TS(n) (x,t) att = O reflects evidence of departure from normality for the sample
{x1,...,x,}. For example, T3(")(x,0) is proportional to the sample skewness and the slope of

T3(") (x,t) att = 0is proportional to the sample kurtosis. Fang et al. [17] proposed the following
Kolmogorov-Smirnov (K-S) type statistic KS,,:

T (x, t
KS,(x) = sup 75" 00 0) (2.4)

-1 VK (1)

as an analytical test associated with the T3-plot. Large values of KS, (x) indicate nonnormality
of the univariate sample x = (x1,...,x,)". The exact finite-sample distribution of KS, is
not readily obtained under the normal assumption but its percentiles can be well fitted by
a quadratic function of 1/+/n using the least squares method. Fang et al. [17] provided these
quadratic functions of 1/+/n for significance levels a = 1%, 5%, and 10% based on a Monte
Carlo study:.

2.3. Extension of the T;-Plot to the ST;-Plot

Let xi,...,x, be an iid. d-dimensional sample from a population characterized by a d-
dimensional random vector x. We want to test spherical symmetry of the sample. The
theoretical principle for extending the Ts-plot to the STs-plot is based on Lemma 2.1 and
Theorem 2.2 as follows.

Lemma 2.1 (Theorem 2.22 of Fang et al., Chapter 2 [12]). Let t(x) be a statistic based on a (not
necessarily i.i.d.) sample x = (x1,...,x,) such that t(ax) = t(x) (scale invariance) for any constant
a > 0. If x has a spherical distribution, then

tx) S H(zo), 20 ~ N(0,1,), (2.5)

where the sign “L7 means that the two sides of the equality have the same distribution.

Lemma 2.1 implies that for any scale-invariant statistic #(x) associated with a
spherically distributed random vector x, its distribution is the same as that from taking the
spherical random vector x to be the standard normal N,(0,1,).

Theorem 2.2. Letxi,...,Xn be i.i.d. with a d-dimensional spherical distribution and P(x; = 0) =0,
and matrix X = (xq,- -+ ,Xy) : d x n. Assume that

d= f(fo?) nx1 (2.6)



Journal of Probability and Statistics 5

is a vector function that is uniquely determined by X'X. Define the random vector
z=Xd: dx1. (2.7)

Then z has a d-dimensional spherical distribution.

Proof. First, we point out that the random matrix X = (x1,...,X,) has a left spherical matrix
distribution [18]. That is, it satisfies

X & X (2.8)

for any d x d orthogonal matrix I that is independent of X. We can write the random vector
zin (2.7) as

2= Xd = X (XX) £ 1%f| (1) (1%) | = 1=, 29)
that is, we obtain
1z22 (2.10)

for any d x d orthogonal matrix I that is independent of z. This shows that the random vector
z given by (2.7) has a spherical distribution by definition. This completes the proof. O

The random vector ~c~1 in (2.7) acts as a direction for projecting a left spherically
distributed random matrix X into a spherically distributed random vector z by (2.7). This idea
is due to Lauter [19] in constructing tests for the multivariate normal mean g in Ngy(p, X)
with an unknown X.

Based on Lemma 2.1 and Theorem 2.2, we can extend the T3-plot to the ST3-plot for
testing high-dimensional spherical symmetry. At first, we point out that the T3 function
T3("> (x,t) given by (2.2) is scale-invariant, that is,

T (ax, t) = TV (x, 1), (2.11)
for any constant a > 0. Therefore, by Lemma 2.1, if x is spherically distributed, then
T (1) ST (20,1), 20 ~ Nu(0,1,). (212)
Similarly, for the K-S type statistic given by (2.4), it is also true that

KS,(x) £ KS,(20), 20~ N,(0,1,), (2.13)

if x is spherically distributed.
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Now we propose a series of necessary tests for high-dimensional (the dimension d
of data is very large) spherical symmetry by Theorem 2.2. The meaning for necessary test is
the same as in Fang et al. [20]. That is, when the null hypothesis is not rejected, it implies
insufficient information to draw a statistical conclusion from the sampled data. Instead of
testing the hypothesis of spherical symmetry for an i.i.d. sample {xi,...,x,} directly, we turn
to test a series of hypotheses defined by

Hoi: z=Xd given by (2.7) has a spherical distribution (2.14)

versus Hig : z = Xd given by (2.7) is nonspherical. Hypothesis (2.14) is for any possible
choices of d in Theorem 2.2. So hypothesis (2.14) comprises a family of tests for spherical
symmetry of z. If any of the possible choices of d leads to rejection of Hy, in (2.14), the
hypothesis of spherical symmetry will be also rejected. So any test for (2.14) is a necessary
test for the hypothesis of spherical symmetry for the original sample. The T5-function in (2.2)
based on z = Xd = (z1,...,2a) (computed from (2.7)) becomes

T\ (z,t) = \/Ezj—;{log M(z,t))
= VdM™2(z,t) { M® (z,H)M(z,t) - 3M@ (z, ) MD (z, 1) + 2%:’5)3 } o
where
M(z,t) = %gexp{@}, te R, (2.16)

where z and s. are the sample mean and the sample standard deviation calculated from
z=Xd =(z1,...,z4) by Theorem 2.2. The K-S type statistic in (2.4) becomes

d
12,1 -
KS4(z) = sup (2.17)

act VK(EE)

where T3(d) (z,t) is given by (2.15) and K (¢, t) by (2.3).

By (2.12) and (2.13), the principle for using the ST3-plot to detect high-dimensional
nonspherical symmetry can be summarized as: plot the T3-function T3(d) (z,t) given by (2.15)
versus t € [-1,1]. If the plot shows a significant departure from the horizontal axis y = 0 in
R?, hypothesis (2.14) is rejected, and as a result, the i.i.d. sample {xy, ..., x, } can be considered
from a population of nonspherical distribution. The K-S type statistic KS;(z) in (2.17) can be
employed to evaluate the significance of departure from spherical symmetry.

It is obvious that there are numerous choices of the function f (X'’X) in Theorem 2.2
in constructing the projection direction d. We will study the empirical performance of the
choices recommended by Lauter [19], and Lauter et al. [21] in next section.
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3. A Monte Carlo Study
3.1. An Overview

Graphical methods can only serve as descriptive statistical inference without associated
acceptance regions with the plots. One of the impressive characteristics of Ghosh’s [16]
T5-plot for detecting departure of univariate normality is its associated acceptance regions,
which make it possible the plotting method as analytical statistical inference. The purpose
of the Monte Carlo study in this section is to provide simulated acceptance regions for the
STs-plot developed in Section 2 by using a similar Monte Carlo method to that in Ghosh [16]
and in Fang et al. [17]. Based on the acceptance regions, the empirical performance of the
ST3-plot can be partially evaluated through counting the rejection rate (type I error) from a
selected set of spherical distributions (which serve as the null hypothesis) and counting the
rejection rate (empirical power) from a selected set of nonspherical alternative distributions
(which serve as the alternative hypothesis) when applying the ST3-plot.

3.2. The Local Acceptance Regions

A local acceptance region for the plot of T3(d) (z,t) given by (2.15) is a critical band for the
ploton t € [-1,1]. If the plot goes outside the critical band, it is an indication that z is not
spherically distributed, and as a result, the hypothesis of spherical symmetry is rejected. A
critical band can be constructed by simulating the percentiles of the finite-sample distribution
of the K-S type statistic in (2.17). By Lemma 2.1, we have

KSa(z) £ KSa(z0), 20 ~ Na(0,1a), (3.1)

if the null hypothesis Hy, in (2.14) is true. Therefore, in simulating the percentiles of the
finite-sample null distribution of KS4(z) in (2.17), we can simply generate the data for z
from the standard normal N;(0,1;). By generating the normal N4(0,I;) data for z with
2,000 replications, we record the 100(1 — a)%-percentiles (e.g., a = 5%) of KS,4(z), where
the KS4(z) in (3.1) is approximately calculated by taking the supremum on the discrete
values of t = 0.01 (0.01) 0.99 (i.e, t = 0.01,0.02,...,0.99). A quadratic curve of 1/4/d :
a(a) + b(a)//d + c(a)/d, is fitted for the 100(1 — a)%-percentiles c;(a) of KS4(z) by the
least squares method to find the approximate relation of c;(a) to the sample dimension d.
The following quadratic curves based on values d = 10 (2) 50 (i.e., d = 10,12,14,...,50) were
obtained from the least squares fitting:

cala) = 4.7353 - 9.7698/\/d +2.1227/d, a = 1%,
ca(a) = 2.6152 —3.5985/\/d — 1.4409/d, a =5%, (3.2)

ca(a) =2.2321 —4.2514/7/d + 1.8314/d, a = 10%.

The quadratic curves given by (3.2) are suitable for estimating the percentiles of the K-S type
statistic KS4(z) for d in the range 10 < d < 50. Figure 1 shows the plots of the simulated
percentiles of KS;(z) and the estimated percentiles c4(a) given by (3.2) by the least squares
method. The fit in Figure 1 seems to be acceptable.
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Figure 1: Quadratic curve fit for the percentiles of the K-S type statistic KS;(z) given by (2.17).

By using the quadratic curves given by (3.2) for estimating the finite-sample perce-
ntiles of the statistic KS4(z) in (2.17) for dimension 10 < d < 50, the acceptance region for the

T3-function T3(d) (z,t) in (2.15) for testing spherical symmetry is given by

(3.3)

Qa(a) = £ca(a)\/K(t, 1),

where c;(a) is given by (3.2) and K(t,t) is given by (2.3). We will call the acceptance region
determined by (3.3) the local acceptance region for the STs-plot in testing high-dimensional

spherical symmetry. When the plot of T3(d) (z,t) (t € [-1,1]) goes outside the acceptance region
determined by (3.3), hypothesis (2.14) is rejected, and as a result, the underlying distribution
of the sample {xy, ..., x;,} shows evidence of nonspherical symmetry.

3.3. Type I Error Rates

We already pointed out that there are numerous choices for the projection direction d in (2.7)
to plot the T3-function (2.15). We will perform a Monte Carlo study on the following choices

of d that were suggested by Lauter [19], and Léuter et al. [21].

(1) Solution to the eigenvalue problem:

X'XD = DA, (3.4)
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where D, = [Yi--01al A = Diag(L,...,X,,) with Xl > > Xn > 0. To ensure

the unique solution, the random matrix D is assumed to have positive diagonal
elements. The following directions are chosen:

], ifn<d,

. ~ Cifn<d,
d=71, d=r71, withks= d; = {Y" e (3.5)
ifn> d, Yar = 4

QI

—_—
N

E 7

where the sign [x] stands for the integer part (< x) of a real number x (e.g., [2.9] =2
and [3.2] = 3).

(2) The direction based on the SS-test discussed by Lauter et al. [19]. Choose
~ o~ ~ \1-1/2
d=ds= d = [Diag(X’X)] 1, (3.6)

where DiNag()N(’)hZ) denotes the diagonal matrix with the same diagonal elements as
those of X’X, and 1,, is an n x 1 vector of ones.

(3) The direction based on the PC-test discussed by Léauter et al. [21]. Let D be the
solution matrix to the eigenvalue problem

XXD=DA, D Diag(fci)ﬁ =1, (3.7)

where similar conditions to those on the matrices D and A in (3.4) are imposed on
the matrices D and A in (3.7) to ensure the unique solution. Let D = [y,,...,7,].
The three directions are chosen:

~ Y, ifn<d,

ds =7, ds=7, d7={ (3.8)

¥, ifn> d,

where k is given by (3.5).

The following seven directions are chosen for a Monte Carlo study on the type I error
rates and power when using the STz-plot for testing spherical symmetry:

al/ aZ/ a3/ a4/ aS/ a6/ a7- (39)

The Monte Carlo study on type I error rates of the local acceptance region (3.3) is
carried out by generating spherical samples from the following six spherical distributions by
MATLAB code. These null distributions are discussed in detail in Chapter 3 of Fang et al. [12].
Here we only point out the corresponding parameters for the chosen spherical distributions
without explaining their meaning. The six chosen spherical (null) distributions are: (1) the
standard normal distribution N;(0,1;); (2) the multivariate ¢-distribution with degrees of
freedom m = 5; (3) the Kotz type distribution with N =2, s =1, and r = 0.5; (4) the Pearson
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type VII distribution (PVII) with m = 2 and N = 20; (5) the Pearson type II distribution
(PII) with m = 3/2; (6) the Cauchy distribution. The TFWW algorithm [22] pages 166-170
[23], is employed to generate empirical samples from these spherical distributions except the
normal distribution whose samples can be generated from the MATLAB internal function.
Table 1 gives the empirical type I error rates (a = 5%) of the ST3-plot in testing spherical
symmetry for dimensions d = 20 and d = 30, where the seven directions are given by (3.9)
and the type I error rates were calculated by

number of rejections

type L error rate = (3.10)

number of replications

The local acceptance region given in (3.3) for a = 5% is used to count the number of rejections
for the selected null distributions. The simulation was done with 2,000 replications.
Based on Table 1, we can summarize the following empirical conclusions:

(1) the STs-plot seems to have better control of the type I error rates by using the five
directions &1,. .., 215 than by using the two directions &6 and &7, which tend to have
lower type I error rates than the significance level a = 5%. The STs3-plot based on
these two directions may over-accept the null hypothesis of spherical symmetry;

(2) the performance of the STs-plot on controlling the type I error rates tends to be
slightly affected by the sample size. This may be due to the arrangement of the
observation matrix X in Theorem 2.2. So we can expect the STs-plot to have good
control on type I error rates in the case of high dimension with a small sample size.
This is a good indication for high-dimensional data analysis.

For a = 1% and 10%, we obtained similar results to those in Table 1 on the type I error
rates of the ST;-plot by using the acceptance region (3.3) and the same directions in (3.9).
These are not presented to save space.

3.4. Power Study

The power of the ST;-plot in testing spherical symmetry is computed by using the acceptance
regions (3.3) and the formula given by (3.10). The KS-type statistic (2.17) is computed in
the same way as in Section 3.2. The following six nonspherical alternative distributions are
selected:

(1) the multivariate y?-distribution comprises i.i.d. y?(1)-variables;

(2) the multivariate exponential distribution comprises i.i.d. univariate exponential
variables with a density function exp(—x), x > 0;

(3) the multivariate gamma distribution that comprises of i.i.d. gamma variables, each
has a gamma distribution with a density f(x) = (x/4) exp(=x/2) (x > 0);

(4) the distribution nor +y? comprises i.i.d. marginals, [d/2] marginals have a standard
normal distribution N (0, 1) and d—[d /2] marginals have a chi-squared distribution
x?(2). Here d is the sample dimension;

(5) the distribution nor + Cauchy comprises two independent marginals, one is the
[d/2]-dimensional standard normal distribution and the other has a di(= d -
[d/2])-dimensional Cauchy distribution;
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Table 1: Type I error rates of the ST3-plot for testing spherical symmetry.
Directions n Normal Multivar. ¢ Kotz PVII PII Cauchy
(d =20 and a = 0.05)
20 0.0620 0.0580 0.0525 0.0445 0.0560 0.0440
& 50 0.0480 0.0505 0.0490 0.0490 0.0520 0.0465
100 0.0505 0.0485 0.0570 0.0485 0.0475 0.0540
200 0.0470 0.0560 0.0545 0.0495 0.0495 0.0500
20 0.0535 0.0425 0.0465 0.0480 0.0485 0.0505
d, 50 0.0495 0.0510 0.0585 0.0550 0.0450 0.0455
100 0.0395 0.0445 0.0490 0.0530 0.0480 0.0500
200 0.0505 0.0560 0.0430 0.0495 0.0525 0.0500
20 0.0400 0.0365 0.0360 0.0485 0.0490 0.0550
d 50 0.0495 0.0525 0.0465 0.0590 0.0460 0.0480
) 100 0.0425 0.0540 0.0405 0.0535 0.0475 0.0540
200 0.0455 0.0495 0.0515 0.0530 0.0490 0.0525
20 0.0465 0.0485 0.0480 0.0520 0.0530 0.0535
i 50 0.0520 0.0530 0.0425 0.0445 0.0495 0.0475
100 0.0555 0.0405 0.0340 0.0470 0.0435 0.0510
200 0.0600 0.0480 0.0440 0.0520 0.0445 0.0425
20 0.0520 0.0405 0.0480 0.0505 0.0560 0.0445
i 50 0.0420 0.0380 0.0355 0.0400 0.0425 0.0305
100 0.0365 0.0375 0.0370 0.0395 0.0370 0.0375
200 0.0405 0.0260 0.0330 0.0460 0.0375 0.0350
20 0.0525 0.0470 0.0515 0.0480 0.0475 0.0470
d 50 0.0035 0.0030 0.0030 0.0030 0.0025 0.0020
100 0.0035 0.0020 0.0010 0.0020 0.0040 0.0065
200 0.0010 0.0015 0.0035 0.0020 0.0025 0.0025
20 0.0520 0.0405 0.0480 0.0505 0.0560 0.0445
3 50 0.0065 0.0005 0.0050 0.0035 0.0040 0.0065
100 0.0030 0.0005 0.0030 0.0000 0.0030 0.0075
200 0.0015 0.0020 0.0035 0.0010 0.0025 0.0050
(d =30and a = 0.05)
20 0.0485 0.0500 0.0455 0.0640 0.0625 0.0600
& 50 0.0475 0.0465 0.0485 0.0510 0.0545 0.0560
100 0.0505 0.0440 0.0540 0.0515 0.0390 0.0535
200 0.0610 0.0485 0.0580 0.0580 0.0570 0.0575
20 0.0465 0.0485 0.0595 0.0615 0.0410 0.0490
a4 50 0.0480 0.0455 0.0515 0.0605 0.0465 0.0465
100 0.0445 0.0675 0.0490 0.0515 0.0455 0.0440
200 0.0460 0.0435 0.0500 0.0480 0.0455 0.0460
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Table 1: Continued.

Directions n Normal Multivar. ¢ Kotz PVII PII Cauchy
20 0.0455 0.0630 0.0465 0.0530 0.0465 0.0565
ds 50 0.0510 0.0530 0.0405 0.0515 0.0555 0.0555
100 0.0540 0.0475 0.0465 0.0535 0.0535 0.0515
200 0.0535 0.0535 0.0585 0.0470 0.0470 0.0435
20 0.0530 0.0490 0.0565 0.0455 0.0430 0.0470
i 50 0.0600 0.0490 0.0540 0.0490 0.0525 0.0490
100 0.0435 0.0490 0.0410 0.0505 0.0510 0.0495
200 0.0510 0.0500 0.0515 0.0600 0.0465 0.0525
20 0.0535 0.0470 0.0390 0.0540 0.0570 0.0410
i 50 0.0420 0.0335 0.0365 0.0325 0.0455 0.0310
100 0.0415 0.0350 0.0400 0.0370 0.0305 0.0310
200 0.0420 0.0380 0.0360 0.0395 0.0440 0.0325
20 0.0520 0.0600 0.0520 0.0605 0.0550 0.0405
d 50 0.0040 0.0055 0.0030 0.0030 0.0060 0.0030
100 0.0015 0.0015 0.0005 0.0010 0.0025 0.0020
200 0.0005 0.0010 0.0005 0.0010 0.0005 0.0020
20 0.0475 0.0500 0.0485 0.0540 0.0435 0.0360
3 50 0.0325 0.0370 0.0375 0.0320 0.0325 0.0280
100 0.0010 0.0005 0.0000 0.0000 0.0005 0.0035
200 0.0005 0.0010 0.0015 0.0005 0.0015 0.0030

(6) the distribution t + Kotz has a similar meaning to that for the distribution given by
(5), one marginal has a [d/2]-dimensional ¢-distribution with parameter m = 5 and
the other has a d;-dimensional Kotz type distribution with parameters N = 2,5 =1,
and r = 0.5.

By a standard Monte Carlo technique, a d x n sample matrix f(o = (xq,...,X,) can
be generated from the above six nonspherical alternative distributions according to their
marginal distributions. Then X is centerized by

X =$<O—E<§<O>, (3.11)

where the mean value E(Xp) is taken for each element of X,. By this way, we obtain
nonspherical samples distributed in the space R like those of spherical samples. Table 2
presents the power (a = 5%) of the T3-plot in testing spherical symmetry for the six
nonspherical distributions by using the seven directions in (3.9).

Based on Table 2, we can summarize the following empirical conclusions:

(1) the STs-plot based on the direction d; remarkably outperforms (has much higher
power) the other six directions under the four choices of the sample sizes and
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Table 2: Power of the ST3-plot in testing spherical symmetry for six nonspherical distributions.

n Direction 2 (1) Exp Gamma Nor + y2 Nor + Cauchy t + Kotz
(d =20, a =5%)
d; 0.7700 0.5750 0.4000 0.7945 0.4085 0.3820
d 0.0830 0.0635 0.0460 0.0660 0.0965 0.0940
ds 0.1310 0.0860 0.0640 0.0840 0.1250 0.2925
20 dy 0.0875 0.0580 0.0585 0.0585 0.0735 0.2405
ds 0.3755 0.2420 0.1725 0.2740 0.1815 0.3760
ds 0.0520 0.0450 0.0470 0.0490 0.0450 0.1220
d; 0.3755 0.2420 0.1725 0.2740 0.1815 0.3760
d; 0.7625 0.5355 0.3435 0.8495 0.4235 0.4040
d 0.0925 0.0685 0.0455 0.0825 0.1405 0.2740
d; 0.2965 0.1490 0.0830 0.1225 0.3200 0.3840
50 dy 0.0665 0.0570 0.0470 0.0480 0.0680 0.2315
ds 0.2540 0.1640 0.1130 0.2340 0.1795 0.2930
ds 0.0045 0.0065 0.0035 0.0040 0.0135 0.0045
dy 0.0050 0.0015 0.0055 0.0035 0.0115 0.0055
d; 0.7310 0.5115 0.3205 0.8715 0.4250 0.4235
d 0.0960 0.0670 0.0605 0.1020 0.3490 0.3670
ds 0.3995 0.2170 0.1055 0.1800 0.3980 0.4070
100 dy 0.0565 0.0395 0.0470 0.0415 0.0765 0.2605
ds 0.2310 0.1595 0.1070 0.2595 0.2195 0.3045
ds 0.0025 0.0030 0.0020 0.0040 0.0150 0.0030
dy 0.0030 0.0015 0.0040 0.0015 0.0165 0.0040
d; 0.7200 0.4845 0.3070 0.8825 0.4080 0.4130
d 0.0920 0.0605 0.0465 0.2155 0.4005 0.4065
ds 0.4740 0.2790 0.1545 0.2655 0.4065 0.4265
200 dy 0.0535 0.0550 0.0485 0.0320 0.0655 0.2380
ds 0.1755 0.1450 0.0995 0.2620 0.2315 0.2970
ds 0.0020 0.0035 0.0020 0.0045 0.0335 0.0020
d; 0.0010 0.0010 0.0025 0.0030 0.0385 0.0030
(d =30, a =5%)
d; 0.8440 0.6660 0.4775 0.8785 0.5000 0.5025
d 0.1100 0.0805 0.0470 0.0705 0.0875 0.2755
ds 0.1010 0.0650 0.0515 0.0705 0.0915 0.2120
20 dy 0.1255 0.0980 0.0740 0.0715 0.0875 0.3445
ds 0.4740 0.3185 0.2040 0.3900 0.2420 0.5330
ds 0.0695 0.0565 0.0635 0.0545 0.0670 0.2090
dy 0.0840 0.0580 0.0540 0.0695 0.0580 0.2175
d 0.8360 0.5935 0.3875 0.8980 0.5060 0.6585
d 0.0720 0.0610 0.0550 0.0710 0.1770 0.2005
d; 0.2345 0.1205 0.0930 0.1290 0.2145 0.8500
50 dy 0.0860 0.0680 0.0505 0.0535 0.0925 0.3610
ds 0.3450 0.2355 0.1410 0.3560 0.3920 0.5820
ds 0.0025 0.0030 0.0045 0.0035 0.0055 0.0300

d; 0.0585 0.0645 0.0415 0.0570 0.0740 0.3320
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Table 2: Continued.

n Direction X2 (1) Exp Gamma Nor + y? Nor + Cauchy t + Kotz
d; 0.7925 0.5760 0.3505 0.9250 0.5065 0.8675
dy 0.0810 0.0585 0.0555 0.0850 0.2760 0.4265
ds 0.3580 0.1910 0.1025 0.2055 0.3845 0.9765

100 dy 0.0575 0.0605 0.0630 0.0555 0.0910 0.3695
ds 0.3070 0.1905 0.1255 0.3915 0.5625 0.7005
ds 0.0005 0.0020 0.0020 0.0000 0.0130 0.0095
d; 0.0010 0.0015 0.0005 0.0020 0.0165 0.0060
d; 0.7950 0.5335 0.3220 0.9310 0.5075 0.9605
dy 0.0905 0.0615 0.0510 0.1405 0.2920 0.6455
33 0.4615 0.2595 0.1330 0.2900 0.3910 0.9995

200 dy 0.0555 0.0625 0.0595 0.0485 0.0112 0.3780
ds 0.2865 0.1920 0.1255 0.4315 0.5718 0.7440
ds 0.0015 0.0000 0.0015 0.0025 0.0140 0.0095
d; 0.0005 0.0025 0.0000 0.0020 0.0175 0.0095

almost all of the selected nonspherical distributions. So c~11 can be considered as
a general choice for the T3-plot in testing high-dimensional spherical symmetry;

(2) the STs-plot is slightly affected by an increase of the sample size. Because of
the rearrangement of the observation matrix X = (x1,...,%,) : d x n, instead of
n x d, the sample size n is implicitly taken as the sample dimension d, and the
sample dimension d is taken as the sample size n. This is a rotation of the regular
observation matrix X = (x1,...,X,) : n x d. This rotation results in a power
decrease of the ST3-plot when the sample size n increases, and it results in a power
increase of the T5-plot when the sample dimension d increases. This can be observed
from Table 2. Therefore, the ST;-plot is especially suitable for testing very high-
dimensional spherical symmetry with a relatively small sample size.

3.5. Practical Illustration

To illustrate how to apply the ST3-plot in practice, we employ a subset of a real data set. The
data set was used in Walker and Wright [24] and was called the VDP (vertical density profile)
data set. As described by Walker and Wright [24], manufacturers of engineered wood boards,
which include particle board and medium density fiberboard, are very concerned about the
density properties of the board produced. The density is measured using a profilometer
which uses a laser device to take a series of measurements across the thickness of the board.
A profilometer takes multiple measurements on a sample (usually a2 x 2 inch piece) to form
the vertical density profile of the board. The VDP data subset that we illustrate here consists
of 45 measurements taken 0.014 inch apart, and comprises 2 groups:

(A) group A consists of 9 subjects Al, ..., A9;
(B) group B consists of 11 subjects B1, ..., B11.

We can consider each subject as an observation with 45 measurements. Then each
observation has a dimension of 45. Based on the structure of the complete VDP data set,
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groups A and B have a sample size 9 and 11, respectively. Because a spherical distribution
always has a zero mean vector, the selected two groups of VDP data should be shifted to
have the origin as its central location. This is realized by subtracting the group sample mean
from each observation in groups A and B, respectively. That is,

CA. centerized subgroup A: the sample mean from the 9 subjects is subtracted from
each observation in subgroup A;

CB. centerized subgroup B: the sample mean from the 11 subjects is subtracted from
each observation in subgroup B.

After the centerization, each of the above subgroups is comparable to a sample from a
spherical distribution, which has a zero mean.

For illustration purpose, in choosing the projection directions for the ST3-plots for the
data of group A and group B as defined above, we consider four directions:

(1) d; = d; determined by (3.5);
(2) d, = d, determined by (3.5);
(3) ds = ds determined by (3.8);

)
)
)
(4) dg = d determined by (3.8).

On each of these four directions, the T3-function (2.15) (i.e., the ST3-plot) and the
acceptance region given by (3.3) are plotted in Figure 2 for the centerized subsets CA and
CB.

The following facts can be observed:

(1) the STsz-plot for the centerized data in subgroup A (the CA plots) at the
projection direction ds goes beyond the 90%-acceptance region, showing evidence
of nonspherical symmetry of the data at the significance level & = 10%. As a result, it
can be concluded that the null hypothesis of spherical symmetry for the centerized
data in subgroup A is rejected at a = 10%;

(2) the ST3-plots for the centerized data in subgroup B (the CB plots) at the projection
directions d;, d,, and d¢ go beyond the 95%-acceptance regions, showing evidence
of nonspherical symmetry of the data at the significance level a = 5%. As a result, it
can be concluded that the null hypothesis of spherical symmetry for the centerized
data in subgroup B is rejected at a = 5%.

The evidence of nonspherical symmetry of the data in subgroups A and B above
implies that it may be inappropriate to set up a random effects model x; — X = oe; with
spherically distributed random effects e; for the centerized data {x;, - x:i=1,...,n} (n =9
for subgroup A and n = 11 for subgroup B), where o stands for a scale parameter. The
illustration of detecting nonspherical symmetry in Figure 2 could provide a way to regression
diagnostics with the assumption of spherically distributed error terms. One of the regression
diagnostic techniques is to check if the residual random vectors like {y; — y; : i =1,...,n}
are approximately i.i.d. d-dimensional normal deviates N;(0,0? I;) by using the probability-
plot method, where I; stands for the identity matrix and o denotes an unknown standard
deviation. If it shows a lack of fit for the normal assumption, one could consider testing the
spherical symmetry for the residual random vectors {y; — y; : i = 1,...,n} by providing
the STs-plots as in Figure 2. If no evidence of nonspherical symmetry can be detected from
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Figure 2: ST3-Plots for the two centerized subsets of data in Groups A and B from the VDP data on four

selected projection directions. di, d>, ds, and ds have the same meaning as that for dy, d», ds, and d¢ as in
Tables 1 and 2, respectively. For each plot, the region between the two dashdotted curves stands for the
99% acceptance region, the region between the two real-line curves for the 95% acceptance region, and the
region between the two dashed curves for the 90% acceptance region.

the STs-plots, the regression model for the observed data {y; : i = 1,...,n} could be
extended to have spherically distributed error terms. More discussion on regression models
with spherically distributed error terms and statistical inference under elliptical distributions
(which contains spherical distributions as a special case) can be referred to Fraser and Ng
[25] and Fang and Zhang [18]. The illustration of detecting nonspherical symmetry for high-
dimensional data by the ST3-plot provides a graphical tool for goodness-of-fit problems in
generalized multivariate analysis.

4. Concluding Remarks

Ghosh’s [16] original T3-plot is an effective graphical method for detecting nonnormality
of univariate data. The Tz-plot was extended to detecting nonmultinormality of high-
dimensional data by Fang et al. [17]. In this paper we found another application of the Tz-plot
in testing high-dimensional spherical symmetry by providing approximate local acceptance
regions. The simulation results in Section 3 show that the local acceptance regions given
by (3.3) have feasible performance. Although we have not been able to find an optimal
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projection direction in applying the ST3-plot to real high-dimensional data analysis, those
directions used in the Monte Carlo study in Section 3 can provide potential users with a good
reference. Theoretically, any projection direction subject to the condition in Theorem 2.2 can
be applied to the ST3-plot for testing high-dimensional spherical symmetry. Some directions
may perform better than others, as demonstrated in Section 3. For general purpose, the idea
in analysis of principal components can provide a guideline for choosing projection directions
when applying the ST3-plot to real high-dimensional data analysis. This is illustrated by (3.4),
(3.7) and the VDP data set in Section 3.

In this paper we emphasize the ST3-plot for testing spherical symmetry for the case of
high dimension with a small sample size. For regular cases of testing spherical symmetry, the
Q-Q plots proposed by Li et al. [11], and those analytical methods summarized in Fang and
Liang [13], or the methods mentioned in the relatively new references in Section 1, should be
used. There has been a lack of new effective methods for analysis of high-dimensional data
with a small sample size since the past few years. So the ST;-plot in this paper sheds some
additional light on the area of high-dimensional data analysis.
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