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In applied work, the two-parameter exponential distribution gives useful representations of
many physical situations. Confidence interval for the scale parameter and predictive interval
for a future independent observation have been studied by many, including Petropoulos (2011)
and Lawless (1977), respectively. However, interval estimates for the threshold parameter have
not been widely examined in statistical literature. The aim of this paper is to, first, obtain the
exact significance function of the scale parameter by renormalizing the p∗-formula. Then the
approximate Studentization method is applied to obtain the significance function of the threshold
parameter. Finally, a predictive density function of the two-parameter exponential distribution is
derived. A real-life data set is used to show the implementation of the method. Simulation studies
are then carried out to illustrate the accuracy of the proposed methods.

1. Introduction

The two-parameter exponential distribution with density:

f
(
x;μ, σ

)
=

1
σ
exp

{
−x − μ

σ

}
, (1.1)

where μ < x is the threshold parameter, and σ > 0 is the scale parameter, is widely
used in applied statistics. For example, Lawless [1] applied the two-parameter exponential
distribution to analyze lifetime data, and Baten and Kamil [2] applied the distribution to
analyze inventorymanagement systemswith hazardous items. Petropoulos [3] proposed two
new classes of confidence interval for the scale parameter σ. Lawless [1] obtained a prediction
interval for a future observation from the two-parameter exponential distribution.
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In this paper, we consider a sample (x1, . . . , xn) from the two-parameter exponential
distribution with density (1.1). In Section 2, we show that by renormalizing the p∗-formula,
the exact significance function of the scale parameter σ can be obtained. In Section 3, the
approximate Studentization method, based on the significance function of σ obtained in
Section 2, is applied to obtain the significance function of the threshold parameter μ. In
Section 4, we combine the results of the previous two sections and derive a predictive density
for a future observation from the two-parameter exponential distribution. Some concluding
remarks are given in Section 5. Throughout this paper, a real-life data set is used to show the
implementation of the proposed methods, and simulation results are presented to illustrate
the accuracy of the proposed methods.

2. Confidence Interval for the Scale Parameter

For the two-parameter exponential distribution with density (1.1), it can be shown that the
marginal density of X(1) = min(X1, . . . , Xn) is

fm
(
x(1);μ, σ

)
=
n

σ
exp

{
−n
σ

(
x(1) − μ

)
}

x(1) > μ. (2.1)

With an observed sample (x1, . . . , xn), the log conditional likelihood function that depends
only on σ, can be written as

�c(σ) = �
(
μ, σ

) − �m
(
μ, σ

)

= a − (n − 1) logσ − n

σ

(
x − x(1)

)
,

(2.2)

where a is an additive constant and x =
∑n

i=1 xi. Without loss of generality, in this paper, a
is set as 0. Moreover, denote s = (x − x(1)) and ψ = 1/σ, then the log conditional likelihood
function can be rewritten as

�c
(
ψ
)
= (n − 1) logψ − nsψ. (2.3)

Note that (2.3) has the same form as a log likelihood function of an exponential family model
with canonical parameter ψ. The maximum likelihood estimate of ψ, ψ̂ = (n − 1)/ns is
obtained by solving (∂�c(ψ))/∂ψ|ψ=ψ̂ = 0. Furthermore, an estimate of the variance of ψ̂ is

ĵ−1, where ĵ = −(∂2�c(ψ))/∂ψ2|ψ=ψ̂ = (n2s2)/(n − 1) is the observed information.
Under regularity conditions as stated in DiCiccio et al. [4], both the standardized max-

imum likelihood estimate

q = q
(
ψ
)
=
(
ψ̂ − ψ)ĵ1/2, (2.4)

and the signed log likelihood ratio statistic:

r = r
(
ψ
)
= sign

(
ψ̂ − ψ)

√
2
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(
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(
ψ
)]

(2.5)
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have limiting standard normal distribution with rate of convergence O(n−1/2). Hence the
significance function of σ can be approximated by

p(σ) = Φ
(
q

(
1
ψ

))
, (2.6)

or

p(σ) = Φ
(
r

(
1
ψ

))
, (2.7)

where Φ(·) is the cumulative distribution function of the standard normal distribution.
Since the conditional log likelihood function given in (2.3) in exponential family

form with ψ being the canonical parameter, the modified signed log likelihood statistic by
Barndorff-Nielsen [5, 6] can be simplified into

r∗ = r∗
(
ψ
)
= r − 1

r
log

r

q
, (2.8)

where q and r are defined in (2.4) and (2.5) respectively, and r∗ has limiting standard normal
distribution with rate of convergence O(n−3/2). Hence the significance function of σ can be
approximated by

p(σ) = Φ
(
r∗
(
1
ψ

))
. (2.9)

Barndorff-Nielsen [7] derived the p∗-formula—an approximate density for the maxi-
mum likelihood estimator. In this case, we have

p∗(σ̂;σ) = kĵ1/2 exp{�c(σ) − �c(σ̂)} = k
σ̂n−2

σn−1
exp

{
− (n − 1)σ̂

σ

}
, (2.10)

where k is the renormalizing constant. Since σ̂ = ns/(n− 1) = 1/ψ̂, by change of variable and
renormalization, we have

p∗(s;σ) = Γ−1(n − 1)
(
ns

σ

)n−1 1
s
exp

{
−ns
σ

}
, (2.11)

which is the exact density of S = X−X(1), and it is free of μ. Therefore, inference concerning σ
can be based on the distribution of S. Thus, the exact confidence interval for σ can be obtained
using p∗(s;σ) and is

p(σ) =
∫ s

0
p∗(t;σ)dt. (2.12)

Grubbs [8] reported the following data set (see Table 1).
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Table 1

162 200 271 302 393 508 539 629 706 777
884 1008 1101 1182 1463 1603 1984 2355 2880

We have

n = 19, x(1) = 162, s = 835.21. (2.13)

Table 2 recorded the 90%, 95%, and 99% confidence interval for σ. The proposed
method (r∗) and the exact method (exact) give approximately the same confidence intervals,
whereas the results obtained by the standardized maximum likelihood estimate method
(mle) and the signed log likelihood ratio method (r) are quite different. Moreover, from
Table 2, it is clear that r gives the narrowest confidence intervals and mle gives the widest
confidence intervals. The significance functions of σ obtained from the four methods are
plotted in Figure 1.

In order to compare the accuracies of the four methods, Monte Carlo simulation
studies with 10,000 replicates are performed. For each simulation study, we generate sample
of size n from the two-parameter exponential distribution with scale parameter σ and
threshold parameter μ. Then for each sample, the 95% confidence intervals for σ is calculated
from the four methods discussed in this section.

Table 3 recorded the results of the simulation studies for some combinations of n, μ,
and σ. The “Lower Error” is the proportion of the true σ that falls outside the lower limit of
the 95% confidence intervals while the “Upper Error” is the proportion of the true σ that falls
outside the upper limit of the 95% confidence intervals, and (1—Lower Error—Upper Error)
is recorded as “Central Coverage”. The nominal values for the “Lower Error”, “Upper Error”,
and “Central Coverage” are 0.025, 0.025, and 0.95, respectively. Moreover, for 10,000 Monte
Carlo simulations, the standard errors for the “Lower Error” and the “Upper Error” are the
same and are

√
0.025(1 − 0.025)/10000 = 0.0016. Similarly, the corresponding standard error

for the “Central Coverage” is 0.0022.
From Table 3, even for the smallest possible sample size (n = 2), the proposed method

and the exact method give almost identical results and have excellent coverage properties.
The results obtained by the other two methods are not as satisfactory especially when the
sample size is small.

Since mle method gives the poorest coverage, we excluded it from further investiga-
tion. Table 4 recorded the average width of the confidence interval for σ for the simulation
study with (n, σ, μ) = (10, 0.5, 5). We can note that even though r has the shortest average
width of the confidence interval for σ, it also has the poorest coverage properties as
demonstrated in Table 3. For inference purpose, coverage properties are more important
than width of the confidence interval. Hence the proposed method is recommended for this
problem.

3. Confidence Interval for the Threshold Parameter

For the two-parameter exponential distribution, Petropoulos [3] showed that (X(1), S) is a
sufficient statistic. Note that μ is completely contained in the marginal density of X(1), but it
also depends σ. In Section 2, the significance function of σ, p(σ), was obtained. Hence, we
can apply the approximate Studentization method, which is discussed in Fraser and Wong
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Figure 1: The significance function of σ.

Table 2: Confidence intervals for σ.

Method 90% CI 95% CI 99% CI
mle (635.30, 1439.83) (603.03, 1638.59) (548.56, 2244.03)
r (512.51, 1334.35) (574.08, 1454.18) (507.92, 1732.03)
r∗ (622.32, 1363.95) (583.01, 1487.51) (515.37, 1774.35)
exact (622.33, 1363.98) (583.02, 1487.54) (515.38, 1774.39)

Table 3: Results from simulation studies for the parameter of interest σ.

n σ μ Method Lower error Upper error Central coverage

2

3 1 mle 0.0505 0.0000 0.9495
r 0.0117 0.0526 0.9357
r∗ 0.0245 0.0227 0.9528

exact 0.0249 0.0231 0.9520

5

1 2 mle 0.0447 0.0000 0.9553
r 0.0175 0.0400 0.9425
r∗ 0.0248 0.0266 0.9486

exact 0.0249 0.0266 0.9485

8

6 4 mle 0.0388 0.0021 0.9591
r 0.0167 0.0339 0.9494
r∗ 0.0217 0.0256 0.9527

exact 0.0217 0.0256 0.9527

10

0.5 5 mle 0.0415 0.0042 0.9543
r 0.0220 0.0331 0.9449
r∗ 0.0274 0.0248 0.9478

exact 0.0275 0.0248 0.9477
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Table 4: Average width of the confidence interval for σ.

Method Confidence level
90% 95% 99%

r 0.6180 0.7714 0.1.1372
r∗ 0.6529 0.8160 1.2064
exact 0.6530 0.8161 1.2065

[9], to eliminate the dependence of σ from the marginal density of X(1). More specifically, the
approximate Studentized marginal density of X(1) is

fS
(
x(1);μ

)
= c

∫∞

0
fm

(
x(1);μ, σ

)∣∣dp(σ)
∣
∣

= c
∫∞

0
Γ−1(n − 1)

nnsn−1

σn+1
exp

{
−n
σ

(
x(1) − μ + s

)
}
dσ,

(3.1)

where c =
∫∞
μ

∫∞
0 fm(x(1);μ, σ)|dp(σ)|dx(1) is the normalizing constant. Hence, we have

fS
(
x(1);μ

)
=
n − 1
s

(
1 +

x(1) − μ
s

)−n
x(1) > μ, (3.2)

and the corresponding significance function of μ is

p
(
μ
)
=
∫x(1)

μ

fS
(
v;μ

)
dv = 1 −

(
1 +

x(1) − μ
s

)−(n−1)
. (3.3)

Thus, the explicit (1 − α)100% confidence interval for μ obtained by the approximate
Studentization method is

(
x(1) − s

[(α
2

)−1/(n−1)
− 1

]
, x(1) − s

[(
1 − α

2

)−1/(n−1)
− 1

])
. (3.4)

Applying the approximate Studentization method to the Grubbs [8] data set, the
90%, 95%, and 99% confidence intervals for the threshold parameter μ are (−27.97, 160.82),
(−68.22, 161.42), and (−157.87, 161.88), respectively.

To illustrate the accuracy of the proposed method, we performed a Monte Carlo
simulation study. Table 5 records the results from this study. The proposed approximate
Studentization method gives extremely good coverage properties even when the sample size
is extremely small.

4. Prediction Interval for a Future Observation

The density of a future observation from the two-parameter exponential distribution is given
in (1.1), which depends on both parameters μ and σ. With observed data (x1, . . . , xn), or
equivalently, observed sufficient statistic (s, t), p(σ)was obtained by the method in Section 2,
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Table 5: Results from simulation studies and the parameter of interest are μ using the approximate
Studentization method.

n σ μ Lower error Upper error Central coverage
2 3 1 0.0239 0.0258 0.9503
5 1 2 0.0277 0.0254 0.9469
8 6 4 0.0249 0.0241 0.9510
10 0.5 5 0.0251 0.0248 0.9501
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Figure 2: The predictive cumulative distribution function, FP (x).

and it gives us as much information about σ as we can extract from the observed data in the
absence of knowledge of μ. Moreover, p(μ) was obtained by the approximate Studentization
method in Section 3 gives us asmuch information about μ aswe can extract from the observed
data after averaging out the effect of σ. Therefore, to eliminate μ and σ from the density of a
future observation, we apply the approximate Studentization method to obtain a predictive
density of X:

fP (x) =
∫x(1)

−∞

∫∞

0
f
(
x;μ, σ

)∣∣dp(σ)
∣∣∣∣dp

(
μ
)∣∣

=
∫x(1)

−∞

[∫∞

0

1
σ
exp

{
−x − μ

σ

}
Γ−1(n − 1)

(ns)n−1

σn
exp

{
−ns
σ

}
dσ

]
∣∣dp

(
μ
)∣∣

= (n − 1)2nn−1s2n−2
∫x(1).1

−∞

(
1

(
x − μ + ns

)(
x(1) − μ + s

)

)n

dμ.

(4.1)

Hence, the corresponding predictive cumulative distribution function is

FP (x) =
∫x

−∞
fP (u)du. (4.2)
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Although the explicit form of the predictive interval is not available, it can be obtained
numerically from softwares like Maple or Matlab.

Applying the proposed method to the Grubbs [8] data set, the predictive cumulative
distribution function obtained in (4.2) is plotted in Figure 2, and the corresponding 90%,
95% and 99% predictive intervals are (161, 2980), (128, 3714), and (47, 5530), respectively.
The corresponding intervals obtained by the method discussed in Lawless [1] are (161.00,
2982.23), (129.21, 3715.96), and (48.02, 5532.63), respectively. The two methods give almost
identical results. Lawless’s method is easy to apply but the derivation is more difficult.
The derivation of the proposed method is easy to follow but it requires good numerical
integration methods to carry out the calculation.

5. Conclusion

In this paper, by renormalizing the p∗-formula, the exact significance function of the scale
parameter of the two-parameter exponential distribution is obtained. This significance
function is then used in the approximate Studentization method to obtain the significance
function of the threshold parameter. Simulation results illustrated that these two significance
functions have excellent coverage properties even when the sample size is extremely small.
Finally, these two significance functions are used in the approximate Studentization method
to obtain a predictive density and hence a predictive cumulative distribution function, of a
future observation from the two-parameter exponential distribution.
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