
Hindawi Publishing Corporation
Journal of Probability and Statistics
Volume 2012, Article ID 758975, 10 pages
doi:10.1155/2012/758975

Research Article
Marginal Distributions of Random Vectors
Generated by Affine Transformations of
Independent Two-Piece Normal Variables

Maximiano Pinheiro1, 2

1 Banco de Portugal, Avenida Almirante Reis 71, 1150-012 Lisboa, Portugal
2 ISEG, Technical University of Lisbon, Rua do Quelhas 6, 1200-781 Lisboa, Portugal

Correspondence should be addressed to Maximiano Pinheiro, mpinheiro@bportugal.pt

Received 13 October 2011; Accepted 2 February 2012

Academic Editor: Chunsheng Ma

Copyright q 2012 Maximiano Pinheiro. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Marginal probability density and cumulative distribution functions are presented for multidimen-
sional variables defined by nonsingular affine transformations of vectors of independent two-piece
normal variables, the most important subclass of Ferreira and Steel’s general multivariate skewed
distributions. The marginal functions are obtained by first expressing the joint density as a mixture
of Arellano-Valle and Azzalini’s unified skew-normal densities and then using the property of
closure under marginalization of the latter class.

1. Introduction

In the literature on probability distributions, there are several approaches for extending the
multivariate normal distribution with the introduction of some sort of skewness. Arellano-
Valle et al. [1] provide a unified view of this literature. The largest group of contributions
was initiated by Azzalini and Dalla Valle [2] and Azzalini and Capitanio [3] and generalizes
the univariate skew-normal (SN) distribution studied by Azzalini [4, 5]. These “multivariate
skew-normal distributions” are generated from a normal distribution either by conditioning
on a truncated variable or by a convolution mechanism.

An alternative approach was proposed by Ferreira and Steel [6–8] and is based on
nonsingular affine transformations of random vectors with independent components, each
having a skewed distribution with probability density function (pdf) constructed from a
symmetric distribution using the inverse scaling factor method introduced by Fernández
and Steel [9]. (Arellano-Valle et al. [10] consider a general class of asymmetric univariate
distributions that includes the distributions generated according to the procedure proposed
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by Fernández and Steel [9] as a special case.) If the univariate symmetric distribution is
the standard normal, then the corresponding univariate skewed distribution becomes (with
a different parameterization) the two-piece normal (tpn) analyzed by John [11] (see also
Johnson et al. [12]). To overcome an issue of overparameterization, Ferreira and Steel [7, 8]
pay particular attention to the subclass associated with transformation matrices that can be
factorized as the product of an orthogonal matrix and a diagonal positive definite matrix.
Villani and Larsson [13] studied this subclass when the basic univariate skewed distribution
is the tpn and named these distributions “multivariate split normal.”

Under the acronym SUN (standing for “unified skew-normal”), Arellano-Valle and
Azzalini [14] suggested a formulation for the first approach that encompasses the most
relevant coexisting variants of multivariate skew-normal distributions. Like the multivariate
normal and SN distributions, the class of SUN distributions is closed under affine
transformations, marginalization, and conditioning to given values of some components.
Besides these important properties, the SUN class is also closed under sums of independent
components. However, one limitation of the SUN distributions is that the vector of location
parameters does not have a direct interpretation as the mean or the mode of the distribution,
which are rather complicated functions of all the parameters. Even in the simplest case of the
basic SN, both the mean and the mode (for which there is no closed expression) depend on
the parameters regulating dispersion and skewness.

Ferreira and Steel’s independent components approach to the construction of
multivariate skewed normal distributions (henceforth FS-SN) provides an alternative to the
SUN class in applications for which it is important to have some location measure that does
not depend on the dispersion and skewness parameters. Indeed, the FS-SN distributions have
the convenient feature that the mode is part of the distribution parameters and therefore is
invariant to dispersion and skewness. In addition, the FS-SN distributions are closed under
nonsingular affine transformations. However, unlike the SUN class, the FS-SN distributions
are not closed under marginalization (neither under conditioning) and, to my knowledge,
general closed expressions of their marginal pdf and cumulative distribution function (cdf)
are not available in the literature.

This paper aims at filling the gap and proposing expressions for the marginal density
and cumulative distribution functions of an FS-SN distribution. Obviously, the expressions
will also apply to the subclass ofmultivariate split normal distributions studied by Villani and
Larsson [13]. The technique used to derive the marginal distributions is simple and consists
of expressing the joint FS-SN distribution as a finite mixture of singular SUN distributions
and then making use of their property of closure under marginalization.

An area of application of the results presented in this paper is macroeconomic density
forecasting. Many institutions that publish macroeconomic forecasts complement their point
forecasts with information on the dispersion and skewness of the probability distributions of
the forecasting errors. Fan charts are one of the most popular tools to convey the predictive
densities, and they gained prominence through their use in inflation reports released by
many central banks, with the Bank of England and the Sveriges Riksbank (the Swedish
central bank) featuring as pioneers in this respect [15, 16] (see also Wallis [17, 18] and
Tay and Wallis [19]). The characterization of the forecast densities is complicated by the
fact that typically institutional forecasts are not based on a single model but stem from
different competing models combined with judgements by experts (the latter regarding, in
particular, the skewness, i.e., the balance of upward and downward risks to the forecasts).
Most of the procedures used to generate the fan charts take the point baseline forecasts
as given and assume that the sources of uncertainty and asymmetry have univariate tpn
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distributions. These sources of forecasting error are then aggregated according to a linear
mapping, envisaged as an approximation around the baseline to the underlying unknown
data generating process. In the absence of closed expressions for the exact distribution
of a linear combination of tpn variables, some aggregation procedures resort to informal
approximations based on the first moments, while other procedures are based on numerical
simulation. Examples of the first approach are Blix and Sellin [16, 20, 21] and Elekdag and
Kannan [22], while Pinheiro and Esteves [23] opted to simulate the distribution. The results
presented in Section 3 allow to overcome this aggregation difficulty.

2. The SUN and the FS-SN Distributions

If the M-dimensional random vector Y ∼ SUNM, N(ξ, γ , ω, Ω∗), then its pdf and cdf are,
respectively, for any point y ∈ RM

gY(y | ξ, γ , ω, Ω∗) = ϕM(y − ξ | Ω)
ΦN

(
γ +Δ′Ω

−1
ω−1(y − ξ) | Γ −Δ′Ω

−1
Δ
)

ΦN(γ | Γ) , (2.1)

GY(y | ξ, γ , ω, Ω∗) =
ΦN+M

([
γ

ω−1(y−ξ)
]
| Ω∗

)

ΦN(γ | Γ) , (2.2)

where ϕM(y−ξ | Ω) andΦM(y−ξ | Ω) denote, respectively, the pdf and the cdf at point y of a
normal distributionNM(ξ,Ω), ξ(M×1) and γ(N×1) are vectors of parameters,Ω(M×M) is a
positive definite covariance matrix,ω(M×M) is the diagonal matrix formed by the standard
deviations of Ω, Ω(M ×M) is the correlation matrix associated with Ω (hence Ω = ωΩω),
ω = ωιN with ιN = [1 · · · 1]′(N × 1), Γ(N ×N) is a positive definite correlation matrix, and
Δ(M ×N) is such that

Ω∗ =

[
Γ Δ′

Δ Ω

]
((N +M) × (N +M)) (2.3)

is also a (semi-definite positive) correlation matrix. (Arellano-Valle and Azzalini [14,
Appendix C] consider three cases of singular SUN distributions: (i)Ω singular; (ii) Γ singular;
(iii)Ω∗ singular with nonsingularΩ and Γ. For our purposes, only the latter case is relevant.)
The SUN distribution collapses to the multivariate normal when Δ = 0, Δ being the matrix
of parameters that regulate skewness. It collapses to the basic multivariate SN distribution
suggested by Azzalini and Dalla Valle [2]whenN = 1 and γ = 0 (implying that Γ = 1).

Now let the scalar random variableUn be tpn distributed with zero mode. Its pdf may
be parameterized as follows:

fUn(un | ωn, θn) =

⎧
⎪⎨
⎪⎩
2ω−1

n

(
θn + θ−1n

)−1
φ
(
ω−1
n θnun

)
(un ≤ 0),

2ω−1
n

(
θn + θ−1n

)−1
φ
(
ω−1
n θ

−1
n un

)
(un > 0),

(2.4)
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where φ( ) denotes the N(0, 1) pdf, ωn(>0) is a scale parameter, and θn(>0) is a shape
parameter. When θn = 1, the density becomes the normal pdf with zero mean and standard
deviation ωn (so that when the latter parameter is 1 the pdf collapses to φ(un)). Values of
θn above (below) unity correspond to densities skewed to the right (left). Let U be an N-
dimensional random vector of independent tpn components un with zero mode and unitary
scale ωn = 1. Its pdf is

fU(u | θ) =
N∏
n=1

fUn(un | 1, θn), (2.5)

where fUn( ) is as in (2.4) (with ωn = 1) and θ = [θ1 · · · θN]′. An N-dimensional random
vector X is said to be FS-SNN(μ,A,θ) distributed if there is a random vector Uwith density
(2.5) and two vectors μ (the joint mode) and θ (the “shape vector”) and a nonsingular matrix
A (the “scale matrix”) such that X = μ +AU. Vector X has pdf

fX(x | μ,A,θ) = |det(A)|−1fU
(
A−1(x − μ) | θ

)
. (2.6)

It is straightforward to confirm that (i) when θ = 0, this density collapses to the pdf of a
NN(μ,AA′) distribution, (ii) the FS-SNN(μ,A,θ) distribution is unimodal with mode μ,
invariant with respect to A and θ, and (iii) by construction, the FS-SN class is closed under
nonsingular affine transformations.

3. The Marginal FS-SN Distributions

To establish additional notations, let IN denote the identity matrix of order N, and let
η(z) the number of zero elements in vector z, ψ(z) one if all elements of vector z are
nonnegative and zero otherwise, and k(i) = (k1(i), . . . , kn(i), . . . , kN(i)) the generic element
of the Nth Cartesian power of {−1; 1}(with cardinal 2N), K(i) = diagn(kn(i))(N ×N),Θ(i) =
diagn(θ

kn(i)
n )(N ×N), Ω(i) = [AΘ(i) K(i)][AΘ(i) K(i)]′ = AΘ2(i)A′, ω(i) = [diag(Ω(i))]1/2,

ω(i) = ω(i)ιN , Δ(i) = ω−1(i)AΘ(i)K(i) and Ω(i) = ω−1(i)Ω(i)ω−1(i) = Δ(i)Δ(i)′.

Proposition 3.1. The pdf and the cdf of the N-dimensional random vector

X ∼ FS-SNN(μ,A,θ) (3.1)

with nonsingular scale matrix A can be expressed, respectively, as

fX(x | μ,A,θ) =
2N∑
i=1

[
N∏
n=1

(
1 + θ−2kn(i)n

)]−1
gX(x | μ, 0,ω(i),Ω∗(i)),

FX(x | μ,A,θ) =
2N∑
i=1

[
N∏
n=1

(
1 + θ−2kn(i)n

)]−1
GX(x | μ, 0,ω(i),Ω∗(i)),

(3.2)
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where gX( ) and GX( ) are pdfs and cdfs of singular SUNN,N(μ, 0,ω(i),Ω∗(i)) distributions, with
Ω∗(i) =

[
IN Δ(i)′

Δ(i) Ω(i)

]
=
[

IN
Δ(i)

]
[IN Δ(i)′]. The latter functions may be written as

gX(x | μ, 0,ω(i),Ω∗(i)) = 2N−η(x−μ)ϕN(x − μ | Ω(i))ψ
(
K(i)Θ−1(i)A−1(x − μ)

)
,

GX(x | μ, 0,ω(i),Ω∗(i)) = 2NΦ2N

([
0

ω−1(i)(x − μ)

]
| Ω∗(i)

)

= 2N
∫

{z|z≤0, AΘ(i)K(i)z≤x−μ}
ϕN(z | IN)dz.

(3.3)

Note that

2N∑
i=1

[
N∏
n=1

(
1 + θ−2kn(i)n

)]−1
=

[
N∏
n=1

(
θn + θ−1n

)]−1 2N∑
i=1

[
N∏
n=1

θ
kn(i)
n

]
= 1. (3.4)

Hence, the distribution FS-SNN can be envisaged as a finite mixture of singular SUNN,N

distributions.
As pointed out by Arellano-Valle and Azzalini [14, Appendix C], the rank deficiency

of Ω∗(i) does not affect the properties of the SUN distributions and its only impact is of a
computational nature. In our case, it actually simplifies the computation of the pdf values
because the evaluation of a normal cdf is not required anymore, unlike when computing
(2.1), the general expression of a SUN pdf.

In order to derive the marginal pdfs and cdfs of X, one needs to consider its partition
X = [X1

′ X2
′]

′
with X1 and X2 of dimensionsN1 andN2, respectively, and the corresponding

partitions

μ =
[
μ1
μ2

]
, A =

[
A1

A2

]
, Δ(i) =

[
Δ1(i)
Δ2(i)

]
, Ω(i) =

[
Ω11(i) Ω12(i)
Ω12(i)′ Ω22(i)

]
,

ω(i) =
[
ω1(i) 0
0 ω2(i)

]
, ω(i) =

[
ω1(i)
ω2(i)

] (3.5)

with A1(N1 × N), Δ1(i) = ω−1
1 (i)A1Θ(i)K(i)(N1 × N), Ω11(i) = A1Θ2(i)A′

1(N1 × N1),
ω1(i) = [diag(Ω11(i))]

1/2, Ω11(i) = ω−1
1 (i)Ω11(i)ω−1

1 (i) = Δ1(i)Δ1(i)
′, and ω1(i) = ω1(i)ιN1 .

Proposition 3.2 follows directly from Proposition 3.1 and from the result of Arellano-Valle
and Azzalini [14, Appendix A] on the marginal distributions of members of the SUN class.

Proposition 3.2. Let X = [X′
1 X′

2]
′ ∼ FS-SNN(μ,A,θ). Then, the marginal pdf and the cdf of the

N1-dimensional subvector X1 are, respectively,

fX1

(
x1 | μ1,A1,θ

)
=

2N∑
i=1

[
N∏
n=1

(
1 + θ−2kn(i)n

)]−1
gX1

(
x1 | μ1, 0,ω1(i),Ω∗

11(i)
)
,

FX1

(
x1 | μ1,A1,θ

)
=

2N∑
i=1

[
N∏
n=1

(
1 + θ−2kn(i)n

)]−1
GX1

(
x1 | μ1, 0,ω1(i),Ω∗

11(i)
)
,

(3.6)
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where gX1( ) and GX1( ) are pdfs and cdfs of singular SUNN1,N(μ1, 0,ω1(i),Ω∗
11(i)) distributions,

withΩ∗
11(i) =

[
IN Δ1(i)

′

Δ1(i) Ω11(i)

]
=
[

IN
Δ1(i)

]
[IN Δ1(i)

′]. The latter functions may be written as

gX1

(
x1 | μ1, 0,ω1(i),Ω∗

11(i)
)

= 2N−η(x1−μ1)ϕN1

(
x1 − μ1 | Ω11(i)

)
ψ

(
K(i)Θ(i)A′

1

[
A1Θ2(i)A′

1

]−1(
x1 − μ1

))
,

GX1

(
x1 | μ1, 0,ω1(i),Ω∗

11(i)
)
= 2NΦN+N1

([
0

ω−1
1 (i)

(
x1 − μ1

)
]
| Ω∗

11(i)
)

= 2N
∫

{z|z≤0, A1Θ(i)K(i)z≤x1−μ1}
ϕN(z | IN)dz.

(3.7)

Appendix

Proof of Proposition 3.1

When ωn = 1, the pdf of the univariate tpn (2.4) can be written as

fUn(un | 1, θn) =
(
1 + θ2n

)−1
h
(
−un | θ−1n

)
+
(
1 + θ−2n

)−1
h(un | θn), (A.1)

where

h(z | σ) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 (z < 0),
(
σ
√
2π

)−1
(z = 0),

(
2
σ

)
φ

(
z

σ

)
(z > 0).

(A.2)

Hence, from (2.5),

fU(u | θ) =
N∏
n=1

[(
1 + θ2n

)−1
h
(
−un | θ−1n

)
+
(
1 + θ−2n

)−1
h(un | θn)

]

=
2N∑
i=1

N∏
n=1

(
1 + θ−2kn(i)n

)−1
h
(
kn(i)un | θkn(i)n

)
.

(A.3)

Note that h(kn(i)un | θkn(i)n ) = 0 whenever kn(i)un < 0. Hence, the nonzero terms in the latter
summation are those associated with N-tuples k(i) for which kn(i)un ≥ 0 (n = 1, . . . ,N). If
un /= 0 (n = 1, . . . ,N) there is only one such term. If u includes η(u) zero elements, there are
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2η(u) nonzero identical terms in the previous summation. In both cases, the density of U may
be expressed as follows:

fU(u | θ) = 2N
N∏
n=1

(
θn + θ−1n

)−1
ϕ
(
θ
− sgn(un)
n un

)

=

[
N∏
n=1

(
θn + θ−1n

)]−1 N∏
n=1

[
2ϕ(θnun)Φ(−λθnun) + 2ϕ

(
θ−1n un

)
Φ
(
λθ−1n un

)]

=

[
N∏
n=1

(
θn + θ−1n

)]−1 N∏
n=1

[
θ−1n s

(
un | 0, θ−2n ,−λ

)
+ θns

(
un | 0, θ2n, λ

)]

=

[
N∏
n=1

(
θn + θ−1n

)]−1 2N∑
i=1

[
N∏
n=1

θ
kn(i)
n s

(
un | 0, θ2kn(i)n , kn(i)λ

)]

= 2N
[

N∏
n=1

(
θn + θ−1n

)]−1 2N∑
i=1

ϕN
(
Θ−1(i)u | IN

)
ΦN

(
λK(i)Θ−1(i)u | IN

)
,

(A.4)

where sgn( ) is the sign function and s(v | 0, σ2, α) is the pdf of the univariate SN distribution
with zero location parameter, scale parameter σ, and shape parameter α:

s
(
v | 0, σ2, α

)
=

2
σ
ϕ

(
v

σ

)
Φ
(
αv

σ

)
. (A.5)

From the above expression of fU(u | θ), by considering the change of variable X =
μ +AU with A nonsingular, one obtains the pdf of X:

fX(x | μ,A,θ) = 2N
[

N∏
n=1

(
θn + θ−1n

)]−1 2N∑
i=1

ϕN(x − μ | Ω(i))

×ΦN

(
λK(i)Θ−1(i)A−1(x − μ) | IN

) N∏
n=1

θ
kn(i)
n

=
2N∑
i=1

[
N∏
n=1

(
1 + θ−2kn(i)n

)]−1
h(x)

(A.6)

with

h(x) = 2NϕN(x − μ | Ω(i))ΦN

(
λK(i)Θ−1(i)A−1(x − μ) | IN

)
. (A.7)
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In order to show that h(x) is the pdf of a SUNN,N(μ, 0,ω(i),Ω∗∗(λ, i)), note that

h(x)

= 2NϕN(x − μ | Ω(i))ΦN

(
λ√

1 + λ2
Δ(i)′Ω

−1
(i)ω−1(i)(x − μ) | 1

1 + λ2
IN

)

= ϕN(x − μ | Ω(i))

×
limλ→+∞ΦN

((
λ/

√
1 + λ2

)
Δ(i)′Ω

−1
(i)ω−1(i)(x − μ) | IN − (

λ2/
(
1 + λ2

))
Δ(i)′Ω

−1
(i)Δ(i)

)

ΦN(0 | IN)
= gX(x | μ, 0,ω(i),Ω∗∗(λ, i)),

(A.8)

where gX( ) is the density of a SUNN,N(μ, 0,ω(i),Ω∗∗(λ, i)) distribution with

Ω∗∗(λ, i) =

⎡
⎢⎢⎣

IN
λ√

1 + λ2
Δ(i)′

λ√
1 + λ2

Δ(i) Ω(i)

⎤
⎥⎥⎦. (A.9)

Thus, as limλ→+∞Ω∗∗(λ, i) = Ω∗(i),

gX(x | μ, 0,ω(i),Ω∗∗(λ, i)) = gX(x | μ, 0,ω(i),Ω∗(i)). (A.10)

The simplified expression for gX(x | μ, 0,ω(i),Ω∗(i)) presented in Proposition 3.1 is obtained
from (A) simply by taking into account that

ΦN

(
λK(i)Θ−1(i)A−1(x − μ) | IN

)
= 2−η(x−μ)ψ

(
K(i)Θ−1(i)A−1(x − μ)

)
. (A.11)

As regards the cdf of X,

FX(x | μ,A,θ) =
∫

z≤x
fX(z | μ,A,θ)dz

=
2N∑
i=1

[
N∏
n=1

(
1 + θ−2kn(i)n

)]−1 ∫

z≤x
gX(z | μ, 0,ω(i),Ω∗(i))dz

=
2N∑
i=1

[
N∏
n=1

(
1 + θ−2kn(i)n

)]−1
GX(x | μ, 0,ω(i),Ω∗(i)).

(A.12)
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Moreover, one gets from(2.1)

GX(x | μ, 0,ω(i),Ω∗(i)) =
Φ2N

([
0

ω−1(i)(x−μ)
]
| Ω∗(i)

)

ΦN(0 | IN)
= 2NΦ2N

([
0

ω−1(i)(x − μ)

]
| Ω∗(i)

)

= 2N
∫

{z|z≤0, AΘ(i)K(i)z≤x−μ}
ϕN(z | IN)dz.

(A.13)

The latter equality follows from the singularity ofΩ∗(i), which for given x allows one to write
the probability of

r ≤
[

0
ω−1(i)(x − μ)

]
, (A.14)

where r ∼N(0,Ω∗(i)), as the probability of

[
IN
Δ(i)

]
z ≤

[
0

ω−1(i)(x − μ)

]
⇐⇒ {z | z ≤ 0, AΘ(i)K(i)z ≤ x − μ} (A.15)

for z ∼N(0, IN).
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