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A general notion of bootstrapped φ-divergence estimates constructed by exchangeably weighting
sample is introduced. Asymptotic properties of these generalized bootstrapped φ-divergence
estimates are obtained, by means of the empirical process theory, which are applied to construct
the bootstrap confidence set with asymptotically correct coverage probability. Some of practical
problems are discussed, including, in particular, the choice of escort parameter, and several
examples of divergences are investigated. Simulation results are provided to illustrate the finite
sample performance of the proposed estimators.

1. Introduction

The φ-divergence modeling has proved to be a flexible tool and provided a powerful
statistical modeling framework in a variety of applied and theoretical contexts (refer to [1–4]
and the references therein). For good recent sources of references to the research literature
in this area along with statistical applications, consult [2, 5]. Unfortunately, in general,
the limiting distribution of the estimators, or their functionals, based on φ-divergences
depends crucially on the unknown distribution, which is a serious problem in practice. To
circumvent this matter, we will propose, in this work, a general bootstrap of φ-divergence-
based estimators and study some of its properties bymeans of sophisticated empirical process
techniques. A major application for an estimator is in the calculation of confidence intervals.
By far the most favored confidence interval is the standard confidence interval based on a
normal or a Student’s t-distribution. Such standard intervals are useful tools, but they are
based on an approximation that can be quite inaccurate in practice. Bootstrap procedures
are an attractive alternative. One way to look at them is as procedures for handling data
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when one is not willing to make assumptions about the parameters of the populations from
which one sampled. The most that one is willing to assume is that the data are a reasonable
representation of the population from which they come. One then resamples from the data
and draws inferences about the corresponding population and its parameters. The resulting
confidence intervals have received the most theoretical study of any topic in the bootstrap
analysis.

Our main findings, which are analogous to that of Cheng and Huang [6], are summa-
rized as follows. The φ-divergence estimator α̂φ(θ) and the bootstrap φ-divergence estimator
α̂∗
φ(θ) are obtained by optimizing the objective function h(θ,α) based on the independent

and identically distributed (i.i.d) observations X1, . . . ,Xn and the bootstrap sample X∗
1, . . . ,X

∗
n,

respectively,

α̂φ(θ) := arg sup
α∈Θ

1
n

n
∑

i=1

h(θ,α,Xi),

α̂∗
φ(θ) := arg sup

α∈Θ

1
n

n
∑

i=1

h
(

θ,α,X∗
i

)

,

(1.1)

where X∗
1, . . . ,X

∗
n are independent draws with replacement from the original sample. We will

mention that α̂∗
φ(θ) can alternatively be expressed as

α̂∗
φ(θ) = arg sup

α∈Θ

1
n

n
∑

i=1

Wnih(θ,α,Xi), (1.2)

where the bootstrap weights are given by

(Wn1, . . . ,Wnn) ∼ Multinomial
(

n;n−1, . . . , n−1
)

. (1.3)

In this paper, we will consider the more general exchangeable bootstrap weighting scheme
that includes Efron’s bootstrap [7, 8]. The general resampling scheme was first proposed in
[9] and extensively studied by Bickel and Freedman [10], who suggested the name “weighted
bootstrap”; for example, Bayesian Bootstrap when (Wn1, . . . ,Wnn) = (Dn1, . . . , Dnn) is equal
in distribution to the vector of n spacings of n − 1 ordered uniform (0, 1) random variables,
that is,

(Dn1, . . . , Dnn) ∼ Dirichlet(n; 1, . . . , 1). (1.4)

The interested reader may refer to [11]. The case

(Dn1, . . . , Dnn) ∼ Dirichlet(n; 4, . . . , 4) (1.5)

was considered in [12, Remark 2.3] and [13, Remark 5]. The Bickel and Freedman result
concerning the empirical process has been subsequently generalized for empirical processes
based on observations in R

d, d > 1 as well as in very general sample spaces and for
various set and function-indexed random objects (see, e.g., [14–18]). In this framework, [19]
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developed similar results for a variety of other statistical functions. This line of research
was continued in the work of [20, 21]. There is a huge literature on the application of the
bootstrap methodology to nonparametric kernel density and regression estimation, among
other statistical procedures, and it is not the purpose of this paper to survey this extensive
literature. This being said, it is worthwhile mentioning that the bootstrap as per Efron’s
original formulation (see [7]) presents some drawbacks. Namely, some observations may be
used more than once while others are not sampled at all. To overcome this difficulty, a more
general formulation of the bootstrap has been devised: the weighted (or smooth) bootstrap,
which has also been shown to be computationally more efficient in several applications. We
may refer to [22–24]. Holmes and Reinert [25] provided new proofs for many known results
about the convergence in law of the bootstrap distribution to the true distribution of smooth
statistics employing the techniques based on Stein’s method for empirical processes. Note
that other variations of Efron’s bootstrap are studied in [26] using the term “generalized
bootstrap.” The practical usefulness of the more general scheme is well documented in the
literature. For a survey of further results on weighted bootstrap, the reader is referred to
[27].

The remainder of this paper is organized as follows. In the forthcoming section
we recall the estimation procedure based on φ-divergences. The bootstrap of φ-divergence
estimators is introduced, in detail, and their asymptotic properties are given in Section 3.
In Section 4, we provide some examples explaining the computation of the φ-divergence
estimators. In Section 5, we illustrate how to apply our results in the context of right
censoring. Section 6 provides simulation results in order to illustrate the performance of the
proposed estimators. To avoid interrupting the flow of the presentation, all mathematical
developments are relegated to the appendix.

2. Dual Divergence-Based Estimates

The class of dual divergence estimators has been recently introduced by Keziou [28] and
Broniatowski and Keziou [1]. Recall that the φ-divergence between a bounded signed
measure Q and a probability measure P on D, when Q is absolutely continuous with respect
to P, is defined by

Dφ(Q,P) :=
∫

D
φ

(

dQ

dP

)

dP, (2.1)

where φ(·) is a convex function from ]−∞,∞[ to [0,∞] with φ(1) = 0. We will consider only
φ-divergences for which the function φ(·) is strictly convex and satisfies the domain of φ(·),
domφ := {x ∈ R : φ(x) <∞} is an interval with end points

aφ < 1 < bφ, φ
(

aφ
)

= lim
x↓aφ

φ(x), φ
(

aφ
)

= lim
x↑bφ

φ(x). (2.2)

The Kullback-Leibler, modified Kullback-Leibler, χ2, modified χ2, and Hellinger divergences
are examples of φ-divergences; they are obtained, respectively, for φ(x) = x logx − x + 1,
φ(x) = − logx + x − 1, φ(x) = (1/2)(x − 1)2, φ(x) = (1/2)((x − 1)2/x), and φ(x) = 2(

√
x − 1)2.
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The squared Le Cam distance (sometimes called the Vincze-Le Cam distance) and L1-error
are obtained, respectively, for

φ(x) =
(x − 1)2

2(x − 1)
, φ(x) = |x − 1|. (2.3)

We extend the definition of these divergences on the whole space of all bounded signed
measures via the extension of the definition of the corresponding φ(·) functions on the whole
real space R as follows: when φ(·) is not well defined on R− or well defined but not convex
on R, we set φ(x) = +∞ for all x < 0. Notice that, for the χ2-divergence, the corresponding
φ(·) function is defined on whole R and strictly convex. All the above examples are particular
cases of the so-called “power divergences,” introduced by Cressie and Read [29] (see also [4,
Chapter 2], and also Rényi’s paper [30] is to be mentioned here), which are defined through
the class of convex real-valued functions, for γ in R \ {0, 1},

x ∈ R
∗
+ −→ φγ(x) :=

xγ − γx + γ − 1
γ
(

γ − 1
) , (2.4)

φ0(x) := − logx + x − 1, and φ1(x) := x logx − x + 1. (For all γ ∈ R, we define φγ(0) :=
limx↓0φγ(x).) So, the KL-divergence is associated to φ1, the KLm to φ0, the χ2 to φ2, the χ2

m to
φ−1, and the Hellinger distance to φ1/2. In the monograph by [4], the reader may find detailed
ingredients of the modeling theory as well as surveys of the commonly used divergences.

Let {Pθ : θ ∈ Θ} be some identifiable parametric model with Θ a compact subset of
R
d. Consider the problem of estimation of the unknown true value of the parameter θ0 on

the basis of an i.i.d sample X1, . . . ,Xn. We will assume that the observed data are from the
probability space (X,A,Pθ0). Let φ(·) be a function of class C2, strictly convex such that

∫∣

∣

∣

∣

φ′
(

dPθ(x)
dPα(x)

)∣

∣

∣

∣

dPθ(x) <∞, ∀α ∈ Θ. (2.5)

As it is mentioned in [1], if the function φ(·) satisfies the following conditions:

there exists 0 < δ < 1 such that for all c in [1 − δ, 1 + δ],
we can find numbers c1, c2, c3 such that
φ(cx) ≤ c1φ(x) + c2|x| + c3, ∀ real x,

(2.6)

then the assumption (2.5) is satisfied whenever Dφ(θ,α) < ∞, where Dφ(θ,α) stands for the
φ-divergence between Pθ and Pα; refer to [31, Lemma 3.2]. Also the real convex functions
φ(·) (2.4), associated with the class of power divergences, all satisfy the condition (2.5),
including all standard divergences. Under assumption (2.5), using Fenchel duality technique,
the divergenceDφ(θ,θ0) can be represented as resulting from an optimization procedure, this
result was elegantly proved in [1, 3, 28]. Broniatowski and Keziou [31] called it the dual form
of a divergence, due to its connection with convex analysis. According to [3], under the strict
convexity and the differentiability of the function φ(·), it holds

φ(t) ≥ φ(s) + φ′(s)(t − s), (2.7)
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where the equality holds only for s = t. Let θ and θ0 be fixed, and put t = dPθ(x)/dPθ0(x)
and s = dPθ(x)/dPα(x) in (2.7), and then integrate with respect to Pθ0 , to obtain

Dφ(θ,θ0) :=
∫

φ

(

dPθ

dPθ0

)

dPθ0 = sup
α∈Θ

∫

h(θ,α)dPθ0 , (2.8)

where h(θ,α, ·) : x �→ h(θ,α, x) and

h(θ,α, x) :=
∫

φ′
(

dPθ

dPα

)

dPθ −
[

dPθ(x)
dPα(x)

φ′
(

dPθ(x)
dPα(x)

)

− φ
(

dPθ(x)
dPα(x)

)]

. (2.9)

Furthermore, the supremum in this display (2.8) is unique and reached in α = θ0, indepen-
dently upon the value of θ. Naturally, a class of estimators of θ0, called “dual φ-divergence
estimators” (DφDEs), is defined by

α̂φ(θ) := arg sup
α∈Θ

Pnh(θ,α), θ ∈ Θ, (2.10)

where h(θ,α) is the function defined in (2.9) and, for a measurable function f(·),

Pnf := n−1
n
∑

i=1

f(Xi). (2.11)

The class of estimators α̂φ(θ) satisfies

Pn
∂

∂α
h
(

θ, α̂φ(θ)
)

= 0. (2.12)

Formula (2.10) defines a family ofM-estimators indexed by the function φ(·) specifying the
divergence and by some instrumental value of the parameter θ. The φ-divergence estimators
are motivated by the fact that a suitable choice of the divergencemay lead to an estimate more
robust than the maximum likelihood estimator (MLE) one; see [32]. Toma and Broniatowski
[33] studied the robustness of the DφDEs through the influence function approach; they
treated numerous examples of location-scale models and give sufficient conditions for the
robustness of DφDEs. We recall that the maximum likelihood estimate belongs to the class of
estimates (2.10). Indeed, it is obtained when φ(x) = − logx+x−1, that is, as the dual modified
KLm-divergence estimate. Observe that φ′(x) = −(1/x)+1 and xφ′(x)−φ(x) = logx, and hence

∫

h(θ,α)dPn = −
∫

log
(

dPθ

dPα

)

dPn. (2.13)
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Keeping in mind definitions (2.10), we get

α̂KLm(θ) = arg sup
α

−
∫

log
(

dPθ

dPα

)

dPn

= arg sup
α

∫

log(dPα)dPn = MLE,
(2.14)

independently upon θ.

3. Asymptotic Properties

In this section, we will establish the consistency of bootstrapping under general conditions in
the framework of dual divergence estimation. Define, for a measurable function f(·),

P
∗
nf :=

1
n

n
∑

i=1

Wnif(Xi), (3.1)

where Wni’s are the bootstrap weights defined on the probability space (W,Ω,PW). In view
of (2.10), the bootstrap estimator can be rewritten as

α̂∗
φ(θ) := arg sup

α∈Θ
P
∗
nh(θ,α). (3.2)

The definition of α̂∗
φ(θ), defined in (3.2), implies that

P
∗
n

∂

∂α
h
(

θ, α̂∗
φ(θ)
)

= 0. (3.3)

The bootstrap weights Wni’s are assumed to belong to the class of exchangeable bootstrap
weights introduced in [23]. In the sequel, the transpose of a vector x will be denoted by x�.
We will assume the following conditions.

(W.1) The vector Wn = (Wn1, . . . ,Wnn)
� is exchangeable for all n = 1, 2, . . .; that is, for any

permutation π = (π1, . . . , πn) of (1, . . . , n), the joint distribution of π(Wn) = (Wnπ1 , . . . ,
Wnπn)

� is the same as that of Wn.

(W.2) Wni ≥ 0 for all n, i and
∑n

i=1Wni = n for all n.

(W.3) lim supn→∞‖Wn1‖2,1 ≤ C <∞, where

‖Wn1‖2,1 =
∫∞

0

√

PW(Wn1 ≥ u)du. (3.4)

(W.4) One has

lim
λ→∞

lim sup
n→∞

sup
t≥λ

t2PW(Wn1 > t) = 0. (3.5)

(W.5) (1/n)
∑n

i=1 (Wni − 1)2
PW−−−→ c2 > 0.
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In Efron’s nonparametric bootstrap, the bootstrap sample is drawn from the
nonparametric estimate of the true distribution, that is, empirical distribution. Thus, it is easy
to show that Wn ∼ Multinomial (n;n−1, . . . , n−1) and conditions (W.1)–(W.5) are satisfied.
In general, conditions (W.3)–(W.5) are easily satisfied under some moment conditions on
Wni; see [23, Lemma 3.1]. In addition to Efron’s nonparametric bootstrap, the sampling
schemes that satisfy conditions (W.1)–(W.5) include Bayesian bootstrap, Multiplier bootstrap,
Double bootstrap, and Urn bootstrap. This list is sufficiently long to indicate that conditions
(W.1)–(W.5), are not unduly restrictive. Notice that the value of c in (W.5) is independent of
n and depends on the resampling method, for example, c = 1 for the nonparametric bootstrap
and Bayesian bootstrap and c =

√
2 for the double bootstrap. A more precise discussion of

this general formulation of the bootstrap can be found in [23, 34, 35].
There exist two sources of randomness for the bootstrapped quantity, that is, α̂∗

φ(θ):
the first comes from the observed data and the second is due to the resampling done by the
bootstrap, that is, random Wni’s. Therefore, in order to rigorously state our main theoretical
results for the general bootstrap of φ-divergence estimates, we need to specify relevant
probability spaces and define stochastic orders with respect to relevant probability measures.
Following [6, 36], we will view Xi as the ith coordinate projection from the canonical
probability space (X∞,A∞,P∞

θ0
) onto the ith copy of X. For the joint randomness involved,

the product probability space is defined as

(

X∞,A∞,P∞
θ0

)

× (W,Ω,PW) =
(

X∞ ×W,A∞ ×Ω,P∞
θ0

× PW

)

. (3.6)

Throughout the paper, we assume that the bootstrap weights Wni’s are independent of the
data Xi’s, thus

PXW = Pθ0 × PW. (3.7)

Given a real-valued functionΔn defined on the above product probability space, for example,
α̂∗
φ(θ), we say that Δn is of an order Oo

PW
(1) in Pθ0 -probability if, for any ε, η > 0, as n → 0,

Pθ0

{

PoW |X(|Δn| > ε) > η
}

−→ 0 (3.8)

and that Δn is of an orderOo
PW

(1) in Pθ0 -probability if, for any η > 0, there exists a 0 < M <∞
such that, as n → 0,

Pθ0

{

PoW |X(|Δn| ≥M) > η
}

−→ 0, (3.9)

where the superscript “o” denotes the outer probability; see [34] for more details on outer
probability measures. For more details on stochastic orders, the interested reader may refer
to [6], in particular, Lemma 3 of the cited reference.

To establish the consistency of α̂∗
φ(θ), the following conditions are assumed in our

analysis.
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(A.1) One has

Pθ0h(θ,θ0) > sup
α/∈N(θ0)

Pθ0h(θ,α) (3.10)

for any open setN(θ0) ⊂ Θ containing θ0.

(A.2) One has

sup
α∈Θ

|P∗
nh(θ,α) − Pθ0h(θ,α)|

P
o
XW−−−−→ 0. (3.11)

The following theorem gives the consistency of the bootstrapped estimate α̂∗
φ(θ).

Theorem 3.1. Assume that conditions (A.1) and (A.2) hold. Suppose that conditions (A.3)–(A.5) and
(W.1)–(W.5) hold. Then α̂∗

φ(θ) is a consistent estimate of θ0; that is,

α̂∗
φ(θ)

P
o
W−−−→ θ0 in Pθ0-probability. (3.12)

The proof of Theorem 3.1 is postponed until the appendix.
We need the following definitions; refer to [34, 37] among others. If F is a class of

functions for which, we have almost surely,

‖Pn − P‖F = sup
f∈F

∣

∣Pnf − Pf
∣

∣ −→ 0, (3.13)

then we say that F is a P-Glivenko-Cantelli class of functions. If F is a class of functions for
which

Gn =
√
n(Pn − P) −→ G in �∞(F), (3.14)

where G is a mean-zero P-Brownian bridge process with (uniformly) continuous sample
paths with respect to the semimetric ρP(f, g), defined by

ρ2
P

(

f, g
)

= VarP

(

f(X) − g(X)
)

, (3.15)

then we say that F is a P-Donsker class of functions. Here

�∞(F) =
{

v : F �−→ R | ‖v‖F = sup
f∈F

∣

∣v
(

f
)∣

∣ <∞
}

(3.16)

and G is a P-Brownian bridge process on F if it is a mean-zero Gaussian process with
covariance function

E
(

G
(

f
)

G
(

g
))

= Pfg − (Pf)(Pg). (3.17)
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Remark 3.2. (i) Condition (A.1) is the “well-separated” condition, compactness of the param-
eter space Θ and the continuity of divergence imply that the optimum is well separated,
provided the parametric model is identified; see [37, Theorem 5.7].

(ii) Condition (A.2) holds if the class

{h(θ,α) : α ∈ Θ} (3.18)

is shown to be P-Glivenko-Cantelli, by applying [34, Lemma 3.6.16] and [6, Lemma A.1].

For any fixed δn > 0, define the class of functions Hn and Ḣn as

Hn :=
{

∂

∂α
h(θ,α) : ‖α − θ0‖ ≤ δn

}

,

Ḣn :=

{

∂2

∂α2
h(θ,α) : ‖α − θ0‖ ≤ δn

}

.

(3.19)

We will say a class of functions H ∈ M(Pθ0) if H possesses enough measurability for
randomization with i.i.d multipliers to be possible, that is, Pn can be randomized, in other
words, we can replace (δXi −Pθ0) by (Wni−1)δXi . It is known thatH ∈M(Pθ0), for example, if
H is countable, if {Pn}∞n are stochastically separable inH, or ifH is image admissible Suslin;
see [21, pages 853 and 854].

To state our result concerning the asymptotic normality, we will assume the following
additional conditions.

(A.3) The matrices

V := Pθ0

∂

∂α
h(θ,θ0)

∂

∂α
h(θ,θ0)�,

S := −Pθ0

∂2

∂α2
h(θ,θ0)

(3.20)

are nonsingular.

(A.4) The class Hn ∈M(Pθ0) ∩ L2(Pθ0) and is P-Donsker.

(A.5) The class Ḣn ∈M(Pθ0) ∩ L2(Pθ0) and is P-Donsker.

Conditions (A.4) and (A.5) ensure that the “size” of the function classes Hn and Ḣn are
reasonable so that the bootstrapped empirical processes

G
∗
n ≡ √

n(P∗
n − Pn) (3.21)

indexed, respectively, by Hn and Ḣn, have a limiting process conditional on the original
observations; we refer, for instance, to [23, Theorem 2.2]. The main result to be proved here
may now be stated precisely as follows.
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Theorem 3.3. Assume that α̂φ(θ) and α̂
∗
φ(θ) fulfil (2.12) and (3.3), respectively. In addition suppose

that

α̂φ(θ)
Pθ0−−−→ θ0, α̂∗

φ(θ)
P
o
W−−−→ θ0 in Pθ0-probability. (3.22)

Assume that conditions (A.3)–(A.5) and (W.1)–(W.5) hold. Then one has
∥

∥

∥α̂∗
φ(θ) − θ0

∥

∥

∥ = Oo
PW

(

n−1/2
)

(3.23)

in Pθ0-probability. Furthermore,

√
n
(

α̂∗
φ(θ) − α̂φ(θ)

)

= −S−1
G

∗
n

∂

∂α
h(θ,θ0) + ooPW (1) (3.24)

in Pθ0-probability. Consequently,

sup
x∈Rd

∣

∣

∣

∣

PW |Xn

((√
n

c

)

(

α̂∗
φ(θ) − α̂φ(θ)

)

≤ x
)

− P(N(0,Σ) ≤ x)
∣

∣

∣

∣

= oPθ0
(1), (3.25)

where “≤” is taken componentwise and “c” is given in (W.5), whose value depends on the used
sampling scheme, and

Σ ≡ S−1V
(

S−1
)�
, (3.26)

where S and V are given in condition (A.3). Thus, one has

sup
x∈Rd

∣

∣

∣

∣

PW |Xn

((√
n

c

)

(

α̂∗
φ(θ) − α̂φ(θ)

)

≤ x
)

− Pθ0

(√
n
(

α̂φ(θ) − θ0
) ≤ x

)

∣

∣

∣

∣

Pθ0−−−→ 0. (3.27)

The proof of Theorem 3.1 is captured in the forthcoming appendix.

Remark 3.4. Note that an appropriate choice of the bootstrap weights Wni’s implicates a
smaller limit variance; that is, c2 is smaller than 1. For instance, typical examples are i.i.d-
weighted bootstraps and the multivariate hypergeometric bootstrap; refer to [23, Examples
3.1 and 3.4].

Following [6], we will illustrate how to apply our results to construct the confidence
sets. A lower εth quantile of bootstrap distribution is defined to be any q∗nε ∈ R

d fulfilling

q∗nε := inf
{

x : PW |Xn

(

α̂∗
φ(θ) ≤ x

)

≥ ε
}

, (3.28)

where x is an infimum over the given set only if there does not exist a x1 < x in R
d such that

PW |Xn

(

α̂∗
φ(θ) ≤ x1

)

≥ ε. (3.29)
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Keep in mind the assumed regularity conditions on the criterion function, that is, h(θ,α) in
the present framework, we can, without loss of generality, suppose that

PW |Xn

(

α̂∗
φ(θ) ≤ q∗nε

)

= ε. (3.30)

Making use of the distribution consistency result given in (3.27), we can approximate the εth
quantile of the distribution of

(

α̂φ(θ) − θ0
)

by
q∗nε − α̂φ(θ)

c
. (3.31)

Therefore, we define the percentile-type bootstrap confidence set as

C(ε) :=

[

α̂φ(θ) +
q∗
n(ε/2) − α̂φ(θ)

c
, α̂φ(θ) +

q∗
n(1−ε/2) − α̂φ(θ)

c

]

. (3.32)

In a similar manner, the εth quantile of
√
n(α̂φ(θ) − θ0) can be approximated by q̃∗nε, where

q̃∗nε is the εth quantile of the hybrid quantity (
√
n/c)(α̂∗

φ(θ) − α̂φ(θ)), that is,

PW |Xn

((√
n

c

)

(

α̂∗
φ(θ) − α̂φ(θ)

)

≤ q̃∗nε
)

= ε. (3.33)

Note that

q̃∗nε =
(√

n

c

)

(

q∗nε − α̂φ(θ)
)

. (3.34)

Thus, the hybrid-type bootstrap confidence set would be defined as follows:

˜C(ε) :=

[

α̂φ(θ) −
q̃∗n(1−ε/2)√

n
, α̂φ(θ) −

q̃∗n(ε/2)√
n

]

. (3.35)

Note that q∗nε and q̃
∗
nε are not unique by the fact that we assume θ is a vector. Recall that, for

any x ∈ R
d,

Pθ0

(√
n
(

α̂φ(θ) − θ0
) ≤ x

) −→ Ψ(x),

PW |Xn

((√
n

c

)

(

α̂∗
φ(θ) − α̂φ(θ)

)

≤ x
)

Pθ0−−−→ Ψ(x),
(3.36)

where

Ψ(x) = P(N(0,Σ) ≤ x). (3.37)
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According to the quantile convergence theorem, that is, [37, Lemma 21.1], we have, almost
surely,

q̃∗nε
PXW−−−−→ Ψ−1(ε). (3.38)

When applying quantile convergence theorem, we use the almost sure representation, that
is, [37, Theorem 2.19], and argue along subsequences. Considering Slutsky’s Theorem which
ensures that

√
n
(

α̂φ(θ) − θ0
) − q̃∗n(ε/2) weakly converges to N(0,Σ) −Ψ−1(ε/2), (3.39)

we further have

PXW

(

θ0 ≤ α̂φ(θ) −
q̃∗n(ε/2)√

n

)

= PXW

(√
n
(

α̂φ(θ) − θ0
) ≥ q̃∗n(ε/2)

)

−→ PXW

(

N(0,Σ) ≥ Ψ−1
(ε

2

))

= 1 − ε

2
.

(3.40)

The above arguments prove the consistency of the hybrid-type bootstrap confidence set, that
is, (3.42), and can also be applied to the percentile-type bootstrap confidence set, that is, (3.41).
For an in-depth study and more rigorous proof, we may refer to [37, Lemma 23.3]. The above
discussion may be summarized as follows.

Corollary 3.5. Under the conditions in Theorem 3.3, one has, as n → ∞,

PXW

(

α̂φ(θ) +
q∗n(ε/2) − α̂φ(θ)

c
≤ θ0 ≤ α̂φ(θ) +

q∗n(1−ε/2) − α̂φ(θ)

c

)

−→ 1 − ε, (3.41)

PXW

(

α̂φ(θ) −
q̃∗
n(1−ε/2)√

n
≤ θ0 ≤ α̂φ(θ) −

q̃∗
n(ε/2)√
n

)

−→ 1 − ε. (3.42)

It is well known that the above bootstrap confidence sets can be obtained easily through
routine bootstrap sampling.

Remark 3.6. Notice that the choice of weights depends on the problem at hand: accuracy of the
estimation of the entire distribution of the statistic, accuracy of a confidence interval, accuracy
in large deviation sense, and accuracy for a finite sample size; we may refer to [38] and the
references therein for more details. Barbe and Bertail [27] indicate that the area where the
weighted bootstrap clearly performs better than the classical bootstrap is in term of coverage
accuracy.
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3.1. On the Choice of the Escort Parameter

The very peculiar choice of the escort parameter defined through θ = θ0 has the same
limit properties as the MLE one. The DφDE α̂φ(θ0), in this case, has variance which indeed
coincides with the MLE one; see, for instance, [28, Theorem 2.2, (1) (b)]. This result is of some
relevance, since it leaves open the choice of the divergence, while keeping good asymptotic
properties. For data generated from the distribution N(0, 1), Figure 1 shows that the global
maximum of the empirical criterion Pnh(̂θn,α) is zero, independently of the value of the
escort parameter ̂θn (the sample mean X = n−1

∑n
i=1 Xi, in Figure 1(a) and the median in

Figure 1(b)) for all the considered divergences which is in agreement with the result of [39,
Theorem 6], where it is showed that all differentiable divergences produce the same estimator
of the parameter on any regular exponential family, in particular the normal models, which
is the MLE one, provided that the conditions (2.6) and Dφ(θ,α) <∞ are satisfied.

Unlike the case of data without contamination, the choice of the escort parameter is
crucial in the estimation method in the presence of outliers. We plot in Figure 2 the empirical
criterion Pnh(̂θn,α), where the data are generated from the distribution

(1 − ε)N(θ0, 1) + εδ10, (3.43)

where ε = 0.1, θ0 = 0, and δx stands for the Dirac measure at x. Under contamination, when
we take the empirical “mean,” ̂θn = X, as the value of the escort parameter θ, Figure 2(a)
shows how the global maximum of the empirical criterion Pnh(̂θn,α) shifts from zero to the
contamination point. In Figure 2(b), the choice of the “median” as escort parameter value
leads to the position of the global maximum remaining close to α = 0, for Hellinger (γ = 0.5),
χ2 (γ = 2), and KL-divergence (γ = 1), while the criterion associated to the KLm-divergence
(γ = 0, the maximum is the MLE) is still affected by the presence of outliers.

In practice, the consequence is that if the data are subject to contamination the escort
parameter should be chosen as a robust estimator of θ0, say ̂θn. For more details about the
performances of dual φ-divergence estimators for normal density models, we refer to [40].

4. Examples

Keep in mind the definitions (2.8) and (2.9). In what follows, for easy reference and
completeness, we give some usual examples of divergences, discussed in [41, 42], of diver-
gences and the associated estimates; we may refer also to [43] for more examples and details.

(i) Our first example is the Kullback-Leibler divergence:

φ(x) = x logx − x + 1,

φ′(x) = logx,

xφ′(x) − φ(x) = x − 1.

(4.1)

The estimate of DKL(θ,θ0) is given by

̂DKL(θ,θ0) = sup
α∈Θ

{∫

log
(

dPθ

dPα

)

dPθ −
∫(

dPθ

dPα
− 1
)

dPn

}

, (4.2)
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Figure 1: Criterion for the normal location model.

and the estimate of the parameter θ0, with escort parameter θ, is defined as follows:

α̂KL(θ) := arg sup
α∈Θ

{∫

log
(

dPθ

dPα

)

dPθ −
∫(

dPθ

dPα
− 1
)

dPn

}

. (4.3)

(ii) The second one is the χ2-divergence:

φ(x) =
1
2
(x − 1)2,

φ′(x) = x − 1,

xφ′(x) − φ(x) = 1
2
x − 1

2
.

(4.4)

The estimate of Dχ2(θ,θ0) is given by

̂Dχ2(θ,θ0) = sup
α∈Θ

{

∫(

dPθ

dPα
− 1
)

dPθ − 1
2

∫

(

(

dPθ

dPα

)2

− 1

)

dPn

}

, (4.5)

and the estimate of the parameter θ0, with escort parameter θ, is defined by

α̂χ2(θ) := arg sup
α∈Θ

{

∫(

dPθ

dPα
− 1
)

dPθ − 1
2

∫

(

(

dPθ

dPα

)2

− 1

)

dPn

}

. (4.6)
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Figure 2: Criterion for the normal location model under contamination.

(iii) Another example is the Hellinger divergence:

φ(x) = 2
(√

x − 1
)2
,

φ′(x) = 2 − 1√
x
,

xφ′(x) − φ(x) = 2
√
x − 2.

(4.7)

The estimate of DH(θ,θ0) is given by

̂DH(θ,θ0) = sup
α∈Θ

⎧

⎨

⎩

∫

⎛

⎝2 − 2

√

dPα

dPθ

⎞

⎠dPθ −
∫

2

⎛

⎝

√

dPθ

dPα
− 1

⎞

⎠dPn

⎫

⎬

⎭

, (4.8)

and the estimate of the parameter θ0, with escort parameter θ, is defined by

α̂H(θ) := arg sup
α∈Θ

⎧

⎨

⎩

∫

⎛

⎝2 − 2

√

dPα

dPθ

⎞

⎠dPθ −
∫

2

⎛

⎝

√

dPθ

dPα
− 1

⎞

⎠dPn

⎫

⎬

⎭

. (4.9)

(iv)All the above examples are particular cases of the so-called “power divergences,”
which are defined through the class of convex real-valued functions, for γ in R \
{0, 1},

x ∈ R
∗
+ −→ ϕγ(x) :=

xγ − γx + γ − 1
γ
(

γ − 1
) . (4.10)
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The estimate of Dγ(θ,θ0) is given by

̂Dγ(θ,θ0) = sup
α∈Θ

{

∫

1
γ − 1

(

(

dPθ

dPα

)γ−1
− 1

)

dPθ −
∫

1
γ

((

dPθ

dPα

)γ

− 1
)

dPn

}

, (4.11)

and the parameter estimate is defined by

α̂γ(θ) := − arg sup
α∈Θ

{

∫

1
γ − 1

(

(

dPθ

dPα

)γ−1
− 1

)

dPθ −
∫

1
γ

((

dPθ

dPα

)γ

− 1
)

dPn

}

. (4.12)

Remark 4.1. The computation of the estimate α̂φ(θ) requires calculus of the integral in the
formula (2.9). This integral can be explicitly calculated for the most standard parametric
models. Below, we give a closed-form expression for Normal, log-Normal, Exponential,
Gamma, Weibull, and Pareto density models. Hence, the computation of α̂φ(θ) can be
performed by any standard nonlinear optimization code. Unfortunately, the explicit formula
of α̂φ(θ), generally, cannot be derived, which also is the case for the ML method. In practical
problems, to obtain the estimate α̂φ(θ), one can use the Newton-Raphson algorithm taking
as initial point the escort parameter θ. This algorithm is a powerful technique for solving
equations numerically, performs well since the objective functions α ∈ Θ �→ Pθ0h(θ,α) are
concave and the estimated parameter is unique for functions α ∈ Θ �→ Pnh(θ,α); for instance,
refer to [1, Remark 3.5].

4.1. Example of Normal Density

Consider the case of power divergences and the Normal model

{

N
(

θ,σ2
)

:
(

θ,σ2
)

∈ Θ = R × R
∗
+

}

. (4.13)

Set

pθ,σ(x) =
1

σ
√
2π

exp

{

−1
2

(

x − θ

σ

)2
}

. (4.14)

Simple calculus gives, for γ in R \ {0, 1},

1
γ − 1

∫ (

dPθ,σ1(x)
dPα,σ2(x)

)γ−1
dPθ,σ1(x)dx

=
1

γ − 1
σ
−(γ−1)
1 σ

γ

2
√

γσ2
2 −
(

γ − 1
)

σ2
1

exp

{

γ
(

γ − 1
)

(θ − α)2

2
(

γσ2
2 −
(

γ − 1
)

σ2
1

)

}

.

(4.15)
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This yields

̂Dγ((θ,σ1), (θ0,σ0))

= sup
α,σ2

⎧

⎪

⎨

⎪

⎩

1
γ − 1

σ
−(γ−1)
1 σ

γ

2
√

γσ2
2 −
(

γ − 1
)

σ2
1

exp

{

γ
(

γ − 1
)

(θ − α)2

2
(

γσ2
2 −
(

γ − 1
)

σ2
1

)

}

− 1
γn

n
∑

i=1

(

σ2

σ1

)γ

exp

{

−γ
2

(

(

Xi − θ

σ1

)2

−
(

Xi − α

σ2

)2
)}

− 1
γ
(

γ − 1
)

}

.

(4.16)

In the particular case, Pθ ≡ N(θ, 1), it follows that, for γ ∈ R \ {0, 1},

̂Dγ(θ,θ0) := sup
α

∫

h(θ,α)dPn

= sup
α

{

1
γ − 1

exp

{

γ
(

γ − 1
)

(θ − α)2

2

}

− 1
γn

n
∑

i=1

exp
{

−γ
2
(θ − α)(θ + α − 2Xi)

}

− 1
γ
(

γ − 1
)

}

.

(4.17)

For γ = 0,

̂DKLm(θ,θ0) := sup
α

∫

h(θ,α)dPn = sup
α

{

1
2n

n
∑

i=1

(θ − α)(θ + α − 2Xi)

}

, (4.18)

which leads to the maximum likelihood estimate independently upon θ.
For γ = 1,

̂DKL(θ,θ0) := sup
α

∫

h(θ,α)dPn

= sup
α

{

−1
2
(θ − α)2 − 1

n

n
∑

i=1

exp
{

−1
2
(θ − α)(θ + α − 2Xi)

}

+ 1

}

.

(4.19)

4.2. Example of Log-Normal Density

Consider the case of power divergences and the log-Normal model

{

pθ,σ(x) =
1

xσ
√
2π

exp

{

−1
2

(

log(x) − θ

σ

)2
}

:
(

θ,σ2
)

∈ Θ = R × R
∗
+, x > 0

}

. (4.20)
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Simple calculus gives, for γ in R \ {0, 1},

1
γ − 1

∫ (

dPθ,σ1(x)
dPα,σ2(x)

)γ−1
dPθ,σ1(x)dx

=
1

γ − 1
σ
−(γ−1)
1 σ

γ

2
√

γσ2
2 −
(

γ − 1
)

σ2
1

exp

{

γ
(

γ − 1
)

(θ − α)2

2
(

γσ2
2 −
(

γ − 1
)

σ2
1

)

}

.

(4.21)

This yields

̂Dγ((θ,σ1), (θ0,σ0))

= sup
α,σ2

⎧

⎪

⎨

⎪

⎩

1
γ − 1

σ
−(γ−1)
1 σ

γ

2
√

γσ2
2 −
(

γ − 1
)

σ2
1

exp

{

γ
(

γ − 1
)

(θ − α)2

2
(

γσ2
2 −
(

γ − 1
)

σ2
1

)

}

− 1
γn

n
∑

i=1

(

σ2

σ1

)γ

exp

{

−γ
2

(

(

log(Xi) − θ

σ1

)2

−
(

log(Xi) − α

σ2

)2
)}

− 1
γ
(

γ − 1
)

}

.

(4.22)

4.3. Example of Exponential Density

Consider the case of power divergences and the Exponential model

{

pθ(x) = θ exp(−θx) : θ ∈ Θ = R
∗
+
}

. (4.23)

We have, for γ in R \ {0, 1},

1
γ − 1

∫ (

dPθ(x)
dPα(x)

)γ−1
dPθ(x)dx =

(

θ

α

)(γ−1)( θ

θγ
(

γ − 1
) − α

(

γ − 1
)2

)

. (4.24)

Then, using this last equality, one finds

̂Dγ(θ,θ0) = sup
α

{

(

θ

α

)(γ−1)( θ

θγ
(

γ − 1
) − α

(

γ − 1
)2

)

− 1
γn

n
∑

i=1

(

θ

α

)γ

exp
{−γ((θXi) − (αXi))

} − 1
γ
(

γ − 1
)

}

.

(4.25)

In more general case, we may consider the Gamma density combined with the power diver-
gence. The Gamma model is defined by

{

pθ(x; k) := θkxk−1
exp(−xθ)

Γ(k)
: k,θ ≥ 0

}

, (4.26)
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where Γ(·) is the Gamma function

Γ(k) :=
∫∞

0
xk−1 exp(−x)dx. (4.27)

Simple calculus gives, for γ in R \ {0, 1},

1
γ − 1

∫ (

dPθ;k(x)
dPα;k(x)

)γ−1
dPθ;k(x)dx =

(

θ

α

)k(γ−1)( θ

θγ − α
(

γ − 1
)

)k
1

γ − 1
, (4.28)

which implies that

̂Dγ(θ,θ0) = sup
α

⎧

⎨

⎩

(

θ

α

)k(γ−1)( θ

θγ − α
(

γ − 1
)

)k
1

γ − 1

− 1
γn

n
∑

i=1

(

θ

α

)kγ

exp
{−γ((θXi) − (αXi))

} − 1
γ
(

γ − 1
)

}

.

(4.29)

4.4. Example of Weibull Density

Consider the case of power divergences and the Weibull density model, with the assumption
that k ∈ R

∗
+ is known and θ is the parameter of interest to be estimated, and recall that

{

pθ(x) =
k

θ

(

x

θ

)k−1
exp

(

−
(

x

θ

)k
)

: θ ∈ Θ = R
∗
+, x ≥ 0

}

. (4.30)

Routine algebra gives, for γ in R \ {0, 1},

1
γ − 1

∫ (

dPθ;k(x)
dPα;k(x)

)γ−1
dPθ;k(x)dx =

(

α

θ

)k(γ−1)( 1

γ − (θ/α)k
(

γ − 1
)

)

1
γ − 1

, (4.31)

which implies that

̂Dγ(θ,θ0) = sup
α

{

k(γ−1)
(

1

γ − (θ/α)k
(

γ − 1
)

)

1
γ − 1

− 1
γn

n
∑

i=1

(

α

θ

)kγ

exp

{

−γ
(

(

Xi
θ

)k

−
(

Xi
α

)k
)}

− 1
γ
(

γ − 1
)

}

.

(4.32)
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4.5. Example of the Pareto Density

Consider the case of power divergences and the Pareto density

{

pθ(x) :=
θ

xθ+1
: x > 1; θ ∈ R

∗
+

}

. (4.33)

Simple calculus gives, for γ in R \ {0, 1},

1
γ − 1

∫ (

dPθ(x)
dPα(x)

)γ−1
dPθ(x)dx =

(

θ

α

)(γ−1)( θ

θγ
(

γ − 1
) − α

(

γ − 1
)2

)

. (4.34)

As before, using this last equality, one finds

̂Dγ(θ,θ0) = sup
α

{

(

θ

α

)(γ−1)( θ

θγ
(

γ − 1
) − α(γ − 1)2

)

− 1
γn

n
∑

i=1

(

θ

α

)γ

X{−γ(θ−α)}
i − 1

γ
(

γ − 1
)

}

.

(4.35)

For γ = 0,

̂DKLm(θ,θ0) := sup
α

∫

h(θ,α)dPn

= sup
α

{

− 1
n

n
∑

i=1

{

log
(

θ

α

)

− (θ − α) log(Xi)
}

}

,

(4.36)

which leads to the maximum likelihood estimate, given by

(

1
n

n
∑

i=1

log(Xi)

)−1
, (4.37)

independently upon θ.

Remark 4.2. The choice of divergence, that is, the statistical criterion, depends crucially on
the problem at hand. For example, the χ2-divergence among various divergences in the
nonstandard problem (e.g., boundary problem estimation) is more appropriate. The idea
is to include the parameter domain Θ into an enlarged space, say Θe, in order to render
the boundary value an interior point of the new parameter space, Θe. Indeed, Kullback-
Leibler, modified Kullback-Leibler, modified χ2, and Hellinger divergences are infinite when
dQ/dP takes negative values on nonnegligible (with respect to P) subset of the support of P,
since the corresponding φ(·) is infinite on (−∞, 0), when θ belongs to Θe \ Θ. This problem
does not hold in the case of χ2-divergence, in fact, the corresponding φ(·) is finite on R;
for more details refer to [41, 42, 44], and consult also [1, 45] for related matter. It is well
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known that when the underlying model is misspecified or when the data are contaminated
the maximum likelihood or other classical parametric methods may be severely affected and
lead to very poor results. Therefore, robust methods, which automatically circumvent the
contamination effects and model misspecification, can be used to provide a compromise
between efficient classical parametric methods and the semiparametric approach provided
they are reasonably efficient at the model; this problem has been investigated in [46, 47]. In
[41, 42], simulation results show that the choice of χ2-divergence has good properties in terms
of efficiency robustness. We mention that some progress has been made on automatic data-
based selection of the tuning parameter α > 0, appearing in formula (1) of [47]; the interested
reader is referred to [48, 49]. It is mentioned in [50], where semiparametric minimumdistance
estimators are considered, that the MLE or inversion-type estimators involve solving a
nonlinear equation which depends on some initial value. The second difficulty is that the
objective function is not convex in θ, in general, which give the situation of multiple roots.
Thus, in general, “good” consistent initial estimates are necessary and the DφDE should serve
that purpose.

5. Random Right Censoring

Let T = T1, . . . , Tn be i.i.d survival times with continuous survival function 1 − Fθ0(·) = 1 −
Pθ0(T ≤ ·), and let C1, . . . , Cn be independent censoring times with d.f. G(·). In the censoring
setup, we observe only the pair Yi = min(Ti, Ci) and δi = 1{Ti ≤ Ci}, where 1{·} is the indicator
function of the event {·}, which designs whether an observation has been censored or not. Let
(Y1, δ1), . . . , (Yn, δn) denote the observed data points, and let

t(1) < t(2) < · · · < t(k) (5.1)

be the k distinct death times. Now define the death set and risk set as follows: for j = 1, . . . , k,

D
(

j
)

:=
{

i : yi = t
(

j
)

, δi = 1
}

,

R
(

j
)

:=
{

i : yi ≥ t
(

j
)}

.
(5.2)

Kaplan and Meier’s [51] estimator of 1 − Fθ0(·), denoted here by 1 − ̂Fn(·), may be written as
follows:

1 − ̂Fn(t) :=
k
∏

j=1

(

1 −
∑

q∈D(j) 1
∑

q∈R(j) 1

){T(j)≤t}
. (5.3)

One may define a generally exchangeable weighted bootstrap scheme for the Kaplan-Meier
estimator and related functionals as follows (cf. [38, page 1598]):

1 − ̂F∗
n(t) :=

k
∏

j=1

(

1 −
∑

q∈D(j)Wnq
∑

q∈R(j)Wnq

){T(j)≤t}
. (5.4)
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Let ψ be Fθ0 -integrable, and put

Ψn :=
∫

ψ(u)d̂P∗
n(u) =

k
∑

j=1

Υjnψ
(

T(j)
)

, (5.5)

where

Υjn :=

(∑

q∈D(j)Wnq
∑

q∈R(j)Wnq

)

j−1
∏

k=1

(∑

q∈D(k)Wnq
∑

q∈R(k)Wnq

)

. (5.6)

Note that we have used the following identity. Let ai, i = 1, . . . , k, bi, i = 1, . . . , k, be real
numbers

k
∏

i=1

ai −
k
∏

i=1

bi =
k
∑

i=1

(ai − bi)
i−1
∏

j=1

bj
k
∏

h=1+i

ah. (5.7)

In the similar way, we define a more appropriate representation, which will be used in the
sequel, as follows:

Ψn =
∫

ψ(u)d̂P∗
n(u) =

n
∑

j=1

πjnψ
(

Yj:n
)

, (5.8)

where, for 1 ≤ j ≤ n,

πjn := δj:n

(∑

q∈D(j) Wnq
∑

q∈R(j)Wnq

)

j−1
∏

k=1

(∑

q∈D(k)Wnq
∑

q∈R(k)Wnq

)δk:n

. (5.9)

Here, Y1:n ≤ · · · ≤ Yn:n are ordered Y -values and δi:n denotes the concomitant associated with
Yi:n. Hence, we may write

̂P
∗
n :=

n
∑

j=1

πjnδYi:n . (5.10)

For the right censoring situation, the bootstrap DφDEs, is defined by replacing Pn in (2.10)
by ̂P∗

n, that is,

α̂n(θ) := arg sup
α∈Θ

∫

h(θ,α)d̂P∗
n, θ ∈ Θ. (5.11)

The corresponding estimating equation for the unknown parameter is then given by

∫

∂

∂α
h(θ,α)d̂P∗

n = 0, (5.12)
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where we recall that

h(θ,α, x) :=
∫

φ′
(

dPθ

dPα

)

dPθ −
[

dPθ(x)
dPα(x)

φ′
(

dPθ(x)
dPα(x)

)

− φ
(

dPθ(x)
dPα(x)

)]

. (5.13)

Formula (5.11) defines a family of M-estimators for censored data. In the case of the power
divergences family (2.4), it follows that from (4.11)

∫

h(θ,α)d̂Pn =
1

γ − 1

∫ (

dPθ

dPα

)γ−1
dPθ − 1

γ

∫[(

dPθ

dPα

)γ

− 1
]

d̂Pn − 1
γ − 1

, (5.14)

where

̂Pn :=
n
∑

j=1

ωjnδYi:n , (5.15)

and, for 1 ≤ j ≤ n,

ωjn =
δj:n

n − j + 1

j−1
∏

i=1

[

n − i
n − i + 1

]δi:n

. (5.16)

Consider the lifetime distribution to be the one-parameter exponential exp(θ) with density
θe−θx, x ≥ 0. Following [52], the Kaplan-Meier integral

∫

h(θ,α)d̂Pn may be written as

n
∑

j=1

ωjnh
(

θ,α, Yj:n
)

. (5.17)

The MLE of θ0 is given by

̂θn,MLE =

∑n
j=1 δj
∑n

j=1 Yj
, (5.18)

and the approximate MLE (AMLE) of [53] is defined by

̂θn,AMLE =

∑n
j=1 δj

∑n
j=1ωjnYj:n

. (5.19)

We infer from (4.24), that, for γ ∈ R \ {0, 1},
∫

h(θ,α)d̂Pn =
θγα1−γ

(

γ − 1
)[

γθ +
(

1 − γ)α]

− 1
γ

n
∑

j=1

ωjn

[(

θ

α

)γ

exp
{−γ(θ − α)Yj:n

} − 1
]

.

(5.20)
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For γ = 0,

∫

h(θ,α)d̂Pn =
n
∑

j=1

ωjn

[

(θ − α)Yj:n − log
(

θ

α

)]

. (5.21)

Observe that this divergence leads to the AMLE, independently upon the value of θ.
For γ = 1,

∫

h(θ,α)d̂Pn = log
(

θ

α

)

− (θ − α)
θ

−
n
∑

i=1

ωjn

[

θ

α
exp
(−(θ − α)Yj:n

) − 1
]

. (5.22)

For more details about dual φ-divergence estimators in right censoring, we refer to [54]; we
leave this study open for future research. We mention that the bootstrapped estimators, in
this framework, are obtained by replacing the weights ωjn by πjn in the preceding formulas.

6. Simulations

In this section, series of experiments were conducted in order to examine the performance
of the proposed random weighted bootstrap procedure of the DφDEs, defined in (3.2). We
provide numerical illustrations regarding the mean-squared error (MSE) and the coverage
probabilities. The computing program codes were implemented in R.

The values of γ are chosen to be −1, 0, 0.5, 1, 2, which corresponds, as indicated above,
to the well-known standard divergences: χ2

m-divergence, KLm, the Hellinger distance, KL,
and the χ2-divergence, respectively. The samples of sizes considered in our simulations are 25,
50, 75, 100, 150, and 200, and the estimates, DφDEs α̂φ(θ), are obtained from 500 independent
runs. The value of escort parameter θ is taken to be the MLE, which, under the model, is
a consistent estimate of θ0, and the limit distribution of the DφDE α̂φ(θ0), in this case, has
variance which indeed coincides with the MLE; for more details on this subject, we refer to
[28, Theorem 2.2, (1) (b)], as it is mentioned in Section 3.1. The bootstrap weights are chosen
to be

(Wn1, . . . ,Wnn) ∼ Dirichlet(n; 1, . . . , 1). (6.1)

In Figure 3, we plot the densities of the different estimates, it shows that the proposed
estimators perform reasonably well.

Tables 1 and 2 provide the MSE of various estimates under the Normal modelN(θ0 =
0, 1). Here, we mention that the KL-based estimator (γ = 1) is more efficient than the other
competitors.

Tables 3 and 4 provide the MSE of various estimates under the Exponential model
exp(θ0 = 1). As expected, the MLE produces most efficient estimators. A close look at the
results of the simulations show that the DφDEs perform well under the model. For large
sample size n = 200, the estimator based on the Hellinger distance is equivalent to that of the
MLE. Indeed in terms of empirical MSE, the DφDE with γ = 0.5 produces the same MSE as
the MLE, while the performance of the other estimators is comparable.

Tables 5, 6, 7, and 8, provide the empirical coverage probabilities of the corresponding
0.95 weighted bootstrap confidence intervals based on B = 500, 1000 weighted bootstrap
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Figure 3: Densities of the estimates.

Table 1: MSE of the estimates for the normal distribution, B = 500.

γ n = 25 n = 50 n = 75 n = 100 n = 150 n = 200
−1 0.0687 0.0419 0.0288 0.0210 0.0135 0.0107
0 0.0647 0.0373 0.0255 0.0192 0.0127 0.0101
0.5 0.0668 0.0379 0.0257 0.0194 0.0128 0.0101
1 0.0419 0.0217 0.0143 0.0108 0.0070 0.0057
2 0.0931 0.0514 0.0331 0.0238 0.0148 0.0112

Table 2: MSE of the estimates for the normal distribution, B = 1000.

γ n = 25 n = 50 n = 75 n = 100 n = 150 n = 200
−1 0.0716 0.0432 0.0285 0.0224 0.0147 0.0099
0 0.0670 0.0385 0.0255 0.0202 0.0136 0.0093
0.5 0.0684 0.0391 0.0258 0.0203 0.0137 0.0093
1 0.0441 0.0230 0.0143 0.0116 0.0078 0.0049
2 0.0900 0.0522 0.0335 0.0246 0.0156 0.0103

Table 3: MSE of the estimates for the exponential distribution, B = 500.

γ n = 25 n = 50 n = 75 n = 100 n = 150 n = 200
−1 0.0729 0.0435 0.0313 0.0215 0.0146 0.0117
0 0.0708 0.0405 0.0280 0.0195 0.0131 0.0104
0.5 0.0727 0.0415 0.0282 0.0197 0.0131 0.0105
1 0.0786 0.0446 0.0296 0.0207 0.0136 0.0108
2 0.1109 0.0664 0.0424 0.0289 0.0178 0.0132
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Table 4: MSE of the estimates for the exponential distribution, B = 1000.

γ n = 25 n = 50 n = 75 n = 100 n = 150 n = 200
−1 0.0670 0.0444 0.0295 0.0243 0.0146 0.0111
0 0.0659 0.0417 0.0269 0.0216 0.0133 0.0102
0.5 0.0677 0.0427 0.0272 0.0216 0.0135 0.0102
1 0.0735 0.0458 0.0287 0.0225 0.0140 0.0106
2 0.1074 0.0697 0.0429 0.0306 0.0183 0.0133

Table 5: Empirical coverage probabilities for the normal distribution, B = 500.

γ n = 25 n = 50 n = 75 n = 100 n = 150 n = 200
−1 0.88 0.91 0.93 0.92 0.95 0.92
0 0.91 0.92 0.94 0.94 0.94 0.93
0.5 0.94 0.94 0.94 0.96 0.94 0.93
1 0.44 0.47 0.54 0.46 0.48 0.51
2 0.97 0.97 0.96 0.97 0.95 0.95

estimators. Notice that the empirical coverage probabilities as in any other inferential context,
the greater the sample size, the better. From the results reported in these tables, we find that
for large values of the sample size n, the empirical coverage probabilities are all close to
the nominal level. One can see that the DφDE with γ = 2 has the best empirical coverage
probability which is near the assigned nominal level.

6.1. Right Censoring Case

This subsection presents some simulations for right censoring case discussed in Section 5. A
sample is generated from exp(1) and an exponential censoring scheme is used; the censoring
distribution is taken to be exp(1/9) that the proportion of censoring is 10%. To study the
robustness properties of our estimators, 20% of the observations are contaminated by exp(5).
The DφDE’s α̂φ(θ) are calculated for samples of sizes 25, 50, 100, and 150, and the hole
procedure is repeated 500 times. We can see from Table 9 that the DφDEs perform well under
the model in terms of MSE and are an attractive alternative to the AMLE.

Table 10 shows the variation in coverage of nominal 95% asymptotic confidence
intervals according to the sample size. Clearly, under coverage of the confidence intervals,
the DφDEs have poor coverage probabilities due to the censoring effect. However, for small-
and moderate-sized samples, the DφDEs associated to γ = 2 outperform the AMLE.

Under contamination the performances of our estimators decrease considerably. Such
findings are evidences for the need for more adequate procedures for right-censored data
(Tables 11 and 12).

Remark 6.1. In order to extract methodological recommendations for the use of an appropriate
divergence, it will be interesting to conduct extensive Monte Carlo experiments for several
divergences or investigate theoretically the problem of the choice of the divergence which
leads to an “optimal” (in some sense) estimate in terms of efficiency and robustness, which
would go well beyond the scope of the present paper. Another challenging task is how to
choose the bootstrap weights for a given divergence in order to obtain, for example, an
efficient estimator.
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Table 6: Empirical coverage probabilities for the normal distribution, B = 1000.

γ n = 25 n = 50 n = 75 n = 100 n = 150 n = 200
−1 0.87 0.90 0.93 0.92 0.93 0.96
0 0.91 0.94 0.94 0.93 0.94 0.96
0.5 0.93 0.93 0.95 0.93 0.94 0.96
1 0.46 0.45 0.48 0.46 0.45 0.50
2 0.96 0.97 0.96 0.95 0.96 0.96

Table 7: Empirical coverage probabilities for the exponential distribution, B = 500.

γ n = 25 n = 50 n = 75 n = 100 n = 150 n = 200
−1 0.67 0.83 0.87 0.91 0.93 0.92
0 0.73 0.87 0.91 0.93 0.96 0.93
0.5 0.76 0.88 0.91 0.94 0.96 0.93
1 0.76 0.88 0.90 0.95 0.97 0.93
2 0.76 0.89 0.91 0.96 0.96 0.94

Appendix

This section is devoted to the proofs of our results. The previously defined notation continues
to be used in the following.

Proof of Theorem 3.1. Proceeding as [34] in their proof of the Argmax theorem, that is,
Corollary 3.2.3, it is straightforward to show the consistency of the bootstrapped estimates
α̂∗
φ(θ).

Remark A.1. Note that the proof techniques of Theorem 3.3 are largely inspired by that of
Cheng and Huang [6] and changes have been made in order to adapt them to our purpose.

Proof of Theorem 3.3. Keep in mind the following definitions:

Gn :=
√
n(Pn − Pθ0),

G
∗
n :=

√
n(P∗

n − Pn).
(A.1)

In view of the fact that Pθ0(∂/∂α)h(θ,θ0) = 0, then a little calculation shows that

G
∗
n

∂

∂α
h(θ,θ0) + Gn

∂

∂α
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√
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∂

∂α
h
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θ, α̂∗
φ(θ)
)

− ∂

∂α
h(θ,θ0)

]
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∗
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[

∂

∂α
h(θ,θ0) − ∂

∂α
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(

θ, α̂∗
φ(θ)
)

]
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[

∂

∂α
h(θ,θ0) − ∂

∂α
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(

θ, α̂∗
φ(θ)
)

]

+
√
nP

∗
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∂

∂α
h
(

θ, α̂∗
φ(θ)

)

.

(A.2)
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Table 8: Empirical coverage probabilities for the exponential distribution, B = 1000.

γ n = 25 n = 50 n = 75 n = 100 n = 150 n = 200
−1 0.70 0.79 0.90 0.91 0.92 0.91
0 0.76 0.84 0.91 0.92 0.93 0.92
0.5 0.78 0.85 0.93 0.94 0.94 0.93
1 0.78 0.87 0.94 0.94 0.95 0.94
2 0.78 0.88 0.95 0.95 0.96 0.95

Table 9: MSE of the estimates for the exponential distribution under right censoring.

γ n = 25 n = 50 n = 100 n = 150
−1 0.1088 0.0877 0.0706 0.0563
0 0.1060 0.0843 0.0679 0.0538
0.5 0.1080 0.0860 0.0689 0.0544
1 0.1150 0.0914 0.0724 0.0567
2 0.1535 0.1276 0.1019 0.0787

Table 10: Empirical coverage probabilities for the exponential distribution under right censoring.

γ n = 25 n = 50 n = 100 n = 150
−1 0.55 0.63 0.63 0.64
0 0.59 0.66 0.64 0.64
0.5 0.61 0.66 0.64 0.65
1 0.63 0.67 0.66 0.66
2 0.64 0.70 0.68 0.67

Table 11: MSE of the estimates for the exponential distribution under right censoring, 20% of contamina-
tion.

γ n = 25 n = 50 n = 100 n = 150
−1 0.1448 0.1510 0.1561 0.1591
0 0.1482 0.1436 0.1409 0.1405
0.5 0.1457 0.1402 0.1360 0.1342
1 0.1462 0.1389 0.1332 0.1300
2 0.1572 0.1442 0.1338 0.1266

Table 12: Empirical coverage probabilities for the exponential distribution under right censoring, 20% of
contamination.

γ n = 25 n = 50 n = 100 n = 150
−1 0.44 0.49 0.54 0.57
0 0.46 0.49 0.53 0.57
0.5 0.46 0.49 0.53 0.57
1 0.45 0.49 0.53 0.57
2 0.45 0.49 0.52 0.53
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Consequently, we have the following inequality:
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(A.3)

According to [23, Theorem 2.2] under condition (A.4), we have G1 = Oo
PW

(1) in Pθ0 -
probability. In view of the CLT, we have G2 = OPθ0

(1). By applying a Taylor series expansion,
we have
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where α is between α̂∗
φ(θ) and θ0. By condition (A.5) and [23, Theorem 2.2], we conclude that

the right term in (A.4) is of order Oo
PW

(‖α̂∗
φ(θ) − θ0‖) in Pθ0 -probability. By the fact that α̂∗

φ(θ)
is assumed to be consistent, we have G3 = ooPW (1) in Pθ0 -probability. An analogous argument
yields that
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is of order OPθ0
(‖α̂∗

φ(θ) − θ0‖), by the consistency of α̂∗
φ(θ), we have G4 = oo

PW
(1) in Pθ0 -

probability. Finally, G5 = 0 based on (3.3). In summary, (A.3) can be rewritten as follows:
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in Pθ0 -probability. On the other hand, by a Taylor series expansion, we can write
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Clearly it is straightforward to combine (A.7) with (A.6), to infer the following:
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in Pθ0 -probability, by considering again the consistency of α̂∗
φ(θ) and condition (A.3) and

making use of (A.8) to complete the proof of (3.23). We next prove (3.24). Introduce
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By some algebra, we obtain
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Obviously, H1 = Oo
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(n−1/2) in Pθ0 -probability and H2 = OPθ0
(n−1/2). We also know that the

order of H3 is Oo
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(n−1/2) in Pθ0 -probability. Using (2.12) and (3.3) we obtain that H4 = 0.
Therefore, we have established
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in Pθ0 -probability. To analyze the left-hand side of (A.11), we rewrite it as
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By a Taylor expansion, we obtain
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∗
n

∂

∂α
h(θ,θ0) + oPθ0

(1) + oo
PW

(1) +OPθ0

(

n−1/2
)

+Oo
PW

(

n−1/2
)

= G
∗
n

∂

∂α
h(θ,θ0) + oPθ0

(1) + oo
PW

(1)

(A.13)

in Pθ0 -probability. Keep in mind that, under condition (A.3), the matrix S is nonsingular.
Multiply both sides of (A.13) by S−1 to obtain (3.24). An application of [23, Lemma 4.6],
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under the bootstrap weight conditions, thus implies (3.25). Using [1, Theorem 3.2] and [37,
Lemma 2.11], it easily follows that

sup
x∈Rd

∣

∣Pθ0

(√
n
(

α̂φ(θ) − θ0
) ≤ x

) − P(N(0,Σ) ≤ x)
∣

∣ = oPθ0
(1). (A.14)

By combining (3.25) and (A.14), we readily obtain the desired conclusion (3.27).
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