
Hindawi Publishing Corporation
Journal of Probability and Statistics
Volume 2012, Article ID 913560, 14 pages
doi:10.1155/2012/913560

Research Article
Robust Semiparametric Optimal Testing Procedure
for Multiple Normal Means

Peng Liu1 and Chong Wang1, 2

1 Department of Statistics, Iowa State University, Ames, IA 50011, USA
2 Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University,
Ames, IA 50011, USA

Correspondence should be addressed to Peng Liu, pliu@iastate.edu

Received 27 March 2012; Accepted 10 May 2012

Academic Editor: Yongzhao Shao

Copyright q 2012 P. Liu and C. Wang. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

In high-dimensional gene expression experiments such as microarray and RNA-seq experiments,
the number of measured variables is huge while the number of replicates is small. As a
consequence, hypothesis testing is challenging because the power of tests can be very low after
controlling multiple testing error. Optimal testing procedures with high average power while
controlling false discovery rate are preferred. Many methods were constructed to achieve high
power through borrowing information across genes. Some of these methods can be shown
to achieve the optimal average power across genes, but only under a normal assumption of
alternative means. However, the assumption of a normal distribution is likely violated in practice.
In this paper, we propose a novel semiparametric optimal testing (SPOT) procedure for high-
dimensional data with small sample size. Our procedure is more robust because it does not
depend on any parametric assumption for the alternative means. We show that the proposed test
achieves the maximum average power asymptotically as the number of tests goes to infinity. Both
simulation study and the analysis of a real microarray data with spike-in probes show that the
proposed SPOT procedure performs better when compared to other popularly applied procedures.

1. Introduction

The problem of statistically testing mean difference for each of thousands of variables is
commonly encountered in genomic studies. For example, the popularly applied microarray
technology allows the gene expression study of tens of thousands of genes simultaneously.
The recent advance of next-generation sequencing technology allows the measurement
of gene expression in an even higher dimension. These high-throughput technologies
have revolutionized the way genomic studies progress and provided rich data to explore.
However, these experiments are expensive, and as a consequence, such experiments typically
involve only a few samples for each treatment group. This results in the “large p, small n”
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problem for hypothesis testing, and the power of the statistical tests can be very low after
controlling the multiple testing error, such as the false discovery rate (FDR).

The normalized signal intensities frommicroarray experiments are generally assumed
to follow normal distributions [1–4]. The recently emerging next-generation sequencing data
may also be modeled approximately using normal distributions, when the number of reads
are large or under certain transformation [5]. Thus multiple testing problem for normal
means has wide applications in genetic and genomic studies, and it is also a general statistical
question of interest.

Several testing procedures have been proposed in the context of microarray study,
including the SAM test [6], Efron’s t-test [7], the regularized t-test [8], the B-statistic [1]
and its multivariate counterpart, the MB-statistic [9], the test of Wright and Simon [10], the
moderated t-test [2], the FS test [3] and the test of [11] which is similar to the FS test, the
FSS test [4], and the LEMMA test [12]. Although numerous procedures have been proposed,
very few can be justified to achieve the optimal power. Among these procedures, Hwang
and Liu [4] proposed a framework and showed that an optimal testing procedure can be
derived within such a framework. They also proposed a test with maximum average power
(the MAP test) and an approximated version, the FSS test. Here the optimality was defined
in terms of maximizing the power averaged across all tests for which the null hypotheses are
false while controlling FDR. This method provides theoretical guide for developing optimal
multiple testing procedures. The popularly appliedmoderated t-statistic developed by Smyth
[2] can also be shown to achieve optimal power asymptotically under different distributional
assumptions from the FSS test. Both the moderated t-statistic and the FSS test assume that the
mean expression levels (or the mean of interesting contrasts) of all genes follow a normal
distribution although the parameters for this distribution vary between the two tests. Yet in
practice such distribution depends on the population of genes selected in a particular study
and often does not follow the prespecified parametric distribution. This raises concerns about
the robustness of the moderated t and the FSS tests.

The objective of this paper is to develop an optimal and robust multiple testing
procedure without any distributional assumptions on the mean. As in Hwang and Liu [4],
the optimality is defined in terms of maximizing the power averaged across all tests for
which the null hypotheses are false while controlling FDR. We develop a semiparametric
optimal testing procedure which we abbreviate as the SPOT procedure. The distribution of
the mean expression across genes is not assumed to follow a parametric model which makes
our method robust to violations to normal assumptions. We find that the SPOT procedure
works very well in simulation studies and in an analysis of real microarray data with spike-
in probes.

The remaining of this paper is organized as follows. We first introduce necessary
notations in Section 2. Then, in Section 3, we describe the general concepts of optimal testing
procedures. We propose our semiparametric optimal testing (SPOT) procedure in Section 4
and describe its implementation in Section 5. Section 6 presents simulation studies. Section 7
shows the analysis result of a real microarray dataset. Section 8 provides a summary of this
paper.

2. Notations

An appropriate linear model is typically fitted for each gene based on the design of a
microarray experiment. Section 2 of Smyth [2] provides a nice description of this topic.
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Given the linear model, suppose that we have an interesting contrast to test for each gene.
This contrast may be the difference between the means of two treatment groups or linear
combination of means from several treatment groups. For the simplicity of description, we
call the genes whose contrast means are not zero as the differentially expressed (DE) genes
and the genes whose contrast means equal to zero as equivalently expressed (EE) genes. After
fitting the linear model for each gene, we obtain an estimate for the contrast for each gene,Xg .
In addition, we get the estimate of the sample residual variance, s2g , for each gene. For each
g = 1, . . . , G,Xg and s2g are related to true parameters, μg and σ2

g , byXg | μg, σ
2
g ∼ N(μg, νgσ

2
g)

and s2g | σ2
g ∼ (σ2

g/dg)χ2
dg
, where μg is the contrast mean for gene g, σ2

g is the true residual
variance for gene g, and the coefficients νg and dg are determined by the design of the
experiment. Two examples are given as follows.

Example 2.1. Two-channel microarray experiment to compare two treatments. Assume that
each sample from treatment A is paired randomly with a sample from treatment B and
each pair of samples is cohybridized onto one slide. After normalization and appropriate
transformation, the difference of normalized expression measurements between the two
samples on each slide is analyzed for each gene. Hence, this is a paired sample case and the
number of data points for each gene is n, the number of slides.We are interested in identifying
DE genes. In this case, Xg is the mean difference of the paired samples for gene g. s2g is the
sample variance for gene g. So νg = 1/n and dg = n − 1.

Example 2.2. Affymetrix microarray experiment with two independent samples. Assume
sample sizes are n1 and n2 for treatment A and treatment B, respectively. The statistic Xg is
the difference in sample means of normalized expression measurements between two groups
for gene g. s2g is the pooled sample variance. Then νg = 1/n1 + 1/n2 and dg = n1 + n2 − 2.

Given the data Xg and s2g , an ordinary t-test with statistic tg = Xg/
√
νgsg may be

used to test the null hypothesis H0
g : μg = 0. However, the power of such tests is low after

controlling multiple testing error. So statistical methods with higher power are in demand
for such high-dimensional testing problem as encountered in gene expression studies.

3. Optimal Testing Procedures

In the analysis of high-dimensional gene expression data such as microarray data, we
are more interested in the average behavior of the tests across all genes rather than the
performance of an individual test. Because the dimension of tests is huge, multiple testing
errors should be controlled to avoid too many type I errors. Controlling FDR is an important
method for controlling multiple testing errors and is widely used for genomic studies.
Although many testing procedures have been developed as reviewed in Section 1, the paper
by Hwang and Liu [4] provides some theoretical guide on how to derive optimal testing
procedures within an empirical Bayes framework. The optimal tests are defined to be the ones
that maximize the power averaged across all genes for which the null hypotheses are false
while controlling FDR. Such optimal tests have been called MAP tests, where MAP stands for
maximum average power [4].

In a Bayesian framework, we assume model parameters like μg and σ2
g follow some

distributions. The residual variances of genes, σ2
g , have been modeled by prior distribution

like inverse gamma [2, 10] or log-normal [4] distribution independent of whether the null
hypothesis is true or false. For EE genes, the mean of contrast Xg , μg , is equal to 0. For DE
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genes, the mean μg is not 0 almost surely. Denote the alternative distribution of μg by π1(·).
Based on the Neyman-Pearson fundamental lemma, for a randomly selected gene g, the most
powerful test statistic for testing H0

g : μg = 0 versus H1
g : μg ∼ π1(μg) is given by

TNP
g =

∫∫
f
(
Xg, s

2
g | μg, σ

2
g

)
π1

(
μg

)
π
(
σ2
g

)
dμgdσ

2
g

∫
f
(
Xg, s

2
g | μg = 0, σ2

g

)
π
(
σ2
g

)
dσ2

g

, (3.1)

where π(·) denote the prior distributions of σ2
g . And the test rejects the null hypothesis H0

g

when TNP
g is large. The simultaneous testing procedure where all genes are tested using

the most powerful statistics TNP
g , g = 1, 2, . . . , G, achieves the highest average power while

controlling FDR, as proved in Hwang and Liu [4].
One popular multiple-testing method for microarray data is the moderated t-test

proposed by Smyth [2]. Smyth proposed to model the residual variance σ2
g with the prior

distribution:

1
σ2
g

∼ 1
d0s

2
0

χ2
d0
, (3.2)

where χ2
d0

denotes a chi-square distribution with degrees of freedom d0 and s20 is another
hyperparameter. This prior distribution is equivalent to an inverse-gamma distribution and
has been shown to fit real data well. Compared to a standard t-test statistic tg = xg/

√
νgsg ,

Smyth’s moderated t-statistic takes the form of

t̃g =
xg√
νgs̃g

, (3.3)

where

s̃2g =
s2gdg + s20d0

dg + d0
(3.4)

is a shrinkage estimator of σ2
g by shrinking s2g toward s20.

In practice, the unknown hyperparameters d0 and s20 for the distribution of the
variance σ2

g can be estimated consistently by the method of moments, that is, equating the
empirical and expected first twomoments of log s2g [2]. Smyth [2] showed that the moderated
t-test is equivalent to the B statistic proposed in Lönnstedt and Speed [1] which was derived
as the posterior odds under the assumption that the distribution of μg under the alternative
hypothesis followsN(0, ν0σ2

g), where ν0 is a constant. In fact, we can prove the claim that the
moderated t-test achieves the optimal average power asymptotically under their assumptions
for μg and σ2

g . The proof is in the appendix.
However, note that the assumption that μg of DE genes follows a normal distribution

with mean zero is restrictive. It is likely that, for example, there are more upregulated genes
than downregulated genes for some studies which suggests that the mean of μg should be
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positive. Hwang and Liu [4] have proposed a more general normal prior distribution of μg

for DE genes:

π1
(
μg

) ∼ N
(
θ, τ2g

)
, (3.5)

where the mean of this distribution is not necessarily zero but to be estimated based on data.
In addition, the variance for this distribution does not depend on the residual variance. Under
this model, they have derived an optimal test and an approximated version of the test statistic
(FSS test) that is computationally faster. The FSS statistic shrinks both the estimate of mean μg

and the estimate of variance σ2
g .

Both the moderated t-test and the FSS test have been shown to achieve optimal
power asymptotically under the assumption of normal distribution for the alternative means.
Simulation studies also confirm that the power of the tests is superior under the model
assumptions. However, a single normal distribution assumption on μg for DE genes may
not be appropriate for all cases and the distribution of π1(μg) may consist of a mixture
of different subgroup distributions, for example, a mixture of two normal distributions
with one having a negative mean and the other having a positive mean. If the parametric
distributional assumptions of π1(μg) are violated, the power of an optimal test built under
those assumptions will suffer.

4. Semiparametric Optimal Testing (SPOT) Procedure

To obtain a more robust procedure, we propose to model the distribution of the mean μg

nonparametrically while still deriving the optimal procedure. For the variance σ2
g , the inverse

gamma distributional assumption is reasonable and works well in practice, so we still keep
this assumption. Hence, we will derive a semiparametric optimal testing procedure that we
call the SPOT procedure.

Note that the numerator and denominator of the most powerful test statistic (3.1)
are the joint marginal distributions of (Xg, s

2
g), under the alternative and null hypothesis,

respectively. By denoting the marginal distributions by

m1

(
Xg, s

2
g

)
=
∫∫

f
(
Xg, s

2
g | μg, σ

2
g

)
π1

(
μg

)
π
(
σ2
g

)
dμgdσ

2
g,

m0

(
Xg, s

2
g

)
=
∫
f
(
Xg, s

2
g | μg = 0, σ2

g

)
π
(
σ2
g

)
dσ2

g,

(4.1)

statistic (3.1) becomes

TNP
g =

m1

(
Xg, s

2
g

)

m0
(
Xg, s

2
g

) . (4.2)

The null marginal distribution m0(Xg, s
2
g) only involves integration with respect to variance

σ2
g . With consistent estimators of hyperparameters as proposed in Smyth [2], we can estimate

m0(Xg, s
2
g) consistently. For the alternative marginal distributionm1(Xg, s

2
g), it is hard to find
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a consistent estimator without any distributional assumption on μg . If we were to know
which genes are DE, then we could estimate m1(Xg, s

2
g) nonparametrically with observed

values of (Xg, s
2
g) from the DE gene population. Many nonparametric density estimators are

consistent, for example, the histogram estimators and the kernel density estimators with
proper choices of bandwidths [13]. However, the knowledge of differential expression is
the research question of the study and of course is not available for all genes. Considering
all genes without separating those that are differentially expressed from those that are not,
we have a mixture distribution of differentially expressed and nondifferentially expressed
genes. The mixture density of the marginal distributions, denoted by mm(Xg, s

2
g), can be

estimated consistently by nonparametric density estimators with observed (Xg, s
2
g) for all

genes g = 1, . . . , G. Can this consistent estimator of mm(Xg, s
2
g) help us construct a most

powerful test statistic, together with a consistent estimator of m0(Xg, s
2
g)?

Suppose that p0 and p1 are proportions of EE and DE genes, respectively, with 0 ≤
p0, p1 ≤ 1 and p0 + p1 = 1, then the mixture marginal density is

mm

(
Xg, s

2
g

)
= p0m0

(
Xg, s

2
g

)
+ p1m1

(
Xg, s

2
g

)
. (4.3)

The ratio of mixture marginal density mm(Xg, s
2
g) and the null marginal density

m0(Xg, s
2
g) is a monotonic function of the statistic TNP

g expressed in formula (4.2) because

mm

(
Xg, s

2
g

)

m0
(
Xg, s

2
g

) =
p0m0

(
Xg, s

2
g

)
+ p1m1

(
Xg, s

2
g

)

m0
(
Xg, s

2
g

) ,

= p0 + p1
m1

(
Xg, s

2
g

)

m0
(
Xg, s

2
g

) .

(4.4)

Thus the test that rejects the null hypothesis when mm(Xg, s
2
g)/m0(Xg, s

2
g) is large is also a

most powerful test. Note that to calculate this statistic, we only need to estimate mm(Xg, s
2
g)

and m0(Xg, s
2
g) but do not have to estimate the proportions p0 and p1.

Let m̂m(Xg, s
2
g) denote any consistent density estimator of mm(Xg, s

2
g), and let

m̂0(Xg, s
2
g) denote any consistent estimator ofm0(Xg, s

2
g), such that

m̂m

(
Xg, s

2
g

)
P−→ mm

(
Xg, s

2
g

)
as G ↗ ∞,

m̂0

(
Xg, s

2
g

)
P−→ m0

(
Xg, s

2
g

)
as G ↗ ∞,

(4.5)

where P→ denotes convergence in probability. Then the statistic m̂m(Xg, s
2
g)/m̂0(Xg, s

2
g) has

the optimal testing power asymptotically. Notice the convergence with respect to G, which is
usually huge in the microarray and RNA-seq studies.

We have already discussed the availability of a parametric consistent estimator of
m0(Xg, s

2
g) through estimating the hyperparameters d0 and s20 of σ2

g in Section 3. For
mm(Xg, s

2
g), any theoretically consistent density estimator m̂m(Xg, s

2
g) of joint data (Xg, s

2
g)
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can be used to construct the test statistic (4.4) with asymptotically optimal average power.
For example, nonparametric estimators such as histograms, kernel density estimates, and
local polynomial estimators can all be utilized. As our test statistic m̂m(Xg, s

2
g)/m̂0(Xg, s

2
g)

involves both parametric and nonparametric parts, we name it the semiparametric optimal
test (SPOT).

5. Implementation of SPOT

In this section, we discuss details in implementation of the proposed SPOT procedure.

5.1. Estimation of m0(Xg, s
2
g)

The null marginal density

m0

(
Xg, s

2
g

)
=
∫
f
(
Xg, s

2
g | μg = 0, σ2

g

)
π
(
σ2
g

)
dσ2

g

=
∫

e−x
2
g/(2vgσ

2
g)

(
2πvgσ

2
g

)1/2

(
dg

2σ2
g

)dg/2
s2(dg/2−1)e−dgs

2
g/(2σ

2
g)

Γ
(
dg/2

)

(
d0s

2
0

2

)d0/2σ
−2(d0/2+1)
g e−d0s

2
0/2σ

2
g

Γ(d0/2)
dσ2

g

= C2 · s2(d/2−1)g

(
x2
g/vg + d0s

2
0 + dgs

2
g

2

)−(1+d0+dg)/2

,

(5.1)

where C2 is a constant. As in Smyth [2] and Hwang and Liu [4], we assume that the
distribution of σ2

g does not depend on whether a gene is DE or EE. Then, all genes are used
to estimate the parameters d0 and s20. We apply the method of moments proposed in Smyth
[2] to get estimates of d0 and s20. Replacing unknown parameters d0 and s20 in m0(Xg, s

2
g) by

their consistent method of moments estimates leads to a consistent estimator m̂0(Xg, s
2
g) of

m0(Xg, s
2
g).

5.2. A Hybrid Method for Estimation of mm(Xg, s
2
g)

Although any consistent estimator m̂m(Xg, s
2
g) can be used to construct a SPOT statistic of the

form m̂m(Xg, s
2
g)/m̂0(Xg, s

2
g), in practice, a density estimator that converges fast would be

always preferred. It is known that the accuracy of the density estimators goes down quickly
as the dimension increases [13]. We have tried a few two-dimensional density estimators for
m̂m(Xg, s

2
g), including the kernel estimators. Due to the curse of dimensionality, the direct

two-dimensional density estimators do not perform as satisfactory as a hybrid estimator that
we develop and would suggest to use. This hybrid estimator has a component that is similar
to kernel estimators, whereas it also utilizes the prior information on variances σ2

g to help
improving the accuracy.
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In constructing this estimator, we first estimate the marginal density of Xg by the
typical kernel density estimate:

f̂
(
xg

)
=

1
G

G∑

i=1

1
h
K

(
xg − xi

h

)
, (5.2)

where h is a positive value known as bandwidth. We estimate the conditional density of
f(s2g | xg) by using

f
(
s2g | xg

)
=
∫
f
(
s2g | σ2

g, xg

)
f
(
σ2
g | xg

)
dσ2

g =
∫
f
(
s2g | σ2

g

)
f
(
σ2
g | xg

)
dσ2

g, (5.3)

where the second equality is a result of the independence between s2g and xg given the
parameter σ2

g . The distribution of s2g | σ2
g is (σ2

g/dg)χ2
dg

for normal-distributed observations.

Now we need to estimate f(σ2
g | xg). Denote the set of genes that lie within bandwidth

distance to gene g as {Ag : i ∈ Ag if and only if |xi − xg | < h}. We estimate f(σ2
g | xg) by

the following approximation that is based on the neighborhood of xg , Ag :

1
#
{
Ag

}
∑

i∈Ag

f
(
s2i | σ2)π

(
σ2)

∫
f
(
s2i | σ2

)
π(σ2)dσ2

. (5.4)

The #{Ag} in formula denotes the number of genes in set Ag . Substituting exact
parametric form of f(s2g | σ2) and π(σ2) into above formulas leads to the explicit form

f̂
(
s2g | xg

)
= C3 · 1

#
{
Ag

}
∑

i∈Ag

s
2(d/2−1)
g

(
dgs

2
i + d0s

2
0 + dgs

2
g

2

)−(d0+dg)/2

, (5.5)

where C3 is a constant. The product between the kernel estimate f̂(xg) and the conditional
estimate f̂(s2g | xg) provides us a joint density estimator of the mixture

m̂m

(
Xg, s

2
g

)
= f̂

(
xg

) · f̂
(
s2g | xg

)
. (5.6)

With this approximation, we cannot theoretically show that the resulting estimator,
m̂m(Xg, s

2
g), is consistent but it works better in practice than the consistent kernel density

estimator of the joint density mm(Xg, s
2
g).

6. Simulation Study

In order to evaluate the performance of our proposed SPOT procedure, we performed
three simulation studies. The gene expression data were simulated from Normal (μgi,σ2

g) for
observations of gene g in treatment group i. The way to sample μgi and σ2

g differs across
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simulation studies. We assume that there are two treatment groups and 3 replicates per
treatment group. For each simulation setting, one hundred sets of gene expression data were
independently simulated, and each dataset included 10,000 genes. The performances of the
SPOT, moderated t, FSS, and ordinary t-test statistics were evaluated for by comparing their
average behavior averaged across the 100 datasets.

6.1. Simulation Study I

In the first simulation study, we have two settings that differ in the number of DE genes. For
the first setting, G1 = 2, 500 are DE genes whereas the other G0 = 7, 500 are EE. In the second
setting, only G1 = 1, 800 are DE while the other G0 = 8, 200 are EE. Gene expression means μgi

and variances σ2
g were simulated as follows:

μg1 = 0 ∀g;

μg2 ∼ Normal
(
0.5, 0.32

)
for g = 1 to 0.3G1;

μg2 ∼ Normal
(
1, 0.32

)
for g = (0.3G1 + 1) to 0.9G1;

μg2 ∼ t1 (0.5) for g = (0.9G1 + 1) to G1;

μg2 = 0 for g = (G1 + 1) to 10000;

σ2
g ∼ Gamma (2, 4) ∀g.

(6.1)

For each simulated data, SPOT, moderated t, FSS, and ordinary t-test statistics were
calculated and evaluated using the number of selected true positives at various FDR levels.
The plots of number of true positives versus FDR for SPOT, moderated t, FSS, and ordinary t-
test statistics are shown in Figure 1. Simulation settings 1 and 2 generated similar results. The
ordinary t-test is the poorest method under comparison. The moderated t-test is considerably
better than the ordinary t-test although it is worse than FSS test. Our proposed SPOT test is
superior to all other three methods, with the largest number of true positive findings than the
other three statistics at the same FDR levels.

6.2. Simulation Study II

To check how the variance distribution affects the relative ranking of the SPOT procedure, we
did another simulation study the same as the setting 1 of simulation study I except that the
variances were simulated from a log-normal distribution, which is the assumption under
which the FSS test was derived. As Figure 2 shows, the results are similar to those from
simulation I. The SPOT procedure still performsmuch better than all the other three methods.

6.3. Simulation Study III

Typically, the parametric test achieves higher power than the nonparametric test if the
parametric assumption is appropriate. To check the robustness of the SPOT procedure, we
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(a) Simulation I, setting 1
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(b) Simulation I, setting 2

Figure 1: Simulation study I: plots of number of true positives (# TP) versus false discovery rate (FDR)
from analyses using SPOT, moderated t, and FSS methods.
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Figure 2: Simulation study II: plots of number of true positives (# TP) versus false discovery rate (FDR)
from analyses using SPOT, moderated t, and FSS methods.

simulated data under the parametric assumption for both μgi and σ2
g under which the FSS test

was derived. Specifically, for the 2,500 differentially expressed genes, μgi were drawn from a
normal distribution with mean 1.2 and standard deviation 0.3, σ2

g were sampled from a log-
normal distribution with parameters −0.96 and 0.8. Figure 3 shows that the SPOT procedure
and the FSS test are comparable to each other when FDR is small (less than 0.05) and they
are both much better than the moderated t-test and the ordinary t-test. When FDR is between
0.05 and 0.15, the FSS test is the best while the SPOT procedure is the next best performing
procedure, which is still much better than the moderated t-test and the ordinary t-test.

7. Evaluation Using the Golden Spike Microarray Data

In this section, we compare the performances of different methods using a real microar-
ray dataset from experiments conducted using Affymetrix GeneChip in the Golden
Spike Project. The Golden Spike Project generated microarray datasets comparing two
replicated groups in which the relative concentrations of a large number of genes are
known. The two groups are the spike-in group and the control group, each with three
chips. Data and information related to this project are available through the website
http://www2.ccr.buffalo.edu/halfon/spike/. More specifically, the Golden Spike dataset
included 1309 individual cRNAs “spiked in” at known relative concentrations between the
two groups. The fold-changes between the spike-in and control group were assigned at
different levels for different cRNAs, and the levels ranged from 1.2 to 4. Hence, these cRNAs
were truly “differentially expressed” between groups and we consider them as DE genes. In
addition, a background sample of 2551 RNA species was present at identical concentrations in
both samples. So these 2551 RNA species were not differentially expressed between the two
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Figure 3: Simulation study III: plots of number of true positives (# TP) versus false discovery rate (FDR)
from analyses using SPOT, moderated t, and FSS methods.

Table 1: Golden Spike data: number of true positives selected by three testing procedures at critical FDR
levels.

Method FDR
0.01 0.02 0.05 0.1 0.15 0.2

SPOT 754 847 947 986 1015 1051
Moderated t 466 588 821 911 969 1018
FSS 442 563 824 908 975 1016

groups. With the knowledge of the true differential expression status, this real microarray
dataset provides an ideal case to evaluate the performances of different methods without
imposing any distributional assumption for variances and means as usually is done in
simulation studies.

With the summary dataset downloaded from the Golden Spike Project website, we
calculated the SPOT, the moderated t, the ordinary t, and the FSS statistics and evaluated
their performances using the true statuses of RNA based on the design. Figure 4 shows
the plots of number of true positives versus FDR for the ordinary t, moderated t, FSS, and
SPOT procedures over a range of FDR ∈ [0, 0.15] which is of most practical interest. It can
be observed that the performance of the SPOT procedure improves over the performances of
the other three methods throughout the whole range of FDR in these plots. In addition, the
improvement is substantial at lower FDR levels. For example, the SPOT procedure detects
754 true positives at the FDR level of 1% while the moderated t-test only detects 466 and the
FSS test only detects 442 true positives (Table 1).
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Figure 4: Golden spike data: plots of number of true positive (TP) genes versus false discovery rate (FDR)
from analysis using SPOT, moderated t, and FSS tests.

8. Summary

In this paper, we have derived a semiparametric optimal testing (SPOT) procedure for
high-dimensional gene expression data analysis. Although the method is illustrated for
analyzing microarray data, it can be applied to any high-dimensional testing problem with
normal model. Our test statistic is justified to be asymptotically most powerful, without
any assumption on the mean parameter of differential expression. The asymptotic property
is derived when the number of genes is large, which is reasonable for high-dimensional
gene expression studies. We also provided an approximate version to implement the SPOT
procedure in practice and evaluated the performance of our proposed test statistic using both
simulation studies and real microarray data analysis. The proposed SPOT method is shown
to outperform the popularly applied moderated t and the FSS statistics, which are optimal
only under certain normality conditions of the mean. There is still potential in improving the
performance of SPOT procedure if better density estimates can be found for the marginal
distributions mm(Xg, s

2
g) andm0(Xg, s

2
g).

Appendix

Proof of the Claim That the Moderated t-Test Achieves the Optimal
Average Power Asymptotically under the Assumptions That
μg ∼ N(0, ν0σ2

g) and 1/σ2
g ∼ 1/d0s

2
0χ

2
d0

Under Smyth’s [2] model assumptions, the most power test statistic formula (3.1) derived
under the Neyman-Pearson lemma becomes

TNP
g =

∫∫
f
(
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2
g | μg, σ

2
g

)
π1

(
μg

)
π1

(
σ2
g

)
dμgdσ

2
g

∫
f
(
Xg, s

2
g | μg = 0, σ2

g

)
π0

(
σ2
g

)
dσ2

g
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2πvgσ

2
g

)1/2
)(

dg/2σ2
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)dg/2(
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2
g/2σ

2
g/Γ

(
dg/2

))A
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e−x
2
g/2vgσ

2
g/

(
2πvgσ

2
g

)1/2)(
dg/2σ2

g

)dg/2(s2(dg/2−1)/Γ
(
dg/2

))
e−dgs

2
g/2σ2

g · B

= C1 ·
(

x2
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(
v0 + vg

)
+ d0s

2
0 + dgs

2
g

x2
g/vg + d0s

2
0 + dgs

2
g

)−(1+d0+dg)/2

,

(A.1)

whereA denotes (e−μ
2
g/(2v0σ

2
g)/(2πv0σ

2
g)

1/2)(d0s
2
0/2)

d0/2(σ−d0+2
g /Γ(d0/2))e−d0s

2
0/(2σ

2
g)dμgdσ

2
g ,

and Bdenotes (d0s
2
0/2)

d0/2(σ−2(d0/2−1)
g /Γ(d0/2))e−d0s

2
0/(2σ

2
g)dσ2

g , which is a monotonic
function of Smyth’s [2] moderated t-statistic, with C1 being some constant. Thus the claim
follows with existence of consistent estimates of d0 and s20, which has been shown in Smyth
[2].
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