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It is known that the robustness properties of estimators depend on the choice of a metric in the space of distributions.We introduce
a version of Hampel’s qualitative robustness that takes into account the√𝑛-asymptotic normality of estimators in 𝑅𝑘, and examine
such robustness of two standard location estimators in R𝑘. For this purpose, we use certain combination of the Kantorovich and
Zolotarev metrics rather than the usual Prokhorov type metric. This choice of the metric is explained by an intention to expose a
(theoretical) situationwhere the robustness properties of samplemean and 𝐿1-samplemedian are in reverse to the usual ones. Using
the mentioned probability metrics we show the qualitative robustness of the sample multivariate mean and prove the inequality
which provides a quantitativemeasure of robustness. On the other hand, we show that 𝐿1-samplemedian could not be “qualitatively
robust” with respect to the same distance between the distributions.

1. Introduction

The following Hampel’s definition (originally given for the
one-dimensional case) of qualitative robustness [1, 2] deals
with 𝜋-balls in the space of distributions rather than with
standard “contamination neighborhoods” (see for the latter,
e.g., [3, 4]).

The sequence 𝑄𝑛, 𝑛 ≥ 1, of estimators is qualitatively
robust at the distribution L if for every 𝜖 > 0 there exists
𝛿 > 0 such that 𝜋(L, L̃) < 𝛿 entails

sup
𝑛≥1

𝜋 (𝑄𝑛 (𝑋1, . . . , 𝑋𝑛) , 𝑄𝑛 (𝑋1, . . . , 𝑋𝑛)) < 𝜖. (1)

Here, and throughout, 𝜋 denotes the Prokhorov metric,
and 𝑋1, 𝑋2, . . .; 𝑋1, 𝑋2, . . ., are i.i.d. random vectors dis-
tributed, respectively, asL and L̃.

For a metric 𝜇 on the space of distributions and random
vectors 𝑋,𝑌 we will write 𝜇(𝑋, 𝑌) (as in (1)) having in mind
the 𝜇-distance between the distributions of 𝑋 and 𝑌.

By all means, the use of the Prokhorov metric is only an
option. For instance, in [5] other probability metrics in the

definition of qualitative robustness were used. (See also [6–
9] for using different probability metrics or pseudo-metrics
related to the estimation of robustness).

As noted in [1, 2] inR1, samplemeans are not qualitatively
robust at any L, while sample medians are qualitatively
robust at any L having a unique median. (See also [10] for
lack of qualitative robustness of sample means in certain
Banach spaces).

Moreover, in [11] it was shown that for symmetric dis-
tributions the median is, in certain sense, the “most robust”
estimator of a center location when using the pseudo-metric
corresponding to neighborhoods of contamination type. (See
more with this respect in [8]).

At the same time, it is known from the literature that
under different circumstances, in particular, using distinct
probability metrics (as, e.g., in (1) or in other definitions) the
robustness properties of estimators can change considerably
(see, for instance, the discussion in [12]).

The first aim of the present paper is to consider amodified
version ofHampel’s definition of qualitative robustness taking
into account the√𝑛-asymptotic normality of the sequence of
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estimators. The formal definition is given in the next section
but, basically, we replace (1) with the following condition:

sup
𝑛≥1

√𝑛𝑙 (𝑄𝑛 (𝑋1, . . . , 𝑋𝑛) , 𝑄𝑛 (𝑋1, . . . , 𝑋𝑛) + 𝛾) ≤ 𝜀, (2)

where 𝛾 is some constant, and 𝑙 is a probability metric
(different from the Prokhorov metric in our case).

The second goal of the paper is to present an example of
two probability metrics 𝑙 and 𝜇 (on the space of distributions
in R𝑘) for which the following holds:

(i) when𝑄𝑛 = 𝑇𝑛, 𝑛 ≥ 1, are multivariate sample means,
the left-hand side of inequality (2) (with some 𝛾) is
bounded by const ⋅𝜇(L, L̃);

(ii) when 𝑄𝑛 = 𝑀𝑛, 𝑛 ≥ 1, are sample medians, we give
an example of symmetric smooth distributionsL and
L̃𝛼, 𝛼 > 0, in R, such that 𝜇(L, L̃𝛼) → 0 as 𝛼 → 0,
while there is a positive constant 𝑟 such that the left-
hand side of inequality (2) (with 𝛾 = 0) is greater than
𝑟 for all sufficiently small 𝛼 > 0. Therefore, sample
medians are not qualitative robust (in our sense) with
respect to these metrics.

Themetrics 𝑙 and𝜇 are the following (the complete definitions
are given in Section 2). 𝑙 is the Kantorovich metric (see, e.g.,
[13]) and 𝜇 is certain combination of 𝑙 and of the Zolotarev
metric of order 2 (see [14]).

We should stress that this choice is not determined by
any advantages for statistical applications. Moreover, the
closeness of distributions in the Kantorovich metric implies
the closeness in the Prokhorov metric, but also reduces the
probability of “large-valued outliers” (but not the rounding
errors). Therefore, our selection of metric is not quite con-
sistent with the standard approach to qualitative robustness
where the Prokhorovmetric (or its invariant versions) is used.

Nevertheless, our choice allows to unveil the possible
unusual robustness properties of sample means and medians
and to assess the certain quantitative robustness of the
multivariate sample mean (with respect to the considered
metrics!). The obtained “robustness inequality” does not
work in the “gross error model” but (jointly with inequalities
(23)) it could be useful for quantitative assessment of the
robustness of sample means, under perturbation of data of
“rounding” type.

2. Basic Definitions

Let (𝐻, | ⋅ |) be a separable Hilbert space with the norm | ⋅
| generated by an inner product ⟨⋅, ⋅⟩, and let B(𝐻) be the
Borel𝜎-algebra of subsets of𝐻. Let also𝑋;𝑋1, . . . , 𝑋𝑛, . . . and
𝑋;𝑋1, . . . , 𝑋𝑛, . . . be two sequences of i.i.d. random vectors in
𝐻 with their respective distributions denoted byL and L̃.

Under the assumption

𝐸 |𝑋| < ∞, 𝐸
󵄨󵄨󵄨󵄨󵄨𝑋

󵄨󵄨󵄨󵄨󵄨 < ∞, (3)

the means 𝐸𝑋 and 𝐸𝑋 are defined as the corresponding
Bochner integrals.

Thedefinition of themedian of𝑋 is less standard (consult,
e.g., [15] for different definitions in 𝐻 = R𝑘). We will use
the definition of median given in general setting in [16]
(sometimes called L1-median):

𝑀 := arg min
𝑥∈𝐻

𝐸 (|𝑋 − 𝑥| − |𝑥|) , (4)

𝑀̃ := arg min
𝑥∈𝐻

𝐸 (
󵄨󵄨󵄨󵄨󵄨𝑋 − 𝑥

󵄨󵄨󵄨󵄨󵄨 − |𝑥|) . (5)

In [16] it was shown that𝑀 exists, and it is unique unless
L is concentrated on a one-dimensional subspace of 𝐻. In
the last case the set of minimizers in (4) is {𝑡𝑥0 : 𝑡 ∈ [𝑎, 𝑏]}
for some 𝑥0 ∈ 𝐻, and one can set𝑀 := ((𝑎 + 𝑏)/2)𝑥0.

In what follows we denote (𝑛 = 1, 2, . . .):

𝑆𝑛 := 𝑋1 + ⋅ ⋅ ⋅ + 𝑋𝑛, 𝑆𝑛 := 𝑋1 + ⋅ ⋅ ⋅ + 𝑋𝑛,

𝑇𝑛 =
𝑆𝑛
𝑛
, 𝑇̃𝑛 :=

𝑆𝑛
𝑛

(sample means) .
(6)

On the other hand, let (𝑛 = 1, 2, . . .),

𝑀𝑛 = 𝑀𝑛 (𝑋1, . . . , 𝑋𝑛) , 𝑀̃𝑛 = 𝑀̃𝑛 (𝑋1, . . . , 𝑋𝑛) (7)

be sample medians defined by (4) and (5) replacing L and
L̃ by the corresponding empirical distributionsL𝑛 and L̃𝑛

(obtained from𝑋1, . . . , 𝑋𝑛 and𝑋1, . . . , 𝑋𝑛, resp.). Robustness
(in terms of 𝜖-contaminationneighborhoods) and asymptotic
normality of 𝑀𝑛, 𝑛 ≥ 1, were proved, for instance, in [17]
(see also [18]).The qualitative robustness properties of sample
means {𝑇𝑛} and sample medians {𝑀𝑛} when the Prokhorov
metric is used were discussed in Introduction.

Let us first see what happens with qualitative robustness
of {𝑇𝑛} and {𝑀𝑛} if in the above definition we replace 𝜋 with
the Kantorovich metric:

𝑙 (𝑋,𝑋) ≡ 𝑙 (L, L̃) := sup
𝜙∈Lip

󵄨󵄨󵄨󵄨󵄨𝐸𝜙 (𝑋) − 𝐸𝜙 (𝑋)
󵄨󵄨󵄨󵄨󵄨 , (8)

where

Lip := {𝜙 : 𝐻 󳨃󳨀→ R : 𝜙 is bounded and
󵄨󵄨󵄨󵄨𝜙 (𝑥) − 𝜙 (𝑦)

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 ; 𝑥, 𝑦 ∈ 𝐻} .
(9)

Under condition (3) 𝑙(𝑋,𝑋) < ∞, and it is well known
(see, e.g., [13]) that 𝑙(𝑌𝑛, 𝑌) → 0 if and only if 𝜋(𝑌𝑛, 𝑌) → 0
and 𝐸|𝑌𝑛| → 𝐸|𝑌|.

For𝐻 = R,

𝑙 (𝑋,𝑋) = ∫
∞

−∞

󵄨󵄨󵄨󵄨𝐹𝑋 (𝑥) − 𝐹
𝑋̃
(𝑥)

󵄨󵄨󵄨󵄨 𝑑𝑥. (10)

Now, applying the regularity properties of 𝑙 (see, e.g.,
[13]):

𝑙 (
𝑆𝑛
𝑛
,
𝑆𝑛
𝑛
) ≤

1

𝑛

𝑛

∑
𝑖=1

𝑙 (𝑋𝑖, 𝑋𝑖) = 𝑙 (L, L̃) , (11)

we see that the sequence of sample means {𝑇𝑛, 𝑛 ≥ 1} is
“qualitatively robust” using 𝑙 instead of the Prokhorovmetric.



Journal of Probability and Statistics 3

It seems straightforward (using the approach similar to
one given in [10, 19] and results in [16]) to show that the
sequence of sample medians {𝑀𝑛, 𝑛 ≥ 1} is also “qualitatively
robust” with respect to 𝑙. However, this is out of the scope of
this paper.

3. 𝑙−𝜇−√𝑛-Robustness and Main Results

Now and in what follows we suppose that 𝐻 = R𝑘 with the
Euclidean norm |⋅|.The results presented in this section are an
extension to themultidimensional case of the similar findings
for 𝐻 = R, published in the hardly accessible proceedings
[20].Moreover, we improve the results of [20] even in the one-
dimensional case.

In order to simplify calculations in the proof ofTheorem 5
below we will use in the definitions of Kantorovich’s and
Zolotarev’s metrics (see below) the following norm ‖𝑥‖ :=

∑
𝑘

𝑖=1
|𝑥𝑖| in the space R𝑘.
Thus, in what follows the Kantorovich metric 𝑙 is defined

by relationships (8), (9), where in (9) in place of the norm | ⋅ |
the norm || ⋅ || is used.

Let 𝜇 be some fixed simple probability metric on the set
of all probability distributions on (R𝑘,B(R𝑘)).

We will consider a sequence 𝑄𝑛, 𝑛 ≥ 1, of estimators
of some parameter 𝜃 ∈ R𝑘 of the distribution L (𝜃 of the
distribution L̃, resp.).

Definition 1. We say that a sequence 𝑄𝑛, 𝑛 ≥ 1, is (𝑙 − 𝜇 −

√𝑛)-robust atL if there is some fixed vector 𝛾 = 𝛾(L, L̃) ∈

R𝑘 such that for every 𝜖 > 0 there exists 𝛿 > 0 such that
𝜇(L, L̃) ≤ 𝛿 entails

sup
𝑛≥1

√𝑛𝑙 (𝑄𝑛 (𝑋1, . . . , 𝑋𝑛) , 𝑄𝑛 (𝑋1, . . . , 𝑋𝑛) + 𝛾) ≤ 𝜖. (12)

Remark 2. Taking into account that 𝑙(𝑎𝑋 + 𝑏, 𝑎𝑌 + 𝑏) =

𝑎𝑙(𝑋, 𝑌), 𝑎 ≥ 0, 𝑏 ∈ R𝑘, we see that (12) can be related
with the √𝑛-asymptotic normality of estimators 𝑄𝑛, 𝑛 ≥ 1.
The “scaling parameter” 𝛾 (in (12)) is necessary to ensure
the equality of means of the corresponding limit normal
distributions (when they exist). Only in case 𝐸𝑋 = 𝐸𝑋 in
(12) 𝛾 = 0.

Zolotarev’s probability metric of order 2 𝜁2 is defined as
follows (see, e.g., [14, 21]):

𝜁2 (𝑋,𝑋) ≡ 𝜁2 (L, L̃) := sup
𝜙∈D
2

󵄨󵄨󵄨󵄨󵄨𝐸𝜙 (𝑋) − 𝐸𝜙 (𝑋)
󵄨󵄨󵄨󵄨󵄨 , (13)

where

D2 := {𝜙 : R
𝑘
󳨃󳨀→ R :

󵄩󵄩󵄩󵄩𝐷𝜙 (𝑥) − 𝐷𝜙 (𝑦)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ;

𝑥, 𝑦 ∈ R
𝑘
} ,

(14)

and𝐷𝜙 = (𝐷1𝜙, . . . , 𝐷𝑘𝜙) is the gradient of 𝜙.

Remark 3. The distance 𝜁2(𝑋,𝑋) can take infinite value.
Particularly, from (13), (14) we see that 𝜁2(𝑋,𝑋) = ∞ if

𝐸𝑋 ̸= 𝐸𝑋. On the other hand, if there exist second moments,
𝐸𝑋 = 𝐸𝑋 and 𝐸𝑋2 < ∞, 𝐸𝑋2 < ∞, then 𝜁2(𝑋,𝑋) < ∞
(see, e.g., [14]). The function 𝜙(𝑥) := (1/2)|𝑥|2 ∈ D2 in (14).
Therefore, by (13),

󵄨󵄨󵄨󵄨󵄨𝐸𝑋
2
− 𝐸𝑋

2󵄨󵄨󵄨󵄨󵄨 ≤ 𝜁2 (𝑋,𝑋) . (15)

Thus, if 𝐸𝑋2 < ∞ and 𝜁2(𝑋,𝑋) < ∞ then 𝐸𝑋2 < ∞.
Consequently, if 𝐸𝑋 = 𝐸𝑋 and 𝐸|𝑋|2 < ∞, then 𝜁2(𝑋,𝑋) <

∞ if and only if 𝐸|𝑋|2 < ∞.

We now define the metric 𝜇 to work with:

𝜇 (𝑋,𝑋) := max{2𝑙 (𝑋,𝑋) , inf
𝑏∈R𝑘

𝜁2 (𝑋,𝑋 + 𝑏)} . (16)

3.1. (𝑙−𝜇−√𝑛)-Robustness of Sample Means. To prove the
inequality in Theorem 5 below we need to impose the
following restriction on the distributionL.

Assumption 4. (i) 𝐸|𝑋|𝑘+2 < ∞, and the covariance matrix
M of 𝑋 is positive definite.

The distributionL of𝑋 has a density 𝑓 such that for some
𝑠 ≥ 1:

(ii) the density 𝑓𝑠 of 𝑆𝑠 := 𝑋1 + ⋅ ⋅ ⋅ + 𝑋𝑠 is bounded and
differentiable;

(iii) the gradient 𝐷𝑓𝑠 is bounded and |𝐷𝑓𝑠| belongs to
L1(R

𝑘);
(iv) for some 𝛼 > 0

∫
|𝑥|>𝛼𝑛

󵄨󵄨󵄨󵄨𝐷𝑓𝑠
󵄨󵄨󵄨󵄨 𝑑𝑥 = 𝑂 (𝑛

−1/2
) , as 𝑛 󳨀→ ∞. (17)

Note that in view of Remark 3 under the condition (i)
𝜇(𝑋,𝑋) < ∞ if and only if

𝐸
󵄨󵄨󵄨󵄨󵄨𝑋

󵄨󵄨󵄨󵄨󵄨
2

< ∞, (18)

(see (15)).

Theorem 5. Under Assumption 4 and supposing (18) it holds

sup
𝑛≥1

√𝑛𝑙 (𝑇𝑛, 𝑇̃𝑛 + 𝛾) ≤ 𝑐𝜇 (L, L̃) , (19)

where 𝛾 = 𝐸𝑋 − 𝐸𝑋,

𝑐 = max {(10𝑠 − 1)
1/2

, 5.4 𝑑𝑘} , (20)

𝑑 = sup
𝑛≥𝑠

max
1≤𝑖≤𝑘

󵄩󵄩󵄩󵄩𝐷𝑖𝑔𝑛
󵄩󵄩󵄩󵄩L
1
(R𝑘)

< ∞, (21)

and 𝑔𝑛 is the density of (1/√𝑛)(𝑋1 + ⋅ ⋅ ⋅ + 𝑋𝑛), 𝑛 ≥ 1.

Remark 6. (i) The constant 𝑐 in (20), (21) is entirely deter-
mined by the distribution L of 𝑋. For various particular
densities of 𝑋 the constant 𝑑 in (21) can be bounded by
means of computer calculations. For this one can use the fact
(true under wide conditions) that the sequence 𝐷𝑖𝑔𝑛, 𝑛 ≥ 𝑠,
converges in L1-norm to the corresponding partial derivative
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of the limit normal density with covariance matrix M (and
zeromean since ||𝐷𝑖𝑔𝑛||L

1
(R𝑘) is invariant under translations).

For example, let 𝑘 = 2 and 𝑋 = (𝑋󸀠, 𝑋󸀠󸀠), where 𝑋󸀠 and
𝑋󸀠󸀠 are independent random variables; 𝑋󸀠 has the gamma
density with 𝛼 = 2.1 and arbitrary 𝜆󸀠 > 0, while 𝑋󸀠󸀠 has the
gamma density with𝛼 = 3 and arbitrary 𝜆󸀠󸀠. Simple computer
calculations show that in (21) 𝑑 < max{0.7065𝜆󸀠, 0.5414𝜆󸀠󸀠},
and since we can take 𝑠 = 1, we obtain in (20) that

𝑐 < max {3, 10.8max {0.7065𝜆󸀠, 0.5414𝜆󸀠󸀠}} . (22)

For instance, 𝑐 < 7.6302 for 𝜆󸀠 = 𝜆󸀠󸀠 = 1. (For these values of
𝜆󸀠, 𝜆󸀠󸀠 we can take 𝑠 = 3 in (20) and obtain 𝑐 < 6.3829.)

(ii) Since under the above assumption 𝜇(L, L̃) < ∞
entails (18), inequality (19) ensures (𝑙 − 𝜇 − √𝑛)-robustness
of the sequence of sample means 𝑇𝑛, 𝑛 ≥ 1.

(iii) For 𝑘 = 1, in [20] an example is given showing that
in general the sequence of sample means 𝑇𝑛, 𝑛 ≥ 1 is not
(𝑙 − 𝑙 − √𝑛)-robust (even if (18) holds and 𝐸𝑋 = 𝐸𝑋). It is
also almost evident that the sample means 𝑇𝑛, 𝑛 ≥ 1, are not
(𝑙 − 𝜇 − √𝑛)-robust, for example, if 𝜇 is the total variation
metric𝑉 (or, if 𝜇 = max(𝑙, 𝑉)).The appearance of Zolotarev’s
metric on the right-hand side of (19) is related to closeness of
corresponding limit normal distributions.

Corollary 7. Suppose for a moment that 𝜃 = 𝜃 and that one
evaluates the quality of estimators by mean of absolute errors:
𝛿𝑛 := 𝐸||𝑇𝑛 − 𝜃||, 𝛿𝑛 := 𝐸||𝑇̃𝑛 − 𝜃||. Then from (19) it follows
that

󵄨󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛
󵄨󵄨󵄨󵄨󵄨 ≤ 𝑛

−1/2const𝜇 (L, L̃) , 𝑛 ≥ 1. (23)

(The simple proof is similar to the one given in [20]).

3.2. About (𝑙−𝜇−√𝑛)-Robustness of Sample Medians. Let
again 𝜇 be the metric defined in (16). We show that the
sequence of sample medians 𝑀𝑛, 𝑛 ≥ 1, in general, is not
(𝑙 −𝜇−√𝑛)-robust even when𝑋 and𝑋 have strictly positive,
bounded, smooth densities symmetric with respect to the
origin, and the sequences of sample medians 𝑀𝑛, 𝑛 ≥ 1, 𝑀̃𝑛,
𝑛 ≥ 1, are√𝑛-asymptotically normal.We consider amodified
version of the corresponding example from [20].

Example 8. Let 𝐻 = R, 𝑋 ∼ 𝑁(0, 1), and for 𝜖 ∈ (0, 1) let 𝑋𝜖
be a random variable with the density:

𝑓
𝑋̃
𝜖

(𝑥) :=
1

𝑐 (𝜖)
(𝜖 +

𝑥2

𝜖3 + 𝑥2
) 𝑒

−𝑥
2
/2
, 𝑥 ∈ R, (24)

where 𝑐(𝜖) is a normalizing constant. By symmetry of the
density, we get

𝑀 = 𝑀̃ = 𝐸𝑋 = 𝐸𝑋 = 0, (25)

and also it is clear that 𝑓𝑋, 𝑓𝑋̃ ∈ C∞(R), and

sup
𝜖∈(0,1), 𝑥∈R

𝑓
𝑋̃
𝜖

(𝑥) < ∞. (26)

First of all let us show that for this example the left-hand
side of (12) is infinite for any 𝛾 ̸= 0. It is well known (see,
e.g., [16]) that 𝑀𝑛 → 𝑀 = 0, 𝑀̃𝑛 → 𝑀̃ = 0 as 𝑛 → ∞
with probability 1. Also, from the results of [16] we can obtain
that |𝑀𝑛| ≤ (2/𝑛)∑

𝑛

𝑖=1
|𝑋𝑖|. Using this inequality it is easy to

show that the sequence |𝑀𝑛|, 𝑛 ≥ 1, is uniformly integrable.
Therefore, 𝐸|𝑀𝑛| → 0 (and also 𝐸|𝑀̃𝑛| → 0) as 𝑛 → ∞, and
for this 𝑙(𝑀𝑛, 𝑀̃𝑛 + 𝛾) → 𝑙(0, 𝛾) = 𝛾.

Let now 𝛾 = 0 in (12). By the well-known asymptotic
normality (see [22, page 307]),

𝜋 (√𝑛𝑀𝑛, 𝜂) 󳨀→ 0, 𝜋 (√𝑛𝑀̃𝑛, 𝜂𝜖) 󳨀→ 0, (27)

where

𝜂 ∼ 𝑁(0,
1

2𝑓𝑋 (0)
) = 𝑁(0,√

𝜋

2
) ,

𝜂𝜖 ∼ 𝑁(0,
1

2𝑓
𝑋̃
𝜖

(0)
) = 𝑁(0,

𝑐 (𝜖)

𝜖
) .

(28)

From (27) and (28) it follows that there is 𝑟 > 0 such
that for all small enough 𝜖 and all large enough 𝑛 we get
𝜋(√𝑛𝑀𝑛, √𝑛𝑀̃𝑛) ≥ 𝑟. Consequently, for all such 𝜖 and 𝑛,

√𝑛𝑙 (𝑀𝑛, 𝑀̃𝑛) = 𝑙 (√𝑛𝑀𝑛, √𝑛𝑀̃𝑛) ≥ 𝑟
2
> 0, (29)

since 𝑙 ≥ 𝜋2 (see [13, page 86]).
We have obtained that the left-hand side of (12) is positive

for all small enough 𝜖 > 0. On the other hand, 𝜇(𝑋,𝑋𝜖) → 0
as 𝜖 → 0. It follows from the inequality

𝜁2 (𝑋, 𝑌) ≤
1

2
∫
∞

−∞

𝑥
2 󵄨󵄨󵄨󵄨𝑓𝑋 (𝑥) − 𝑓𝑌 (𝑥)

󵄨󵄨󵄨󵄨 𝑑𝑥 (30)

(valued when 𝐸𝑋 = 𝐸𝑌; see [21, page 376]) and from (10).

Remark 9. The densities as in (24) represent the fol-
lowing somewhat strange type of “contamination.” Since
max𝑥𝑓𝑋(𝑥) = 𝑓𝑋(0) sample points from 𝑓𝑋 tend to con-
centrate around the origin. But 𝑓

𝑋̃
𝜖

(0) → 0 as 𝜖 → 0, and
therefore sample points from 𝑓

𝑋̃
𝜖

frequently in some extent
are separated from 0.

A natural question is “how to choose the metric 𝜇 to
ensure (𝑙 − 𝜇 − √𝑛)-robustness of the sequence of sample
medians 𝑀𝑛, 𝑛 ≥ 1?” Our conjecture is (for 𝑘 = 1, e.g.)
to try 𝜇(𝑋,𝑋) = max{𝑙(𝑋,𝑋), esssup

𝑥∈R|𝑓𝑋(𝑥) − 𝑓
𝑋̃
(𝑥)|}

(supposing the existence of densities).
If 𝑀 = 𝑀̃ then under certain conditions the closeness

in 𝜇 guarantees the closeness of normal densities which are
limiting for {√𝑛𝑀𝑛, 𝑛 ≥ 1} and for {√𝑛𝑀̃𝑛, 𝑛 ≥ 1},
respectively. To attempt proving (𝑙 − 𝜇 − √𝑛)-robustness of
𝑀𝑛, 𝑛 ≥ 1 (as in (12)) one can show Hampel’s qualitative
robustness of 𝑀𝑛, 𝑛 ≥ 1 with respect to the metric 𝑙 and
then use the property √𝑛𝑙(𝑀𝑛, 𝑀̃𝑛) = 𝑙(√𝑛𝑀𝑛, √𝑛𝑀̃𝑛). A
not clear point of this plan is finding conditions under which
𝐸|√𝑛(𝑀𝑛 − 𝑀)| → 0 as 𝑛 → ∞.
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Example 10. Let us give another (very simple) example of the
sequence of estimators which is (𝑙 − 𝜇 − √𝑛)-robust with
𝜇 := 𝑙 (on the class of distributions described below). For
𝐻 = R we consider the class 𝑊 of all random variables 𝑋
with bounded supports Supp(𝑋) = [0, 𝜃𝑋], having density
𝑓𝑋 such that 𝑓𝑋(𝑥) ≥ 𝛽 > 0, 𝑥 ∈ [0, 𝜃𝑋]. We suppose that
𝜃𝑋 ≤ 𝜃∗ < ∞, 𝑋 ∈ 𝑊, and 𝛽 is the same for all 𝑋 ∈ 𝑊.
Assume that parameter 𝜃 = 𝜃𝑋 is unknown, and the sequence
of estimators 𝑄𝑛 := max1≤𝑖≤𝑛𝑋𝑖 is used to estimate it.

Denoting 𝜃 = 𝜃𝑋, 𝜃 = 𝜃𝑋 and choosing in (12) 𝛾 = 𝜃 − 𝜃,
we get

𝑙 (𝑄𝑛, 𝑄𝑛 + 𝛾) = 𝑙 (𝜃 − max
1≤𝑖≤𝑛

𝑋𝑖, 𝜃 − max
1≤𝑖≤𝑛

𝑋𝑖)

≤ 𝐸
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝜃 − max

1≤𝑖≤𝑛

𝑋𝑖) − (𝜃 − max
1≤𝑖≤𝑛

𝑋𝑖)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐸 (𝜃 − max
1≤𝑖≤𝑛

𝑋𝑖) + 𝐸(𝜃 − max
1≤𝑖≤𝑛

𝑋𝑖) ,

(31)

because of the metric 𝑙 is minimal for the compound metric
𝐸|𝑋 − 𝑌| (see, e.g., [13]).

By elementary calculations we bound the right-hand side
of (31) by

2

𝛽 (𝑛 + 1)
. (32)

Now for each 𝑛 fixed, by induction we obtain (see (10))

𝑙 (max
1≤𝑖≤𝑛

𝑋𝑖,max
1≤𝑖≤𝑛

𝑋𝑖) = ∫
∞

0

󵄨󵄨󵄨󵄨󵄨𝐹
𝑛

𝑋
(𝑥) − 𝐹

𝑛

𝑋̃
(𝑥)

󵄨󵄨󵄨󵄨󵄨 𝑑𝑥

≤ 𝑛∫
∞

0

󵄨󵄨󵄨󵄨𝐹𝑋 (𝑥) − 𝐹
𝑋̃
(𝑥)

󵄨󵄨󵄨󵄨 𝑑𝑥=𝑛𝑙 (𝑋,𝑋) .

(33)

On the other hand, let, for example, 𝜃 ≤ 𝜃. Then

𝑙 (𝑋,𝑋) = ∫
𝜃

0

󵄨󵄨󵄨󵄨𝐹𝑋 (𝑥) − 𝐹
𝑋̃
(𝑥)

󵄨󵄨󵄨󵄨 𝑑𝑥 + ∫
𝜃

𝜃

(1 − 𝐹
𝑋̃
(𝑥)) 𝑑𝑥.

(34)

But for 𝑥 ∈ [𝜃, 𝜃],

1 − 𝐹
𝑋̃
(𝑥) = ∫

𝜃

𝑥

𝑓
𝑋̃
(𝑦) 𝑑𝑦 ≥ 𝛽 (𝜃 − 𝑥) . (35)

From this relationship it follows that

for 𝑋,𝑋 ∈ 𝑊, 𝜃 󳨀→ 𝜃 as 𝑙 (𝑋,𝑋) 󳨀→ 0. (36)

Finally, applying (32), we can select𝑁 in such a way that

sup
𝑛≥𝑁

√𝑛𝑙 (𝑄𝑛, 𝑄𝑛 + 𝛾) ≤
𝜖

2
. (37)

For 𝑛 < 𝑁we can use the inequality 𝑙(𝑋, 𝑌+𝑏) ≤ 𝑙(𝑋, 𝑌)+ |𝑏|
and (33), (36). Thus, choosing small enough 𝛿 > 0 we can
ensure inequality (12) for all 𝑋,𝑋 ∈ 𝑊 with 𝜇(𝑋,𝑋) ≡

𝑙(𝑋,𝑋) ≤ 𝛿. In this way we proved (𝑙 − 𝑙 − √𝑛)-robustness
of 𝑄𝑛 on the set𝑊.

Appendix

A. The Proofs

To start with the proof of Theorem 5 of the previous section,
first of all we note that in (19)

𝑙 (𝑇𝑛, 𝑇̃𝑛 + 𝛾) = 𝑙 (
𝑆𝑛
𝑛
,
𝑆𝑛
𝑛

+ 𝐸𝑋 − 𝐸𝑋)

= 𝑙(
𝑆𝑛 − 𝑛𝐸𝑋

𝑛
,
𝑆𝑛 − 𝑛𝐸𝑋

𝑛
) ,

(A.1)

because of 𝑙(𝑋 + 𝑏, 𝑌 + 𝑏) = 𝑙(𝑋, 𝑌), 𝑏 ∈ R𝑘. Also it is easy to
see that 𝜁2(𝑋 + 𝑏, 𝑌 + 𝑏) = 𝜁2(𝑋, 𝑌).

On the other hand, by definition of 𝜇 in (16)

inf
𝑏∈R𝑘

𝜁2 (𝑋,𝑋 + 𝑏) = 𝜁2 (𝑋,𝑋 + 𝐸𝑋 − 𝐸𝑋)

= 𝜁2 (𝑋 − 𝐸𝑋,𝑋 − 𝐸𝑋)

(A.2)

(see Remark 3). Also

𝑙 (𝑋 − 𝐸𝑋,𝑋 − 𝐸𝑋) = 𝑙 (𝑋,𝑋 + 𝐸𝑋 − 𝐸𝑋)

≤ 𝑙 (𝑋,𝑋) + 𝐸
󵄨󵄨󵄨󵄨󵄨𝑋 − 𝑋

󵄨󵄨󵄨󵄨󵄨 ≤ 2𝑙 (𝑋,𝑋) ,

(A.3)

because the metric 𝑙 is minimal for the metric 𝐸| ⋅ |.
The above arguments show that to establish inequality

(19) it suffices to prove the version of (19) with 𝛾 = 0, 𝐸𝑋 =

𝐸𝑋 = 0, and the metric 𝜇󸀠 := max{𝑙, 𝜁2} on the right-hand
side of (19).

The proof is based on the two following lemmas.
Let 𝑔 : R𝑘 󳨃→ R be a differentiable function. We will

write 𝐷𝑔 := (𝐷1𝑔, . . . , 𝐷𝑘𝑔), where 𝐷𝑖𝑔(𝑥) := (𝜕/𝜕𝑥𝑖)𝑔(𝑥),
𝑖 = 1, 2, . . . , 𝑘.

Lemma A.1. Let 𝑋,𝑌, and 𝜉 be random vectors in R𝑘 such
that

(a) 𝜉 is independent of 𝑋 and 𝑌;
(b) 𝐸|𝑋|2 < ∞, 𝐸|𝑌|2 < ∞; 𝐸𝑋 = 𝐸𝑌;
(c) 𝜉 has a bounded differentiable density 𝑓𝜉 (with respect

to the Lebesgue measure) such that𝐷𝑖𝑓𝜉 ∈ L1(R
𝑘), 𝑖 =

1, 2, . . . , 𝑘.

Then

𝑙 (𝑋 + 𝜉, 𝑌 + 𝜉) ≤ 𝑘max
1≤𝑖≤𝑘

󵄩󵄩󵄩󵄩󵄩𝐷𝑖𝑓𝜉
󵄩󵄩󵄩󵄩󵄩L
1
(R𝑘)

𝜁2 (𝑋, 𝑌) . (A.4)

Proof. From the definition (8), (9) of the metric 𝑙 (with the
norm ||⋅|| instead of |⋅| !) it follows (the proof is simple) that in
(8) the class of functions Lip (given in (9)) can be replaced by
the class of all bounded differentiable functions 𝑔 : R𝑘 󳨃→ R

such that

sup
𝑥∈R𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑔 (𝑥)

𝜕𝑥𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 1, 𝑖 = 1, 2, . . . , 𝑘. (A.5)
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Let us fix any such function 𝑔 and arbitrary 𝑖, 𝑗 ∈
{1, 2, . . . , 𝑘}. Then (by the Fubini theorem),

𝐸𝑔 (𝑋 + 𝜉) − 𝐸𝑔 (𝑌 + 𝜉)

= ∫
R𝑘

𝑔 (𝑥) 𝑑𝑥∫
R𝑘

𝑓𝜉 (𝑥 − 𝑡) [𝑑𝐹𝑋 (𝑡) − 𝑑𝐹𝑌 (𝑡)]

× ∫
R𝑘

[𝑑𝐹𝑋 (𝑡) − 𝑑𝐹𝑌 (𝑡)] ∫
R𝑘

𝑔 (𝑥) 𝑓𝜉 (𝑥 − 𝑡) 𝑑𝑥.

(A.6)

For each 𝑥 ∈ R fixed let

ℎ (𝑡) := ∫
R𝑘

𝑔 (𝑥) 𝑓𝜉 (𝑥 − 𝑡) 𝑑𝑥

= ∫
R𝑘

𝑔 (𝑦 + 𝑡) 𝑓𝜉 (𝑦) 𝑑𝑦, 𝑡 ∈ R
𝑘
.

(A.7)

Because of boundedness of 𝜕𝑔/𝜕𝑡𝑖 and integrability of 𝐷𝑖𝑓𝜉
we can differentiate in (A.7) under the integral sign (see [23,
Appendix A]). Thus,

𝜕ℎ

𝜕𝑡j
ℎ (𝑡) = ∫

R𝑘

𝜕𝑔

𝜕𝑡𝑗
𝑔 (𝑦 + 𝑡) 𝑓𝜉 (𝑦) 𝑑𝑦,

𝜕2ℎ

𝜕𝑡𝑖𝜕𝑡𝑗
ℎ (𝑡) = −∫

R𝑘

𝜕𝑔

𝜕𝑥𝑗
(𝑥)

𝜕𝑓𝜉

𝜕𝑡𝑖
(𝑥 − 𝑡) 𝑑𝑥.

(A.8)

In view of (A.5) we obtain
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕2ℎ

𝜕𝑡𝑖𝜕𝑡𝑗
ℎ (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫

R𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑓𝜉

𝜕𝑡𝑖
(𝑥 − 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑥 =

󵄩󵄩󵄩󵄩󵄩𝐷𝑖𝑓𝜉
󵄩󵄩󵄩󵄩󵄩L
1
(R𝑘)

. (A.9)

For every 𝑥, 𝑦 ∈ R𝑘 we have

󵄩󵄩󵄩󵄩𝐷ℎ (𝑥) − 𝐷ℎ (𝑦)
󵄩󵄩󵄩󵄩 =

𝑘

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝐷𝑗ℎ (𝑥) − 𝐷𝑗ℎ (𝑦)
󵄨󵄨󵄨󵄨󵄨 , (A.10)

󵄨󵄨󵄨󵄨󵄨𝐷𝑗ℎ (𝑥) − 𝐷𝑗ℎ (𝑦)
󵄨󵄨󵄨󵄨󵄨 ≤

𝑘

∑
𝑖=1

sup
𝑥∈R𝑘

𝜕2ℎ

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑥)

󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑦𝑖
󵄩󵄩󵄩󵄩 . (A.11)

Comparing (A.6)–(A.11) and taking into account the defini-
tion of 𝜁2 in (13), (14), we obtain inequality (A.4).

LemmaA.2. Under the assumption of the previous section the
constant 𝑑 in (21) is finite.

Remark A.3. A similar assertion was proved in [24] for || ⋅
||L
1

-norm of second derivatives of the densities 𝑔𝑛 (under
sightly different conditions). For this reason we give only a
sketch of the proof of Lemma A.2 indicating only differences
in comparison to the proof of Lemma 4.1 in [24] (where the
omitted details can be seen).

Proof. As before, let 𝑔𝑛 (𝑛 ≥ 𝑠) be the density of 𝑆𝑛/√𝑛, and
𝜙𝑛 its characteristic function. Let also 𝑓𝑛 denote the density
of 𝑆𝑛. There is 𝑙 ≥ 𝑠 such that |𝑡|𝜙𝑙(𝑡) ∈ L1(R

𝑘) and therefore

|𝑡| 𝜙𝑛 (𝑡) ∈ L1 (R
𝑘
) , for 𝑛 ≥ 𝑙. (A.12)

Indeed, since

𝑣𝑖 (𝑥𝑖) :=
𝜕

𝜕𝑥𝑖
𝑓𝑠 (. . . , 𝑥𝑖, . . .) ∈ L1 (R) (A.13)

(fixing other variables), we can integrate by parts:

𝜙𝑠 (√𝑠𝑡) = ∫
R𝑘−1

𝑒
𝑖⟨𝑡
󸀠
,𝑥
󸀠
⟩
𝑑𝑥

󸀠
∫
R

𝑓𝑠 (. . . , 𝑥𝑖, . . .) 𝑒
𝑖𝑡
𝑖
𝑥
𝑖𝑑𝑥

= ∫
R𝑘−1

𝑒
𝑖⟨𝑡
󸀠
,𝑥
󸀠
⟩
𝑑𝑥

󸀠 1

𝑖𝑡𝑖
∫
R

𝑣𝑖 (𝑥𝑖) 𝑒
𝑖𝑡
𝑖
𝑥
𝑖𝑑𝑥𝑖,

(A.14)

and (A.12) follows for large enough 𝑙.
In view of (A.12) we can write down the inverse Fourier

transform for 𝑛 ≥ 𝑙:

𝑔𝑛 (𝑥) =
1

(2𝜋)𝑘
∫
R𝑘

𝜙𝑛 (𝑡) 𝑒
−𝑖⟨𝑡,𝑥⟩

𝑑𝑡, (A.15)

and differentiate under the integral sign in (A.15).
The condition 𝜙𝑛 ∈ L1(R

𝑘) (𝑛 ≥ 𝑙) and Assumption (i) in
Section 2 ensure the hypothesis of in [25, Theorem 19.2, Ch.
4]. By this theorem,

𝑔𝑛 (𝑥) =
𝑘

∑
𝑚=0

𝑛
−𝑚/2

𝑃𝑚 (𝑥) 𝜙0,M (𝑥) + 𝑜 (
1

𝑛𝑘/2
) , (A.16)

𝑥 ∈ R𝑘 (as 𝑛 → ∞), where 𝑃𝑚, 𝑚 = 0, . . . , 𝑘, are certain
polynomials and 𝜙0,M is the normal density with zero mean
and the covariance matrixM (see Assumption (i)).

Let 𝑞𝑛 denote the Fourier transform of𝐷𝑗ℎ𝑛, where

ℎ𝑛 (𝑥) := 𝑔𝑛 (𝑥) −
𝑘

∑
𝑚=0

𝑛
−𝑚/2

𝑃𝑚 (𝑥) 𝜙0,M (𝑥) . (A.17)

Using (A.15), (A.16), and in [25, Lemma 7.2, Ch. 2], we can
obtain that for each fixed 𝑗

𝑞𝑛 (𝑡) = 𝑡𝑗 [𝜙𝑛 (𝑡) −
𝑘

∑
𝑚=0

𝑛
−𝑚/2

𝑃̂𝑚 (𝑡) exp(−
1

2
⟨𝑡,M𝑡⟩)] ,

(A.18)

with certain polynomials 𝑃̂𝑚.
By arguments similar to those given in [24], it follows

from (A.18) that there exist constants 𝛽 > 0, 𝑐 < ∞ such
that

∫
|𝑡|≤𝛽√𝑛

󵄨󵄨󵄨󵄨𝑞𝑛 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡 ≤

𝑐

𝑛𝑘/2
(𝑛 ≥ 𝑙) . (A.19)

On the other hand, to prove that

∫
|𝑡|>𝛽√𝑛

󵄨󵄨󵄨󵄨𝑞𝑛 (𝑡)
󵄨󵄨󵄨󵄨 = 𝑂(

1

𝑛𝑘/2
) , as 𝑛 󳨀→ ∞, (A.20)

it is sufficient to show that

∫
|𝑡|>𝛾√𝑛

󵄨󵄨󵄨󵄨󵄨𝑡𝑗
󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝜙𝑛 (𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡 = 𝑂(
1

𝑛𝑘/2
) , as 𝑛 󳨀→ ∞. (A.21)
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But the last equality follows from (A.12) and the fact that

sup
|𝑡|>𝛾√𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜙1 (

𝑡

√𝑛
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜅 < 1. (A.22)

Expressing 𝐷𝑗ℎ𝑛 in terms of 𝑞𝑛 (as an inverse Fourier
transform), and using (A.16)–(A.20) we can establish that
there exist a constant 𝑐 and polynomials 𝑃̃𝑚(𝑥), 𝑚 = 0, . . . , 𝑘
such that for each 𝑗 ∈ {1, . . . , 𝑘},

sup
𝑥∈R𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐷𝑗𝑔𝑛 (𝑥) −

𝑘

∑
𝑚=0

𝑛
−𝑚/2

𝑃̃𝑚 (𝑥) 𝜙0,M (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

𝑐

𝑛𝑘/2
, (A.23)

𝑛 = 𝑙, 𝑙 + 1, . . .
The next step is to find for each 𝑗 ∈ {1, . . . , 𝑘} an upper

bound for ||𝐷𝑗𝑔𝑛||L
1
(R𝑘) which does not depend on 𝑛 ≥ 𝑠.

For 𝑛 > 𝑠, 𝑔𝑛(𝑥) = 𝑛𝑘/2𝑓𝑛(√𝑛𝑥) and 𝑓𝑛(𝑥) = ∫
R𝑘

𝑓𝑠(𝑥 −
𝑡)𝑓𝑛−𝑠(𝑡)𝑑𝑡. Thus, using Assumptions (ii), (iii), and the corre-
sponding theorems in [23, Appendix A], we get

𝐷𝑗𝑓𝑛 (𝑥) = ∫
R𝑘

𝐷𝑗𝑓𝑠 (𝑥 − 𝑡) 𝑓𝑛−𝑠 (𝑡) 𝑑𝑡. (A.24)

We have

󵄩󵄩󵄩󵄩󵄩𝐷𝑗𝑔𝑛
󵄩󵄩󵄩󵄩󵄩L
1
(R𝑘)

≤ ∫
|𝑥|≤2√𝑛𝛼

󵄨󵄨󵄨󵄨󵄨𝐷𝑗𝑔𝑛
󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 + ∫

|𝑥|>2√𝑛𝛼

󵄨󵄨󵄨󵄨󵄨𝐷𝑗𝑔𝑛
󵄨󵄨󵄨󵄨󵄨 𝑑𝑥,

(A.25)

where 𝛼 is the constant from Assumption (iv). The first
summands on the right-hand side of (A.25) are uniformly
bounded in 𝑛 ≥ 𝑙 due to (A.23). To bound the second terms
in (A.25) we write (see (A.24))

∫
|𝑥|>2√𝑛𝛼

󵄨󵄨󵄨󵄨󵄨𝐷𝑗𝑔𝑛
󵄨󵄨󵄨󵄨󵄨 𝑑𝑥

= 𝑛
1/2

∫
|𝑧|>2𝛼𝑛

󵄨󵄨󵄨󵄨󵄨𝐷𝑗𝑓𝑛 (𝑧)
󵄨󵄨󵄨󵄨󵄨 𝑑𝑧

≤ 𝑛
1/2

∫
|𝑧|>2𝛼𝑛

𝑑𝑧∫
R𝑘

󵄨󵄨󵄨󵄨󵄨𝐷𝑗𝑓𝑠 (𝑧 − 𝑡)
󵄨󵄨󵄨󵄨󵄨 𝑓𝑛−𝑠 (𝑡) 𝑑𝑡=: 𝑛

1/2
𝐼𝑛.

(A.26)

Now

𝐼𝑛 = ∫
|𝑧|>2𝛼𝑛

𝑑𝑧∫
|𝑡|≤𝛼𝑛

󵄨󵄨󵄨󵄨󵄨𝐷𝑗𝑓𝑠 (𝑧 − 𝑡)
󵄨󵄨󵄨󵄨󵄨 𝑓𝑛−𝑠 (𝑡) 𝑑𝑡

+ ∫
|𝑧|>2𝛼𝑛

𝑑𝑧∫
|𝑡|>𝛼𝑛

󵄨󵄨󵄨󵄨󵄨𝐷𝑗𝑓𝑠 (𝑧 − 𝑡)
󵄨󵄨󵄨󵄨󵄨 𝑓𝑛−𝑠 (𝑡) 𝑑𝑡.

(A.27)

From |𝑧| > 2𝛼𝑛 and |𝑡| ≤ 𝛼𝑛 it follows that |𝑧 − 𝑡| > 𝛼𝑛.
Thus, the first terms on the right-hand side of (A.27) are
less than 𝑐󸀠/𝑛1/2 due to Assumption (iv). Applying the Fubini
theorem and using the fact of integrability of 𝐷𝑗𝑓𝑠 we see
that the second summand in (A.27) is bounded by const
𝑃(|∑

𝑛−𝑠

𝑖=1
𝑋𝑖| > 𝛼𝑛), which is 𝑂(1/𝑛) by the Chebyshev and

Rosenthal inequalities.

Exploiting Lemmas A.1 and A.2, the rest of the proof
of the Theorem 5 in Section 3 is carried out exactly as the
proof in one-dimensional case given in [20]. The “ideality
properties” of the metric 𝜁2,

𝜁2(𝑎
𝑛

∑
𝑖=1

𝑋𝑖, 𝑎
𝑛

∑
𝑖=1

𝑋𝑖) ≤ 𝑎
2

𝑛

∑
𝑖=1

𝜁2 (𝑋𝑖, 𝑋𝑖) , (A.28)

used there hold true for random vectors (see, e.g., [14]).
The general version of inequality (3.15) in [20] which relates
the Kantorovich and the total variation metrics is proved
in [13, page 89]. Note that the proof presented in [20]
uses the so-called convolution approach (see, e.g., [26]) and
induction arguments. This method has been widely used to
estimate rates of convergence in multidimensional Central
Limit Theorems (see, e.g., [13, 14, 21, 26]).
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[6] L. Davies, “An efficient Fréchet differentiable high breakdown
multivariate location and dispersion estimator,” Journal of
Multivariate Analysis, vol. 40, no. 2, pp. 311–327, 1992.

[7] D. L. Donoho and R. C. Liu, “The “automatic” robustness of
minimum distance functionals,” Annals of Statistics, vol. 16, pp.
552–586, 1988.

[8] X. He and D. G. Simpson, “Lower bounds for contamination
bies: globally minimax versus locally linear estimation,” The
Annals of Statistics, vol. 21, pp. 314–337, 1993.

[9] A. Y. Kharin and P. A. Shlyk, “Robust multivariate Bayesian
forecasting under functional distortions in the 𝜒2-metric,”
Journal of Statistical Planning and Inference, vol. 139, no. 11, pp.
3842–3846, 2009.

[10] A. Cuevas, “Qualitative robustness in abstract inference,” Jour-
nal of Statistical Planning and Inference, vol. 18, no. 3, pp. 277–
289, 1988.

[11] P. J. Huber, “Robust estimation of a location parameter,” Annals
of Mathematical Statistics, vol. 35, pp. 73–101, 1964.

[12] R. Zielinski, “Robustness of sample mean and sample median
under restrictions on outliers,” Zastosowania Matematyki-
Applicationes Mathematicae, vol. 19, pp. 239–240, 1987.



8 Journal of Probability and Statistics
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