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By using the cycle representation theory of Markov processes, we investigate proper criterions regarding transience and recurrence
of the correspondingMarkov chain represented uniquely by directed cycles (especially by directed circuits) andweights of a random
walk with jumps in a fixed environment.

1. Introduction

A systematic research has been developed (Kalpazidou [1],
MacQueen [2], Minping and Min [3], Zemanian [4], and
others) in order to investigate representations of the finite-
dimensional distributions ofMarkov processes (with discrete
or continuous parameter) having an invariant measure, as
decompositions in terms of the cycle (or circuit) passage
functions:

𝐽
𝑐

(𝑖, 𝑗) = 1, if 𝑖, 𝑗 are consecutive states of 𝑐,

= 0, otherwise,
(1)

for any directed sequence 𝑐 = (𝑖
1

, 𝑖
2

, . . . , 𝑖
𝑟

) (or 𝑐 =

(𝑖
1

, 𝑖
2

, . . . , 𝑖
𝑟

, 𝑖
1

)) of states called a cycle (or a circuit), 𝑟 > 1,
of the corresponding Markov process. The representations
are called cycle (or circuit) representations while the corre-
sponding discrete parameter Markov processes generated by
directed circuits 𝑐 = (𝑖

1

, 𝑖
2

, . . . , 𝑖
𝑟

, 𝑖
1

), 𝑟 > 1, are called circuit
chains.

Following the context of the theory of Markov processes’
cycle-circuit representation, the present work arises as an
attempt to investigate proper criterions regarding the prop-
erties of transience and recurrence of the corresponding
Markov chain represented uniquely by directed cycles (espe-
cially by directed circuits) and weights of a random walk

with jumps (having one elastic left barrier) in a fixed ergodic
environment (Kalpazidou [1], Derriennic [5]).

The paper is organized as follows. In Section 2, we give
a brief account of certain concepts of cycle representation
theory of Markov processes that we will need throughout the
paper. In Section 3, we present some auxiliary results in order
to make the presentation of the paper more comprehensible.
In particular, in Section 3, a randomwalk with jumps (having
one elastic left barrier) in a fixed ergodic environment is
considered, and the unique representations by directed cycles
(especially by directed circuits) and weights of the corre-
sponding Markov chain are investigated. These representa-
tions will give us the possibility to study proper criterions
regarding transience and recurrence of the abovementioned
Markov chain, as it is described in Section 4.

Throughout the paper, we will need the following nota-
tions:

ℵ = {0, 1, 2, . . .} , ℵ
∗

= {1, 2, . . .} ,

𝑍 = {. . . , −1, 0, 1, . . .} .
(2)

2. Preliminaries

Let us consider a denumerable set S. Then the directed
sequence 𝑐 = (𝑖

1

, 𝑖
2

, . . . , 𝑖
𝑟

, 𝑖
1

) modulo the cyclic permuta-
tions, where 𝑖

1

, 𝑖
2

, . . . , 𝑖
𝑟

∈ 𝑆, 𝑟 > 1, completely defines a



2 Journal of Probability and Statistics

directed circuit in 𝑆. The ordered sequence 𝑐 = (𝑖
1

, 𝑖
2

, . . . , 𝑖
𝑟

)

associated with the given directed 𝑐 is called a directed cycle
in 𝑆.

A directed circuit may be considered as 𝑐 = (𝑐(𝑟), 𝑐(𝑟 +

1), . . . , 𝑐(𝑟 + V − 1), 𝑐(𝑟 + V)), if there exists an 𝑟 ∈ 𝑍, such that
𝑖
1

= 𝑐(𝑟 + 0), 𝑖
2

= 𝑐(𝑟 + 1), . . . , 𝑖V = 𝑐(𝑟 + V − 1), 𝑖
1

= 𝑐(𝑟 + V),
where 𝑐 is a periodic function from 𝑍 to 𝑆.

The corresponding directed cycle is defined by the
ordered sequence 𝑐 = (𝑐(𝑟), 𝑐(𝑟+1), . . . , 𝑐(𝑟+V−1)).The values
𝑐(𝑘) are the points of 𝑐, while the directed pairs (𝑐(𝑘), 𝑐(𝑘+1)),
𝑘 ∈ 𝑍, are the directed edges of 𝑐.

The smallest integer 𝑝 ≡ 𝑝(𝑐) ≥ 1 satisfying the equation
𝑐(𝑟 + 𝑝) = 𝑐(𝑟), for all 𝑟 ∈ 𝑍, is the period of 𝑐. A
directed circuit 𝑐 such that 𝑝(𝑐) = 1 is called a loop. (In the
present work we will use directed circuits with distinct point
elements.)

Let us also consider a directed circuit 𝑐 (or a directed cycle
𝑐) with period 𝑝(𝑐) > 1. Then we may define by

𝐽
(𝑛)

𝑐

(𝑖, 𝑗) = 1, if there exists an 𝑟 ∈ 𝑍 such that

𝑖 = 𝑐 (𝑟) , 𝑗 = 𝑐 (𝑟 + 𝑛) ,

= 0, otherwise,

(3)

the 𝑛-step passage function associatedwith the directed circuit
𝑐, for any 𝑖, 𝑗 ∈ 𝑆, 𝑛 ≥ 1.

Furthermore we may define by

𝐽
𝑐

(𝑖) = 1, if there exists an 𝑟 ∈ 𝑍 such that 𝑖 = 𝑐 (𝑟) ,

= 0, otherwise,
(4)

the passage function associated with the directed circuit 𝑐, for
any 𝑖 ∈ 𝑆. The above definitions are due toMacQueen [2] and
Kalpazidou [1].

Given a denumerable set 𝑆 and an infinite denumerable
class 𝐶 of overlapping directed circuits (or directed cycles)
with distinct points (except for the terminals) in 𝑆 such that
all the points of 𝑆 can be reached from one another following
paths of circuit edges; that is, for each two distinct points 𝑖

and 𝑗 of 𝑆 there exists a finite sequence 𝑐
1

, . . . , 𝑐
𝑘

, 𝑘 ≥ 1, of
circuits (or cycles) of 𝐶 such that 𝑖 lies on 𝑐

1

and 𝑗 lies on 𝑐
𝑘

,
and any pair of consecutive circuits (𝑐

𝑛

, 𝑐
𝑛+1

) have at least one
point in common. Generally we may assume that the class 𝐶
contains, among its elements, circuits (or cycles) with period
greater or equal to 2.

With each directed circuit (or directed cycle) 𝑐 ∈ 𝐶

let us associate a strictly positive weight 𝑤
𝑐

which must be
independent of the choice of the representative of 𝑐, that is,
it must satisfy the consistency condition 𝑤cot𝑘 = 𝑤

𝑐

, 𝑘 ∈ 𝑍,
where 𝑡

𝑘

is the translation of length 𝑘 (that is, 𝑡
𝑘

(𝑛) ≡ 𝑛 + 𝑘,
𝑛 ∈ 𝑍, for any fixed 𝑘 ∈ 𝑍).

For a given class 𝐶 of overlapping directed circuits (or
cycles) and for a given sequence (𝑤

𝑐

)
𝑐∈𝐶

of weights we may
define by

𝑝
𝑖𝑗

=
∑
𝑐∈𝐶

𝑤
𝑐

⋅ 𝐽
(1)

𝑐

(𝑖, 𝑗)

∑
𝑐∈𝐶

𝑤
𝑐

⋅ 𝐽
𝑐

(𝑖)
(5)

the elements of a Markov transition matrix on 𝑆, if and only
if ∑
𝑐∈𝐶

𝑤
𝑐

⋅ 𝐽
𝑐

(𝑖) < ∞, for any 𝑖 ∈ 𝑆. This means that a
given Markov transition matrix 𝑃 = (𝑝

𝑖𝑗

), 𝑖, 𝑗 ∈ 𝑆, can be
represented by directed circuits (or cycles) and weights if and
only if there exists a class of overlapping directed circuits (or
cycles) 𝐶 and a sequence of positive weights (𝑤

𝑐

)
𝑐∈𝐶

such
that the formula (5) holds. In this case, the Markov transition
matrix 𝑃 has a unique stationary distribution 𝑝 which is a
solution of 𝑝𝑃 = 𝑝 and is defined by

𝑝 (𝑖) = ∑

𝑐∈𝐶

𝑤
𝑐

⋅ 𝐽
𝑐

(𝑖) , 𝑖 ∈ 𝑆. (6)

It is known that the following classes of Markov chains
may be represented uniquely by circuits (or cycles) and
weights:

(i) the recurrent Markov chains (Minping and Min [3]),
(ii) the reversible Markov chains.

3. Auxiliary Results

Let us consider aMarkov chain (𝑋
𝑛

)
𝑛≥0

onℵwith transitions
𝑘 → (𝑘+1), 𝑘 → (𝑘−1), and 𝑘 → 𝑘whose the elements of
the corresponding Markov transition matrix are defined by

𝑃 (𝑋
𝑛+1

= 0/𝑋
𝑛

= 0) = 𝑟
0

,

𝑃 (𝑋
𝑛+1

= 1/𝑋
𝑛

= 0) = 𝑝
0

, 𝑝
0

= 1 − 𝑟
0

,

𝑃 (𝑋
𝑛+1

= 𝑘 + 1/𝑋
𝑛

= 𝑘) = 𝑝
𝑘

, 𝑘 ≥ 1,

𝑃 (𝑋
𝑛+1

= 𝑘/𝑋
𝑛

= 𝑘) = 𝑟
𝑘

, 𝑘 ≥ 1,

𝑃 (𝑋
𝑛+1

= 𝑘 − 1/𝑋
𝑛

= 𝑘) = 𝑞
𝑘

, 𝑘 ≥ 1,

(7)

such that 𝑝
𝑘

+ 𝑞
𝑘

+ 𝑟
𝑘

= 1, 0 ≤ 𝑝
𝑘

, 𝑟
𝑘

≤ 1, for every 𝑘 ≥ 1, as
it is shown in (Figure 1).

Assume that (𝑝
𝑘

)
𝑘≥0

and (𝑟
𝑘

)
𝑘≥0

are arbitrary fixed
sequences with 0 ≤ 𝑝

0

= 1 − 𝑟
0

≤ 1, 0 ≤ 𝑝
𝑘

, 𝑟
𝑘

≤ 1, for every
𝑘 > 1. If we consider the directed circuits 𝑐

𝑘

= (𝑘, 𝑘 + 1, 𝑘),
𝑐
󸀠

𝑘

= (𝑘, 𝑘),𝑘 ≥ 0, and the collections of weights (𝑤
𝑐𝑘
)
𝑘≥0

and
(𝑤
𝑐

󸀠

𝑘

)
𝑘≥0

, respectively, then we may obtain that

𝑝
𝑘

=
𝑤
𝑐𝑘

𝑤
𝑐𝑘−1

+ 𝑤
𝑐𝑘
+ 𝑤
𝑐

󸀠

𝑘

, for every 𝑘 ≥ 1, (8)

with

𝑝
0

=
𝑤
𝑐0

𝑤
𝑐0
+ 𝑤
𝑐

󸀠

0

. (9)

Here the class 𝐶(𝑘) contains the directed circuits 𝑐
𝑘

=

(𝑘, 𝑘+1, 𝑘), 𝑐
𝑘−1

= (𝑘−1, 𝑘, 𝑘−1), and 𝑐
󸀠

𝑘

= (𝑘, 𝑘). Furthermore
we may define

𝑞
𝑘

=
𝑤
𝑐𝑘−1

𝑤
𝑐𝑘−1

+ 𝑤
𝑐𝑘
+ 𝑤
𝑐

󸀠

𝑘

, for every 𝑘 ≥ 1 (10)

and 𝑟
𝑘

= 𝑤
𝑐

󸀠

𝑘

/(𝑤
𝑐𝑘−1

+𝑤
𝑐𝑘
+𝑤
𝑐

󸀠

𝑘

), such that 𝑝
𝑘

+𝑞
𝑘

+ 𝑟
𝑘

= 1, for
every 𝑘 ≥ 1, with 𝑟

0

= 1 − 𝑝
0

= 𝑤
𝑐

󸀠

0

/(𝑤
𝑐0
+ 𝑤
𝑐

󸀠

0

).
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Figure 1

The transition matrix 𝑃 = (𝑝
𝑖𝑗

) with

𝑝
𝑖𝑗

=
∑
∞

𝑘=0

𝑤
𝑐𝑘
⋅ 𝐽
(1)

𝑐𝑘

(𝑖, 𝑗)

∑
∞

𝑘=0

[𝑤
𝑐𝑘
⋅ 𝐽
𝑐𝑘
(𝑖) + 𝑤

𝑐

󸀠

𝑘

⋅ 𝐽
𝑐

󸀠

𝑘

(𝑖)]
, for 𝑖 ̸= 𝑗, (11)

𝑝
𝑖𝑖

=

∑
∞

𝑘=0

𝑤
𝑐󸀠𝑘

⋅ 𝐽
(1)

𝑐

󸀠

𝑘

(𝑖, 𝑖)

∑
∞

𝑘=0

[𝑤
𝑐𝑘
⋅ 𝐽
𝑐𝑘
(𝑖) + 𝑤

𝑐

󸀠

𝑘

⋅ 𝐽
𝑐

󸀠

𝑘

(𝑖)]
, (12)

where 𝐽
(1)

𝑐𝑘

(𝑖, 𝑗) = 1, if 𝑖, 𝑗 are consecutive points of the circuit
𝑐
𝑘

, 𝐽
𝑐𝑘
(𝑖) = 1, if 𝑖 is a point of the circuit 𝑐

𝑘

, and 𝐽
𝑐

󸀠

𝑘

(𝑖) = 1,
if 𝑖 is a point of the circuit 𝑐

󸀠

𝑘

, expresses the representation
of the Markov chain (𝑋

𝑛

)
𝑛≥0

by directed cycles (especially by
directed circuits) and weights.

Furthermorewe consider also the “adjoint”Markov chain
(𝑋
󸀠

𝑛

)
𝑛≥0

on ℵ whose elements of the corresponding Markov
transition matrix are defined by

𝑃 (𝑋
󸀠

𝑛+1

= 0/𝑋
󸀠

𝑛

= 0) = 𝑟
󸀠

0

,

𝑃 (𝑋
󸀠

𝑛+1

= 1/𝑋
󸀠

𝑛

= 0) = 𝑞
󸀠

0

, 𝑞
󸀠

0

= 1 − 𝑟
󸀠

0

,

𝑃 (𝑋
󸀠

𝑛+1

= 𝑘 − 1/𝑋
󸀠

𝑛

= 𝑘) = 𝑝
󸀠

𝑘

, 𝑘 ≥ 1,

𝑃 (𝑋
󸀠

𝑛+1

= 𝑘/𝑋
󸀠

𝑛

= 𝑘) = 𝑟
󸀠

𝑘

, 𝑘 ≥ 1,

𝑃 (𝑋
󸀠

𝑛+1

= 𝑘 + 1/𝑋
󸀠

𝑛

= 𝑘) = 𝑞
󸀠

𝑘

, 𝑘 ≥ 1,

(13)

such that 𝑝󸀠
𝑘

+ 𝑞
󸀠

𝑘

+ 𝑟
󸀠

𝑘

= 1, 0 < 𝑝
󸀠

𝑘

, 𝑞
󸀠

𝑘

, 𝑟
󸀠

𝑘

≤ 1, for every 𝑘 ≥ 1,
as it is shown in (Figure 2).

Assume that (𝑞
󸀠

𝑘

)
𝑘≥0

and (𝑟
󸀠

𝑘

)
𝑘≥0

are arbitrary fixed
sequences with 0 ≤ 𝑞

󸀠

0

= 1 − 𝑟
󸀠

0

≤ 1, 0 ≤ 𝑞
󸀠

𝑘

, 𝑟󸀠
𝑘

≤ 1, for every
𝑘 ≥ 1. If we consider the directed circuits 𝑐󸀠󸀠

𝑘

= (𝑘+1, 𝑘, 𝑘+1),
𝑐
󸀠󸀠󸀠

𝑘

= (𝑘, 𝑘), 𝑘 ≥ 0, and the collections of weights (𝑤
𝑐

󸀠󸀠

𝑘

)
𝑘≥0

,
and (𝑤

𝑐

󸀠󸀠󸀠

𝑘

)
𝑘≥0

respectively, then we may have

𝑞
󸀠

𝑘

=
𝑤
𝑐

󸀠󸀠

𝑘

𝑤
𝑐

󸀠󸀠

𝑘−1

+ 𝑤
𝑐

󸀠󸀠

𝑘

+ 𝑤
𝑐

󸀠󸀠󸀠

𝑘

, for every 𝑘 ≥ 1, (14)

with

𝑞
󸀠

0

=
𝑤
𝑐

󸀠󸀠

0

𝑤
𝑐

󸀠󸀠

0

+ 𝑤
𝑐

󸀠󸀠󸀠

0

. (15)

Here the class 𝐶
󸀠

(𝑘) contains the directed circuits 𝑐
󸀠󸀠

𝑘

=

(𝑘 + 1, 𝑘, 𝑘 + 1), 𝑐
󸀠󸀠

𝑘−1

= (𝑘, 𝑘 − 1, 𝑘), and 𝑐
󸀠󸀠󸀠

𝑘

= (𝑘, 𝑘).
Furthermore we may define

𝑝
󸀠

𝑘

=
𝑤
𝑐

󸀠󸀠

𝑘−1

𝑤󸀠󸀠
𝑐𝑘−1

+ 𝑤
𝑐

󸀠󸀠

𝑘

+ 𝑤
𝑐

󸀠󸀠󸀠

𝑘

, for every 𝑘 ≥ 1,

𝑟
󸀠

𝑘

=
𝑤
𝑐

󸀠󸀠󸀠

𝑘

𝑤
𝑐

󸀠󸀠

𝑘−1

+ 𝑤
𝑐

󸀠󸀠

𝑘

+ 𝑤
𝑐

󸀠󸀠󸀠

𝑘

,

(16)

such that 𝑝󸀠
𝑘

+ 𝑞
󸀠

𝑘

+ 𝑟
󸀠

𝑘

= 1, for every 𝑘 ≥ 1, with

𝑟
󸀠

0

= 1 − 𝑞
󸀠

0

=
𝑤
𝑐

󸀠󸀠󸀠

0

𝑤
𝑐

󸀠󸀠

0

+ 𝑤
𝑐

󸀠󸀠󸀠

0

. (17)

So the transition matrix 𝑃
󸀠

= (𝑝
󸀠

𝑖𝑗

) with elements
equivalent to that given by the above-mentioned formulas
(11), (12) expresses also the representation of the “adjoint”
Markov chain (𝑋

󸀠

𝑛

)
𝑛≥0

by directed cycles (especially by
directed circuits) and weights.

Consequently we have the following.

Proposition 1. The Markov chain (𝑋
𝑛

)
𝑛≥0

defined as above
has a unique representation by directed cycles (especially by
directed circuits) and weights.

Proof. Let us consider the set of directed circuits 𝑐
𝑘

= (𝑘, 𝑘 +

1, 𝑘) and 𝑐
󸀠

𝑘

= (𝑘, 𝑘), for every 𝑘 ≥ 0, since only the transitions
from 𝑘 to 𝑘 + 1, 𝑘 to 𝑘 − 1, and 𝑘 to 𝑘 are possible. There are
three circuits through each point 𝑘 ≥ 1, 𝑐

𝑘−1

, 𝑐
𝑘

, and 𝑐
󸀠

𝑘

and
two circuits through 0: 𝑐

0

, 𝑐󸀠
0

.
The problem we have to manage is the definition of the

weights.Wemay symbolize by𝑤
𝑘

the weight𝑤
𝑐𝑘
of the circuit

c
𝑘

and by𝑤
󸀠

𝑘

the weight𝑤
𝑐

󸀠

𝑘

of the circuit 𝑐󸀠
𝑘

, for any 𝑘 ≥ 0.The
sequences (𝑤

𝑘

)
𝑘≥0

, (𝑤󸀠
𝑘

)
𝑘≥0

must be a solution of

𝑝
𝑘

=
𝑤
𝑘

𝑤
𝑘−1

+ 𝑤
𝑘

+ 𝑤󸀠
𝑘

, 𝑘 ≥ 1 with 𝑝
0

=
𝑤
0

𝑤
0

+ 𝑤󸀠
0

,

𝑟
𝑘

=
𝑤
󸀠

𝑘

𝑤
𝑘−1

+ 𝑤
𝑘

+ 𝑤󸀠
𝑘

, 𝑘 ≥ 1 with 𝑟
0

=
𝑤
󸀠

0

𝑤
0

+ 𝑤󸀠
0

,

𝑞
𝑘

= 1 − 𝑝
𝑘

− 𝑟
𝑘

, 𝑘 ≥ 1.

(18)

Let us take by 𝑏
𝑘

= 𝑤
𝑘

/𝑤
𝑘−1

, 𝛾
𝑘

= 𝑤
󸀠

𝑘

/𝑤
󸀠

𝑘−1

, 𝑘 ≥ 1.
As a consequence we may have

𝑏
𝑘

=
𝑝
𝑘

𝑞
𝑘

=
𝑝
𝑘

1 − 𝑝
𝑘

− 𝑟
𝑘

,

𝛾
𝑘

=
𝑟
𝑘

𝑟
𝑘−1

𝑝
𝑘−1

𝑝
𝑘

𝑏
𝑘

, for every 𝑘 ≥ 1.

(19)
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Figure 2

Given the sequences (𝑝
𝑘

)
𝑘≥0

and (𝑟
𝑘

)
𝑘≥0

, it is clear that the
above sequences (𝑏

𝑘

)
𝑘≥1

and (𝛾
𝑘

)
𝑘≥1

exist and are unique.This
means that the sequences (𝑤

𝑘

)
𝑘≥0

and (𝑤
󸀠

𝑘

)
𝑘≥0

are defined
uniquely, up to multiplicative constant factors, by

𝑤
𝑘

= 𝑤
0

⋅ 𝑏
1

⋅ ⋅ ⋅ 𝑏
𝑘

,

𝑤
󸀠

𝑘

= 𝑤
󸀠

0

⋅ 𝛾
1

⋅ ⋅ ⋅ 𝛾
𝑘

.

(20)

(The unicity is understood up to the constant factors 𝑤
0

,
𝑤
󸀠

0

.)

Proposition 2. The “adjoint”Markov chain (𝑋
󸀠

𝑛

)
𝑛≥0

defined as
above has a unique representation by directed cycles (especially
by directed circuits) and weights.

Proof. Following an analogous way of that given in the proof
of Proposition 1 the problem we have also to manage here
is the definition of the weights. To this direction we may
symbolize by 𝑤

󸀠󸀠

𝑘

the weight 𝑤
󸀠󸀠

𝑐𝑘

of the circuit 𝑐
󸀠󸀠

𝑘

and by
𝑤
󸀠󸀠󸀠

𝑘

the weight 𝑤󸀠󸀠󸀠
𝑐𝑘

of the circuit 𝑐󸀠󸀠󸀠
𝑘

, for every 𝑘 ≥ 0. The
sequences (𝑤󸀠󸀠

𝑘

)
𝑘≥0

and (𝑤
󸀠󸀠󸀠

𝑘

)
𝑘≥0

must be solutions of

𝑞
󸀠

𝑘

=
𝑤
󸀠󸀠

𝑘

𝑤󸀠󸀠
𝑘−1

+ 𝑤󸀠󸀠
𝑘

+ 𝑤󸀠󸀠󸀠
𝑘

, 𝑘 ≥ 1 with 𝑞
󸀠

0

=
𝑤
󸀠󸀠

0

𝑤󸀠󸀠
0

+ 𝑤󸀠󸀠󸀠
0

,

𝑟
󸀠

𝑘

=
𝑤
󸀠󸀠󸀠

𝑘

𝑤󸀠󸀠
𝑘−1

+ 𝑤󸀠󸀠
𝑘

+ 𝑤󸀠󸀠󸀠
𝑘

, 𝑘 ≥ 1 with 𝑟
󸀠

0

=
𝑤
󸀠󸀠󸀠

0

𝑤󸀠󸀠
0

+ 𝑤󸀠󸀠󸀠
0

,

𝑝
󸀠

𝑘

= 1 − 𝑞
󸀠

𝑘

− 𝑟
󸀠

𝑘

, 𝑘 ≥ 1.

(21)

By considering the sequences (𝑠
𝑘

)
𝑘

and (𝑡
𝑘

)
𝑘

where 𝑠
𝑘

=

𝑤
󸀠󸀠

𝑘−1

/𝑤
󸀠󸀠

𝑘

, 𝑡
𝑘

= 𝑤
󸀠󸀠󸀠

𝑘

/𝑤
󸀠󸀠󸀠

𝑘−1

, 𝑘 ≥ 1, we may obtain that

𝑠
𝑘

=
1 − 𝑞
󸀠

𝑘

− 𝑟
󸀠

𝑘

𝑞󸀠
𝑘

,

𝑡
𝑘

=
𝑟
󸀠

𝑘

𝑟󸀠
𝑘−1

⋅
𝑞
󸀠

𝑘

𝑞󸀠
𝑘−1

⋅ 𝑠
𝑘

, for every 𝑘 ≥ 1.

(22)

For given sequences (𝑞
󸀠

𝑘

)
𝑘≥0

, (𝑟
󸀠

𝑘

)
𝑘≥0

it is obvious that
(𝑠
𝑘

)
𝑘≥1

, (𝑡
𝑘

)
𝑘≥1

exist and are unique for those sequences, that
is, the sequences (𝑤

󸀠󸀠

𝑘

)
𝑘≥0

, (𝑤󸀠󸀠󸀠
𝑘

)
𝑘≥0

are defined uniquely, up
to multiplicative constant factors, by

𝑤
󸀠󸀠

𝑘

=
𝑤
󸀠󸀠

0

𝑠
1

⋅ 𝑠
2

⋅ ⋅ ⋅ 𝑠
𝑘

,

𝑤
󸀠󸀠󸀠

𝑘

= 𝑤
󸀠󸀠󸀠

0

⋅ 𝑡
1

, 𝑡
2

⋅ ⋅ ⋅ 𝑡
𝑘

.

(23)

(The unicity is based to the constant factors𝑤󸀠󸀠
0

,𝑤󸀠󸀠󸀠
0

.)

4. Recurrence and Transience of the Markov
Chains (𝑋

𝑛

)
𝑛≥0

and (𝑋
󸀠

𝑛

)
𝑛≥0

We have that for the Markov chain (𝑋
𝑛

)
𝑛≥0

, there is a unique
invariant measure up to a multiplicative constant factor 𝜇

𝑘

=

𝑤
𝑘−1

+ 𝑤
𝑘

+ 𝑤
󸀠

𝑘

, 𝑘 ≥ 1, 𝜇
0

= 𝑤
0

+ 𝑤
󸀠

0

, while for the Markov
chain (𝑋

󸀠

𝑛

)
𝑛≥0

,𝜇󸀠
𝑘

= 𝑤
󸀠󸀠

𝑘−1

+𝑤
󸀠󸀠

𝑘

+𝑤
󸀠󸀠󸀠

𝑘

, 𝑘 ≥ 1with𝜇
󸀠

0

= 𝑤
󸀠󸀠

0

+𝑤
󸀠󸀠󸀠

0

.
In the case that an irreducible chain is recurrent there is only
one invariant measure (finite or not), so we may obtain the
following.

Proposition 3. (i)TheMarkov chain (𝑋
𝑛

)
𝑛≥0

defined as above
is positive recurrent if and only if

∞

∑

𝑘=1

𝑏
1

⋅ 𝑏
2

⋅ ⋅ ⋅ 𝑏
𝑘

< +∞ (𝑜𝑟
1

𝑤
0

⋅

∞

∑

𝑘=1

𝑤
𝑘

< +∞) ,

∞

∑

𝑘=1

𝛾
1

⋅ 𝛾
2

⋅ ⋅ ⋅ 𝛾
𝜅

< +∞ (𝑜𝑟
1

𝑤󸀠
0

⋅

∞

∑

𝑘=1

𝑤
󸀠

𝑘

< +∞) .

(24)

(ii) The Markov chain (𝑋
󸀠

𝑛

)
𝑛≥0

defined as above is positive
recurrent if and only if

∞

∑

𝑘=1

1

𝑠
1

⋅ 𝑠
2

⋅ ⋅ ⋅ 𝑠
𝑘

< +∞ (𝑜𝑟
1

𝑤󸀠󸀠
0

⋅

∞

∑

𝑘=1

𝑤
󸀠󸀠

𝑘

< +∞) ,

∞

∑

𝑘=1

𝑡
1

⋅ 𝑡
2

⋅ ⋅ ⋅ 𝑡
𝑘

= +∞ (𝑜𝑟
1

𝑤󸀠󸀠󸀠
0

⋅

∞

∑

𝑘=1

𝑤
󸀠󸀠󸀠

𝑘

= +∞) .

(25)

In order to obtain recurrence and transience criterions
for the Markov chains (𝑋

𝑛

)
𝑛≥0

and (𝑋
󸀠

𝑛

)
𝑛≥0

we shall need the
following proposition (Karlin and Taylor [6]).

Proposition 4. Let us consider a Markov chain on ℵ which
is irreducible. Then if there exists a strictly increasing function
that is harmonic on the complement of a finite interval and
that is bounded, then the chain is transient. In the case that
there exists such a function which is unbounded then the chain
is recurrent.

Following this direction, we shall use a well-known
method-theorem based on the Foster-Kendall theorem (Kar-
lin and Taylor [6]) by considering the harmonic function
𝑔 = (𝑔

𝑘

, 𝑘 ≥ 1). For the Markov chain (𝑋
𝑛

)
𝑛≥0

this is a
solution of

𝑝
0

⋅ 𝑔
1

+ 𝑟
0

⋅ 𝑔
0

= 𝑔
0

,

𝑝
𝑘

⋅ 𝑔
𝑘+1

+ 𝑞
𝑘

⋅ 𝑔
𝑘−1

+ 𝑟
𝑘

⋅ 𝑔
𝑘

= 𝑔
𝑘

, 𝑘 ≥ 1.
(26)
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Since Δ𝑔
𝑘

= 𝑔
𝑘

− 𝑔
𝑘−1

, for every 𝑘 ≥ 1, we obtain that

𝑝
𝑘

⋅ 𝑔
𝑘+1

+ 𝑞
𝑘

⋅ 𝑔
𝑘

− 𝑞
𝑘

⋅ 𝑔
𝑘

+ 𝑞
𝑘

⋅ 𝑔
𝑘−1

+ 𝑟
𝑘

⋅ 𝑔
𝑘

= 𝑔
𝑘

,

𝑝
𝑘

⋅ (Δ𝑔
𝑘+1

+ 𝑔
𝑘

) + 𝑞
𝑘

⋅ 𝑔
𝑘

− 𝑞
𝑘

⋅ 𝑔
𝑘

+ 𝑞
𝑘

⋅ 𝑔
𝑘−1

+ 𝑟
𝑘

⋅ 𝑔
𝑘

= 𝑔
𝑘

𝑝
𝑘

⋅ Δ𝑔
𝑘+1

+ (𝑝
𝑘

+ 𝑞
𝑘

+ 𝑟
𝑘

) ⋅ 𝑔
𝑘

− 𝑞
𝑘

⋅ 𝑔
𝑘

+ 𝑞
𝑘

⋅ 𝑔
𝑘−1

= 𝑔
𝑘

𝑝
𝑘

⋅ Δ𝑔
𝑘+1

− 𝑞
𝑘

⋅ (𝑔
𝑘

− 𝑔
𝑘−1

) = 0

𝑝
𝑘

⋅ Δ𝑔
𝑘+1

= 𝑞
𝑘

⋅ Δ𝑔
𝑘

.

(27)

If we put 𝑚
𝑘

= Δ𝑔
𝑘

/Δ𝑔
𝑘+1

, we get 𝑚
𝑘

= 𝑝
𝑘

/𝑞
𝑘

(with
𝑝
𝑘

= 1 − 𝑞
𝑘

− 𝑟
𝑘

), 𝑘 ≥ 1, which is the equation of definition
of the sequences (𝑠

𝑘

)
𝑘≥1

and (𝑡
𝑘

)
𝑘≥1

(as a multiplicative factor
of the (𝑠

𝑘

)
𝑘≥1

) for the Markov chain (𝑋
󸀠

𝑛

)
𝑛≥0

such that 𝑞󸀠
𝑘

=

𝑞
𝑘

, 𝑟󸀠
𝑘

= 𝑟
𝑘

, for every 𝑘 ≥ 1. This means that the strictly
increasing harmonic functions of the Markov chain (𝑋

𝑛

)
𝑛≥0

are in correspondence with the weight representations of the
Markov chain (𝑋

󸀠

𝑛

)
𝑛≥0

such that

𝑞
󸀠

𝑘

= 𝑃 (𝑋
󸀠

𝑛+1

= 𝑘 + 1/𝑋
󸀠

𝑛

= 𝑘)

= 𝑃 (𝑋
𝑛+1

= 𝑘 − 1/𝑋
𝑛

= 𝑘) = 𝑞
𝑘

,

𝑟
󸀠

𝑘

= 𝑃 (𝑋
󸀠

𝑛+1

= 𝑘/𝑋
󸀠

𝑛

= 𝑘)

= 𝑃 (𝑋
𝑛+1

= 𝑘/𝑋
𝑛

= 𝑘) = 𝑟
𝑘

,

𝑝
󸀠

𝑘

= 1 − 𝑞
󸀠

𝑘

− 𝑟
󸀠

𝑘

= 1 − 𝑞
𝑘

− 𝑟
𝑘

= 𝑝
𝑘

, for every 𝑘 ≥ 1.

(28)

To express this kind of duality we will call the Markov
chain (𝑋

󸀠

𝑛

)
𝑛≥0

, the adjoint of the Markov chain (𝑋
𝑛

)
𝑛≥0

and
reciprocally in the case that the relation (28) is satisfied.

Equivalently for the Markov chain (𝑋
󸀠

𝑛

)
𝑛≥0

, the harmonic
function 𝑔

󸀠

= (𝑔
󸀠

𝑘

, 𝑘 ≥ 1) satisfies the equation

𝑟
󸀠

0

⋅ 𝑔
󸀠

0

+ 𝑞
󸀠

0

⋅ 𝑔
󸀠

1

= 𝑔
󸀠

0

,

𝑞
󸀠

𝑘

⋅ 𝑔
󸀠

𝑘+1

+ 𝑝
󸀠

𝑘

⋅ 𝑔
󸀠

𝑘−1

+ 𝑟
󸀠

𝑘

⋅ 𝑔
󸀠

𝑘

= 𝑔
󸀠

𝑘

, 𝑘 ≥ 1.

(29)

Since Δ𝑔
󸀠

𝑘

= 𝑔
󸀠

𝑘

− 𝑔
󸀠

𝑘−1

, for every 𝑘 ≥ 1, we have

𝑞
󸀠

𝑘

⋅ (Δ𝑔
󸀠

𝑘+1

+ 𝑔
󸀠

𝑘

) + 𝑝
󸀠

𝑘

⋅ 𝑔
󸀠

𝑘

− 𝑝
󸀠

𝑘

⋅ 𝑔
󸀠

𝑘

+ 𝑝
󸀠

𝑘

⋅ 𝑔
󸀠

𝑘−1

+ 𝑟
󸀠

𝑘

⋅ 𝑔
󸀠

𝑘

= 𝑔
󸀠

𝑘

,

(𝑝
󸀠

𝑘

+ 𝑞
󸀠

𝑘

+ 𝑟
󸀠

𝑘

) ⋅ 𝑔
󸀠

𝑘

+ 𝑞
󸀠

𝑘

⋅ Δ𝑔
󸀠

𝑘+1

− 𝑝
󸀠

𝑘

⋅ 𝑔
󸀠

𝑘

+ 𝑝
󸀠

𝑘

⋅ 𝑔
󸀠

𝑘−1

= 𝑔
󸀠

𝑘

,

𝑞
󸀠

𝑘

⋅ Δ𝑔
󸀠

𝑘+1

= 𝑝
󸀠

𝑘

⋅ (𝑔
󸀠

𝑘

− 𝑔
󸀠

𝑘−1

) = 𝑝
󸀠

𝑘

⋅ Δ𝑔
󸀠

𝑘

.

(30)

If we put ℓ
𝑘

= Δ𝑔
󸀠

𝑘+1

/Δ𝑔
󸀠

𝑘

, we get ℓ
𝑘

= 𝑝
󸀠

𝑘

/𝑞
󸀠

𝑘

(with
𝑞
󸀠

𝑘

= 1−𝑝
󸀠

𝑘

−𝑟
󸀠

𝑘

), 𝑘 ≥ 1, which is the equation of the definition
of the sequences (𝑏

𝑘

)
𝑘≥1

and (𝛾
𝑘

)
𝑘≥1

(as a multiplicative factor
of the (𝑏

𝑘

)
𝑘≥1

) for the Markov chain (𝑋
𝑛

)
𝑛≥0

such that 𝑝󸀠
𝑘

=

𝑝
𝑘

, 𝑟
󸀠

𝑘

= 𝑟
𝑘

, for every 𝑘 ≥ 1. By considering a similar
approximation of that given before for the Markov chain
(𝑋
𝑛

)
𝑛≥0

, we may say that the strictly increasing harmonic
functions of theMarkov chain (𝑋

󸀠

𝑛

)
𝑛≥0

are in correspondence
with the weight representations of the Markov chain (𝑋

𝑛

)
𝑛≥0

such that equivalent equations of (28) are satisfied.
So we may have the following.

Proposition 5. TheMarkov chain (𝑋
𝑛

)
𝑛≥0

defined as above is
transient if and only if the adjointMarkov chain (𝑋

󸀠

𝑛

)
𝑛≥0

is pos-
itive recurrent and reciprocally. Moreover the adjoint Markov
chains (𝑋

𝑛

)
𝑛≥0

and (𝑋
󸀠

𝑛

)
𝑛≥0

are null recurrent simultaneously.
In particular

(i) the Markov chain (𝑋
𝑛

)
𝑛≥0

defined as above is transient
if and only if (1/𝑤󸀠󸀠

0

) ⋅ ∑
∞

𝑘=1

𝑤
󸀠󸀠

𝑘

< +∞ and (1/𝑤
󸀠󸀠󸀠

0

) ⋅

∑
∞

𝑘=1

𝑤
󸀠󸀠󸀠

𝑘

= +∞;
(ii) theMarkov chain (𝑋

󸀠

𝑛

)
𝑛≥0

defined as above is transient
if and only if (1/𝑤

0

) ⋅ ∑
∞

𝑘=1

𝑤
𝑘

< +∞ and (1/𝑤
󸀠

0

) ⋅

∑
∞

𝑘=1

𝑤
󸀠

𝑘

< +∞;
(iii) the adjointMarkov chains (𝑋

𝑛

)
𝑛≥0

and (𝑋
󸀠

𝑛

)
𝑛≥0

are null
recurrent if

1

𝑤
0

⋅

∞

∑

𝑘=1

𝑤
𝑘

=
1

𝑤󸀠󸀠
0

⋅

∞

∑

𝑘=1

𝑤
󸀠󸀠

𝑘

= +∞,

1

𝑤󸀠
0

⋅

∞

∑

𝑘=1

𝑤
󸀠

𝑘

=
1

𝑤󸀠󸀠󸀠
0

⋅

∞

∑

𝑘=1

𝑤
󸀠󸀠󸀠

𝑘

= +∞.

(31)

Proof. The proof of Proposition 5 is an application mainly of
Proposition 4 as well as of Proposition 3.

Acknowledgment

C. Ganatsiou is indebted to the referee for the valuable
comments, which led to a significant change of the first
version.

References

[1] S. Kalpazidou, Cycle Representations of Markov Processes,
Springer, New York, NY, USA, 1995.

[2] J. MacQueen, “Circuit processes,” Annals of Probability, vol. 9,
pp. 604–610, 1981.

[3] Q. Minping and Q. Min, “Circulation for recurrent markov
chains,” Zeitschrift für Wahrscheinlichkeitstheorie und Ver-
wandte Gebiete, vol. 59, no. 2, pp. 203–210, 1982.

[4] A. H. Zemanian, Infinite Electrical Networks, Cambridge Uni-
versity Press, Cambridge, UK, 1991.

[5] Yv. Derriennic, “Random walks with jumps in random envi-
ronments (examples of cycle and weight representations),” in
Probability Theory and Mathematical Statistics: Proceedings of
The 7th Vilnius Conference 1998, B. Grigelionis, J. Kubilius, V.
Paulauskas, V. A. Statulevicius, and H. Pragarauskas, Eds., pp.
199–212, VSP, Vilnius, Lithuania, 1999.

[6] S. Karlin and H. Taylor, A First Course in Stochastic Processes,
Academic Press, New York, NY, USA, 1975.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


