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This paper introduces, investigates, and discusses the 𝛾-order generalized lognormal distribution (𝛾-GLD). Under certain values of
the extra shape parameter 𝛾, the usual lognormal, log-Laplace, and log-uniform distribution, are obtained, as well as the degenerate
Dirac distribution.The shape of all themembers of the 𝛾-GLD family is extensively discussed.The cumulative distribution function
is evaluated through the generalized error function, while series expansion forms are derived. Moreover, the moments for the 𝛾-
GLD are also studied.

1. Introduction

Lognormal distribution has been widely applied in many
different aspects of life sciences, including biology, ecology,
geology, and meteorology as well as in economics, finance,
and risk analysis, see [1]. Also, it plays an important role in
Astrophysics and Cosmology; see [2–4] among others, while
for Lognormal expansions see [5].

In principle, the lognormal distribution is defined as
the distribution of a random variable whose logarithm
is normally distributed, and usually it is formulated with
two parameters. Furthermore, log-uniform and log-laplace
distributions can be similarly defined with applications in
finance; see [6, 7]. Specifically, the power-tail phenomenon
of the Log-Laplace distributions [8] attracts attention quite
often in environmental sciences, physics, economics, and
finance as well as in longitudinal studies [9]. Recently,
Log-Laplace distributions have been proposed for modeling
growth rates as stock prices [10] and currency exchange
rates [7].

In this paper a generalized form of Lognormal distri-
bution is introduced, involving a third shape parameter.
With this generalization, a family of distributions is emerged,
which combines theoretically all the properties of Lognormal,
Log-Uniform, and Log-Laplace distributions, depending on
the value of this third parameter.

Thegeneralized𝛾-order Lognormal distribution (𝛾-GLD)
is the distribution of a random vector whose logarithm fol-
lows the 𝛾-order normal distribution, an exponential power
generalization of the usual normal distribution, introduced
by [11, 12]. This family of 𝑝-dimensional generalized normal
distributions, denoted by N𝑝

𝛾
(𝜇, Σ), is equipped with an

extra shape parameter 𝛾 and constructed to play the role of
normal distribution for the generalized Fisher’s entropy type
of information; see also [13, 14].

The density function 𝑓𝑋 of a 𝑝-variate, 𝛾-order, normally
distributed random variable 𝑌 ∼ N𝑝

𝛾
(𝜇, Σ), with location

vector 𝜇 ∈ R𝑝, positive definite scale matrix Σ ∈ R𝑝×𝑝, and
shape parameter 𝛾 ∈ R \ [0, 1], is given by [11].

𝑓𝑌 (𝑦) = 𝑓𝑌 (𝑦; 𝜇, Σ, 𝛾)

= 𝐶
𝑝

𝛾
|detΣ|−1/2 exp{−

𝛾 − 1

𝛾
𝑄𝜃(𝑦)

𝛾/2(𝛾−1)
} ,

𝑦 ∈ R
𝑝
,

(1)

where 𝑄𝜃 is the quadratic form 𝑄𝜃(𝑦) = (𝑦 − 𝜇)
T
Σ
−1
(𝑦 − 𝜇),

𝜃 = (𝜇, Σ), while 𝐶𝑝
𝛾
being the normalizing factor

𝐶
𝑝

𝛾
= 𝜋
−𝑝/2 Γ (𝑝/2 + 1)

Γ (𝑝 ((𝛾 − 1) /𝛾))
(
𝛾 − 1

𝛾
)

𝑝((𝛾−1)/𝛾)−1

. (2)
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From (1), notice that the second-ordered normal is the
known multivariate normal distribution; that is, N𝑝

2
(𝜇, Σ) =

N𝑝(𝜇, Σ); see also [13, 15].
In Section 2, a generalized form of the Lognormal distri-

bution is introduced, which is derived from the univariate
family of N𝛾(𝜇, 𝜎

2
) = N1

𝛾
(𝜇, 𝜎
2
) distributions, denoted by

LN𝛾(𝜇, 𝜎), and includes the Log-Laplace distribution as well
as the Log-Uniformdistribution.The shape of theLN𝛾(𝜇, 𝜎)
members is extensively discussed while it is connected to the
tailing behavior of LN𝛾 through the study of the c.d.f. In
Section 3, an investigation of the moments of the generalized
Lognormal distribution, as well as the special cases of Log-
Uniform and Log-Laplace distributions, is presented.

The generalized error function, that is briefly pro-
vided here, plays an important role in the development of
LN𝛾(𝜇, 𝜎); see Section 2. The generalized error function
denoted by Erf𝑎 and the generalized complementary error
function Erfc𝑎 = 1−Erf𝑎, 𝑎 ≥ 0 [16], are defined, respectively,
as

Erf𝑎 (𝑥) :=
Γ (𝑎 + 1)

√𝜋
∫

𝑥

0

𝑒
−𝑡
𝑎

𝑑𝑡, 𝑥 ∈ R. (3)

The generalized error function can be expressed (changing to
𝑡
𝑎 variable), through the lower incomplete gamma function
𝛾(𝑎, 𝑥) or the upper (complementary) incomplete gamma
function Γ(𝑎, 𝑥) = Γ(𝑎) − 𝛾(𝑎, 𝑥), in the form

Erf𝑎 (𝑥) =
Γ (𝑎)

√𝜋
𝛾 (

1

𝑎
, 𝑥
𝑎
) =

Γ (𝑎)

√𝜋
[Γ (

1

𝑎
) − Γ (

1

𝑎
, 𝑥
𝑎
)] ,

𝑥 ∈ R;

(4)

see [16]. Moreover, adopting the series expansion form of the
lower incomplete gamma function,

𝛾 (𝑎, 𝑥) := ∫

𝑥

0

𝑡
𝑎−1

𝑒
−𝑡
𝑑𝑡 =

∞

∑

𝑘=0

(−1)
𝑘

𝑘! (𝑎 + 𝑘)
𝑥
𝑎+𝑘

, 𝑥, 𝑎 ∈ R+,

(5)

a series expansion form of the generalized error function is
extracted:

Erf𝑎 (𝑥) =
Γ (𝑎 + 1)

√𝜋

∞

∑

𝑘=0

(−1)
𝑘

𝑘! (𝑘𝑎 + 1)
𝑥
𝑘𝑎+1

, 𝑥, 𝑎 ∈ R+. (6)

Notice that, Erf2 is the known error function erf , that is,
Erf2(𝑥) = erf(𝑥), while Erf0 is the function of a straight
line through the origin with slope (𝑒√𝜋)−1. Applying 𝑎 = 2,
the known incomplete gamma function identities such as
𝛾(1/2, 𝑥) = √𝜋 erf √𝑥 and Γ(1/2, 𝑥) = √𝜋(1 − erf √𝑥) =

√𝜋 erfc√𝑥, 𝑥 ≥ 0 are obtained. Moreover, Erf𝑎 0 = 0 for all
𝑎 ∈ R+ and

lim
𝑥→±∞

Erf𝑎𝑥 = ±
1

√𝜋
Γ (𝑎) Γ (

1

𝑎
) , 𝑎 ∈ R+, (7)

as 𝛾(𝑎, 𝑥) → Γ(𝑎) when 𝑥 → +∞.

2. The 𝛾-Order Lognormal Distribution

Thegeneralized univariate Lognormal distribution is defined,
through the univariate generalized 𝛾-order normal distribu-
tion, as follows.

Definition 1. When the logarithm of a random variable 𝑋
follows the univariate 𝛾-order normal distribution, that is,
log𝑋 ∼ N𝛾(𝜇, 𝜎

2
), then 𝑋 is said to follow the generalized

Lognormal distribution, denoted byLN𝛾(𝜇, 𝜎); that is, 𝑋 ∼

LN𝛾(𝜇, 𝜎).

TheLN𝛾(𝜇, 𝜎) is referred to as the (generalized) 𝛾-order
Lognormal distribution (𝛾-GLD). Like the usual Lognormal
distribution, the parameter 𝜇 ∈ R is considered to be
log-scaled, while the non log-scaled 𝜇 (i.e. 𝑒𝜇 when 𝜇 is
assumed log-scaled) is referred to as the location parameter of
LN𝛾(𝜇, 𝜎). Hence, if𝑋 ∼ LN𝛾(𝜇, 𝜎), then log𝑋 is a 𝛾-order
normally distributed variable; that is, log𝑋 ∼ N𝛾(𝜇, 𝜎

2
).

Therefore, the location parameter 𝜇 ∈ R of 𝑋 is in fact the
mean of𝑋’s natural logarithm, that is, E[log𝑋] = 𝜇, while

Var [log𝑋] = (
𝛾

𝛾 − 1
)

2((𝛾−1)/𝛾)
Γ (3 ((𝛾 − 1) /𝛾))

Γ (((𝛾 − 1) /𝛾))
𝜎
2
, (8)

Kurt [log𝑋] =
Γ (𝛾 − 1/𝛾) Γ (5 (𝛾 − 1/𝛾))

Γ2 (3 ((𝛾 − 1)/𝛾))
; (9)

see [15] for details onN𝛾.
Let 𝑌 := log𝑋 ∼ N𝛾(𝜇, 𝜎

2
) with density function as in

(1) and 𝑋 = 𝑔(𝑌) = 𝑒
𝑌. Then, the density function 𝑓𝑋 of

𝑋 ∼ LN𝛾(𝜇, 𝜎) can be written, through (1), as

𝑓𝑋 (𝑥) = 𝑓𝑋 (𝑥; 𝜇, 𝜎, 𝛾) = 𝑓𝑌 (𝑔
−1
(𝑥))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

𝑑𝑥
𝑔
−1
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑓𝑌 (log𝑥)
1

𝑥

=

exp {− ((𝛾 − 1) /𝛾) 󵄨󵄨󵄨󵄨(log𝑥 − 𝜇) /𝜎
󵄨󵄨󵄨󵄨
𝛾/(𝛾−1)

}

2𝜎 ((𝛾 − 1)/𝛾)
1/𝛾
Γ ((𝛾 − 1) /𝛾) 𝑥

.

(10)

The probability density function 𝑓𝑋, as in (10), is defined in
R∗
+
= R+\0; that is,LN𝛾(𝜇, 𝜎) has zero threshold.Therefore,

the following definition extends Definition 1.

Definition 2. When the logarithm of a random variable 𝑋 +

𝜗 follows the univariate 𝛾-order normal distribution, that is,
log(𝑋 + 𝜗) ∼ N𝛾(𝜇, 𝜎

2
), then 𝑋 is said to follow the genera-

lized Lognormal distribution with threshold 𝜗 ∈ R; that is,
𝑋 ∼ LN𝛾(𝜇, 𝜎; 𝜗).

It is clear that when 𝑋 ∼ LN𝛾(𝜇, 𝜎; 𝜗, ), log(𝑋 − 𝜗) is a
𝛾-order normally distributed variable, that is, log(𝑋 − 𝜗) ∼

N𝛾(𝜇, 𝜎
2
), and thus, 𝜇 is the mean of (𝑋 − 𝜗)’s natural

logarithm while Var[log𝑋] is the same as in (8).
Let 𝑌 = log(𝑋 + 𝜗) ∼ N𝛾(𝜇, 𝜎

2
). The density function of

𝑋 = 𝑒
𝑌
− 𝜗 ∼ LN𝛾(𝜇, 𝜎; 𝜗) is given by 𝑓𝑋(𝑥) = 𝑓𝑋(𝑥 − 𝜗),

𝑥 > 0.
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Let 𝑧 = (log(𝑥 − 𝜗) − 𝜇)/𝜎. Then, the limiting threshold
density value of 𝑓𝑋(𝑥) with 𝑥 → 𝜗

+ implies that

lim
𝑥→𝜗+

𝑓𝑋 (𝑥)

= 𝜎
−1
𝐶
1

𝛾
lim
𝑧→−∞

exp{−𝑧(𝜎 +
𝜇

𝑧
−
𝛾 − 1

𝛾
|𝑧|
1/(𝛾−1)

)}

= 𝜎
−1
𝐶
1

𝛾
𝑒
(sgn 𝛾)(−∞)

,

(11)

and therefore

lim
𝑥→𝜗+

𝑓𝑋 (𝑥) = {
0, 𝛾 ∈ (1, +∞) ,

+∞, 𝛾 ∈ (−∞, 0) ;
(12)

that is, the 𝑓𝑋’s defining domain, for the positive-ordered
Lognormal random variable 𝑋, can be extended to include
threshold point 𝜗 by letting 𝑓𝑋(𝜗) = 0.

The generalized Lognormal family of distributionsLN𝛾
is a wide range family bridging the Log-Uniform LU,
Lognormal LN, and Log-Laplace LL distributions, as
well as the degenerate Dirac D distributions. We have the
following.

Theorem 3. The generalized Lognormal distributionLN𝛾(𝜇,
𝜎), for order values of 𝛾 = 0, 1, 2, ±∞, is reduced to

LN𝛾 (𝜇, 𝜎) =

{{{{{

{{{{{

{

D (𝑒
𝜇
) , 𝛾 = 0,

LU (𝑒
𝜇−𝜎

, 𝑒
𝜇+𝜎

) , 𝛾 = 1,

LN (𝜇, 𝜎) , 𝛾 = 2,

LL(𝑒
𝜇
,
1

𝜎
,
1

𝜎
) , 𝛾 = ±∞.

(13)

Proof. From definition (1) of N𝛾 the order 𝛾 value is a
real number outside the closed interval [0, 1]. Let 𝑋𝛾 ∼

LN𝛾(𝜇, 𝜎) with density function 𝑓𝑋
𝛾

as in (10). We consider
the following cases.

(i) The limiting case 𝛾 = 1: let 𝑥 ∈ R∗
+
such that

| log𝑥 − 𝜇| ≤ 1. Using the gamma function additive
identity Γ(𝑧 + 1) = 𝑧Γ(𝑧), 𝑧 ∈ R+, in (10), we have
LN1(𝜇, 𝜎) = lim𝛾→1+LN𝛾(𝜇, 𝜎) with

𝑓𝑋
1

(𝑥) := lim
𝛾→1+

𝑓𝑋
𝛾

(𝑥)

=
{

{

{

1

2𝜎𝑥
, 𝑥 ∈ [𝑒

𝜇−𝜎
, 𝑒
𝜇+𝜎

] ,

0, 𝑥 ∈ (−∞, 𝑒
𝜇−𝜎

) ∪ (𝑒
𝜇+𝜎

, +∞) ,

(14)

which is the density function of the Log-Uniform dis-
tributionLU(𝑎, 𝑏), 0 < 𝑎 < 𝑏, with 𝑎 = 𝑒

𝜇−𝜎 and 𝑏 =
𝑒
𝜇+𝜎; that is, 𝜇 = (1/2) log(𝑎𝑏) and 𝜎 = (1/2) log(𝑏/𝑎).
Therefore, first-ordered Lognormal distribution is in
fact the Log-Uniform distribution, with vanishing
threshold density, 𝑓𝑋

1

(0) = lim𝑥→0+𝑓𝑋
1

(𝑥) = 0.
For the purposes of statistical application the Log-
Uniform moments are not the same as the model
parameters; that is, although 𝜇𝑋 = 𝜇, 𝜎𝑋 = 𝜎/√3.

(ii) The “normal” case 𝛾 = 2: it is clear thatLN2(𝜇, 𝜎) =
LN(𝜇, 𝜎), as 𝑓𝑋

2

coincides with the Lognormal
density function, and therefore the second-ordered
Lognormal distribution is in fact the usual Lognormal
distribution.

(iii) The limiting case 𝛾 = ±∞: we have LN±∞(𝜇, 𝜎) :=
lim𝛾→±∞LN𝛾(𝜇, 𝜎) with

𝑓𝑋
±∞

(𝑥) := lim
𝛾→±∞

𝑓𝑋
𝛾

(𝑥) =
1

2𝜎𝑥
exp{−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

log𝑥 − 𝜇
𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
}

=

{{{{

{{{{

{

𝑒
−𝜇/𝜎

2𝜎
𝑥
(1−𝜎)/𝜎

, 𝑥 ∈ (0, 𝑒
𝜇
] ,

𝑒
𝜇/𝜎

2𝜎
𝑥
−(𝜎+1)/𝜎

, 𝑥 > 𝑒
𝜇
,

(15)

which coincides with the density function of the
known Log-Laplace distribution (symmetric log-
exponential distribution) LL(𝜇

󸀠
, 𝛼, 𝛽) with 𝜇󸀠 = 𝑒

𝜇

and 𝛼 = 𝛽 = 1/𝜎; see [8]. Therefore, the infinite-
ordered log-normal distribution is in fact the Log-
Laplace distribution, with threshold density

𝑓𝑋
±∞

(0) = lim
𝑥→0+

𝑓𝑋
±∞

(𝑥) =

{{

{{

{

0, 𝜎 < 1,

1, 𝜎 = 1,

+∞, 𝜎 > 1.

(16)

For the purposes of statistical application, the Log-
Laplace moments are not the same as the model
parameters; that is, although 𝜇𝑋 = 𝜇, 𝜎𝑋 = √2𝜎.

(iv) The limiting case 𝛾 = 0: we have

lim
𝛾→0−

𝑓𝑋
𝛾

(𝑥) = lim
𝑘:=[(𝛾−1)/𝛾]→∞

𝑓𝑋
𝛾

(𝑥) , 𝑥 ∈ R
∗

+
, (17)

where [𝑎] is the integer value of 𝑎 ∈ R. For the value
𝑥 = 𝑒
𝜇, the p.d.f. as in (10) implies

lim
𝛾→0−

𝑓𝑋
𝛾

(𝑒
𝜇
) =

1

2𝜎𝑒𝜇
( lim
𝑘→∞

𝑘
𝑘

𝑘!
) ⋅ 𝑒
0
= +∞, (18)

through Stirling’s asymptotic formula 𝑘! ≈ √2𝜋𝑘(𝑘/

𝑒)
𝑘 as 𝑘 → ∞. Assuming now 𝑥 ̸= 𝑒

𝜇, (10), through
(18), implies

𝑓𝑋
0

(𝑥) := lim
𝛾→0−

𝑓𝑋
𝛾

(𝑥) =

󵄨󵄨󵄨󵄨log𝑥 − 𝜇
󵄨󵄨󵄨󵄨

2√2𝜋𝜎2𝑥
⋅ 0 ⋅

1

𝑒
= 0; (19)

that is, LN0(𝜇, 𝜎) := lim𝛾→0−LN𝛾(𝜇, 𝜎) = D(𝑒
𝜇
)

as 𝑓𝑋
0

coincides with the Dirac density function,
with the (non-log-scaled) location parameter 𝑒𝜇 of
LN0(𝜇, 𝜎) being the singular (infinity) point. There-
fore, the zero-ordered Lognormal distribution LN0
is in fact the degenerateDirac distributionwith pole at
the location parameter of LN𝛾→0− (with vanishing
threshold density 𝑓𝑋

0

(0) = lim𝑥→0+𝑓𝑋
0

(𝑥) = 0).

From the above limiting cases (i), (iii), and (iv), the defining
domain R \ [0, 1] of the order values 𝛾, used in (1), is safely
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extended to include the values 𝛾 = 0, 1, ±∞; that is, 𝛾 can
now be defined outside the open interval (0, 1). Eventually,
the family of the 𝛾-order normals can include the Log-
Uniform, Lognormal, Log-Laplace, and the degenerate Dirac
distributions as (13) holds.

FromTheorem 3, (12), and (15), the domain of the density
functions 𝑓𝑋

𝛾

(𝑥), 𝑥 > 0, can also be extended to include the
threshold point 𝑥 = 0 by setting 𝑓𝑋

𝛾

(0) := 0 for all non-
negative-ordered Lognormals, that is, for all 𝛾 ∈ 0 ∪ [1, +∞),
while for the Log-Laplace case of 𝛾 = +∞ with 𝜎 = 1 by
setting 𝑓𝑋

+∞

(0) := (1/2)𝑒
−𝜇.

From the fact that N0(𝜇, ⋅) = D(𝜇), see [15], one can
say that the degenerate log-Dirac distribution, say LD(𝜇),
equals LN0(𝜇, ⋅), and hence, through Theorem 3, we can
writeLD(𝜇) = D(𝑒

𝜇
).

Proposition 4. The mode of the positive-ordered Lognormal
random variable 𝑋𝛾 ∼ LN𝛾(𝜇, 𝜎), 𝑋 < 𝑒

𝜇
𝛾 ∈ (1, +∞), is

given by

Mode𝑋𝛾 = 𝑒
𝜇−𝜎
𝛾

, (20)

with corresponding maximum density value,

max𝑓𝑋
𝛾

= 𝑓𝑋
𝛾

(Mode𝑋𝛾)

=
exp {(𝜎𝛾) /𝛾 − 𝜇}

2𝜎((𝛾 − 1)/𝛾)
1/𝛾
Γ ((𝛾 − 1) /𝛾)

.

(21)

Proof. Recall the density function of 𝑋𝛾 ∼ LN𝛾(𝜇, 𝜎) as in
(10), and let 𝑚 = Mode 𝑋𝛾 > 0. Then it holds that (𝑑/𝑑𝑥)
𝑓𝑋
𝛾

(𝑚; 𝜇, 𝜎, 𝛾) = 0; that is,

(
1

𝜎

󵄨󵄨󵄨󵄨log𝑚 − 𝜇
󵄨󵄨󵄨󵄨)

1/(𝛾−1)
𝑑

𝑑𝑥

󵄨󵄨󵄨󵄨log𝑥 − 𝜇
󵄨󵄨󵄨󵄨𝑥=𝑚 = −

𝜎

𝑚
. (22)

From (𝑑/𝑑𝑥)|𝑥| = sgn𝑥, 𝑥 ∈ R, we have

𝑚 = 𝑒
𝜇−𝜎
𝛾

, (23)

provided that 𝑥 < 𝑒
𝜇. Otherwise, (23) holds trivially, as (22)

implies 𝜎 = 0; that is, 𝑚 = 𝑒
𝜇. Moreover, (𝑑/𝑑𝑥)𝑓𝑋

𝛾

(𝑥) > 0

when

1 + sgn (log𝑥 − 𝜇) 𝜎𝛾/(1−𝛾)󵄨󵄨󵄨󵄨log𝑥 − 𝜇
󵄨󵄨󵄨󵄨
1/(𝛾−1)

> 0, 𝑥 > 0,

(24)

and thus, 𝑓𝑋
𝛾

is a strictly ascending density function on
(0, 𝑒
𝜇−𝜎
𝛾

) when 𝛾 > 1 and also on (𝑒
𝜇−𝜎
𝛾

, 𝑒
𝜇
) when 𝛾 < 0.

Similarly, with (𝑑/𝑑𝑥)𝑓𝑋
𝛾

(𝑥) < 0, 𝑓𝑋 is a strictly descending
density function on (𝑒

𝜇−𝜎
𝛾

, +∞) when 𝛾 > 1 and also on
(0, 𝑒
𝜇−𝜎
𝛾

) ∪ (𝑒
𝜇
, +∞) when 𝛾 < 0. Specifically, for 𝛾 < 0, the

point 𝑒𝜇 is a nonsmooth point of 𝑓𝑋, as

lim
𝑥→𝑒𝜇

𝑑

𝑑𝑥
𝑓𝑋
𝛾

(𝑥) = −

𝐶
1

𝛾

(𝜎𝑒𝜇)
2
[𝜎 + lim
𝑥→𝑒𝜇

sgn (log𝑥 − 𝜇)

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜎

log𝑥 − 𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1/(1−𝛾)

] = +∞.

(25)

Therefore, the positive-ordered Lognormals are formed by
a unimodal density function with mode as in (20) and
corresponding maximum density as in (21); see Figures 1(a1),
1(a2), and 1(a3).

Proposition 5. The global mode point of the negative-ordered
Lognormal random variable 𝑋𝛾 ∼ LN𝛾(𝜇, 𝜎), 𝛾 ∈ (−∞, 0),
is (in limit) the threshold 0 which is an infinite (probability)
density point. Moreover, the location parameter (i.e., 𝑒𝜇) of
LN𝛾(𝜇, 𝜎) is a nonsmooth (local) mode point for all𝑋𝛾<0 that
corresponds to locally maximum density

𝑓𝑋
𝛾

(𝑒
𝜇
) =

1

2𝜎((𝛾 − 1)/𝛾)
1/𝛾
Γ ((𝛾 − 1) /𝛾) 𝑒𝜇

, (26)

while 𝑒𝜇−𝜎
𝛾

is a local minimum (probability) density point with
corresponding locally minimum density 𝑓𝑋

𝛾

(𝑒
𝜇−𝜎
𝛾

).

Proof. The negative-ordered Lognormals are formed by den-
sity functions admitting threshold 0 (in limit) for their
global mode point (of infinite density), as shown in (12).
Moreover, from the previously discussedmonotonicity of𝑓𝑋

𝛾

in Proposition 4, all the negative-ordered Lognormals admit
also 𝑒

𝜇 as a local nonsmooth mode point and exp{𝜇 − 𝜎
𝛾
}

as a local minimum density point, with densities as in (26)
and 𝑓𝑋

𝛾

(𝑒
𝜇−𝜎
𝛾

), respectively; see Figures 1(b1), 1(b2), and
1(b3).

Furthermore, Proposition 5 holds (in limit) for random
variables𝑋1 and𝑋±∞ which provide Log-Uniform and Log-
Laplace distributions, respectively. Indeed, for given 𝑎, 𝑏 ∈

R∗
+
, 𝑋1 ∼ LU(𝑎, 𝑏) = LN1(𝜇, 𝜎) with 𝜇 = (1/2) log(𝑎𝑏)

and 𝜎 = (1/2) log(𝑏/𝑎), we get, through (20) and (21), that
Mode𝑋1 := Mode𝑋𝛾→1+ = 𝑒

𝜇−𝜎
= 𝑎 with corresponding

maximum density (i.e., the maximum value of the density
function),

max𝑓𝑋
1

= 𝑓𝑋
1

(𝑎) =
𝑒
𝜎−𝜇

2𝜎
lim
𝛾→1+

((𝛾 − 1) /𝛾)
(𝛾−1)/𝛾

Γ (((𝛾 − 1) /𝛾) + 1)

=
1

𝑎 log (𝑏/𝑎)
.

(27)

Moreover, the nonzerominimumdensity (i.e., theminimum,
but not zero, value of the density function) is obtained at
𝑥 = 𝑏withmin𝑓𝑋

1

= 𝑓𝑋
1

(𝑏) = 1/2𝜎𝑏 = 1/(𝑏 log(𝑏/𝑎)).These
results are in accordance with the Log-Uniform density
function in (14).

For 𝑋±∞ ∼ LN±∞(log𝜇, 1/𝜎) = LL(𝜇, 𝜎, 𝜎), we
evaluate, through (20) and (21), that

Mode𝑋+∞ =

{{{{{{

{{{{{{

{

0, 𝜎 < 1,

𝜇

𝑒
𝜎 = 1,

𝜇, 𝜎 > 1,

(28)

with the corresponding maximum density value being infi-
nite; that is, max𝑓𝑋

𝛾

= 𝑓𝑋
𝛾

(0) = +∞, provided 𝜎 < 1, and
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Figure 1: Graphs of the density functions 𝑓𝑋
𝛾

,𝑋𝛾 ∼ LN𝛾(0, 𝜎), for 𝜎 = 2/3, 1, 3/2, and various positive (left subfigures) and negative (right
subfigures) 𝛾 values.
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max𝑓𝑋
+∞

= 𝜎/(2𝜇), provided 𝜎 ≥ 1. The same result can
also be derived through (26) as 𝛾 → −∞. These results are
in accordance with the Log-Laplace density function in (15),
although for 𝜎 = 1, Mode𝑋±∞ can be defined, through (15),
for any value inside the interval (0, 𝜇].

The above discussion on behavior of the modes with
respect to shape parameter 𝛾 is formed in the following
propositions.

Proposition 6. Consider the positive-ordered Lognormal fam-
ily of distributionsLN𝛾(𝜇, 𝜎) with fixed parameters 𝜇, 𝜎 and
𝛾 ≥ 1.When 𝛾 rises, that is, when onemoves fromLog-Uniform
to Log-Laplace distribution inside the LN𝛾 family, the mode
points ofLN𝛾 are

(i) strictly increasing from 𝑒
𝜇−𝜎 (Log-Uniform case) to

𝑒
𝜇 (Log-Laplace case) provided that 𝜎 < 1 (with
their corresponding maximum density values moving
smoothly from (1/2𝜎)𝑒

𝜎−𝜇 to +∞),
(ii) fixed at 𝑒𝜇−1 for all LN𝛾≥1(𝜇, 𝜎 = 1) (with the cor-

responding maximum density values moving smoothly
from (1/2)𝑒

1−𝜇 to (1/2)𝑒−𝜇),
(iii) strictly decreasing from 𝑒

𝜇−𝜎 (Log-Uniform case) to
threshold 0 (Log-Laplace case) provided that 𝜎 > 1

(with their corresponding maximum density values
moving smoothly from (1/2𝜎)𝑒

𝜎−𝜇 to (1/2𝜎)𝑒−𝜇).

Proof. Let 𝑋𝛾 ∼ LN𝛾(𝜇, 𝜎), Mode𝑋𝛾 is a smooth mono-
tonous function of 𝛾 ∈ (−∞, 0) ∪ (1, +∞) for positive-and
negative-ordered𝑋𝛾, as

𝑑

𝑑𝛾
Mode𝑋𝛾 = −𝜎

𝛾 log (𝜎) 𝑒𝜇−𝜎
𝛾

. (29)

For𝑋±∞ ∼ LN±∞(𝜇, 𝜎) we evaluate, through (20) and (21),
that

Mode𝑋+∞ =

{{

{{

{

𝑒
𝜇
, 𝜎 < 1,

𝑒
𝜇−1

, 𝜎 = 1,

0, 𝜎 > 1,

(30)

with the corresponding maximum density value being infi-
nite; that is, max𝑓𝑋

𝛾

= 𝑓𝑋
𝛾

(0) = +∞, provided 𝜎 > 1, and
max𝑓𝑋

+∞

= 1/(2𝜎𝑒
𝜇
), provided 𝜎 ≤ 1.

Assume that 𝛾 ≥ 1. Considering (27), (30) with (29) and
Proposition 4, the results for the positive-ordered Lognor-
mals hold.

Proposition 7. For the negative-ordered Lognormal family of
distributionsLN𝛾(𝜇, 𝜎)with 𝛾 < 0, when 𝛾 rises, that is, when
one moves from Log-Laplace to degenerate Dirac distribution
inside the LN𝛾 family, the local minimum (probability)
density points ofLN𝛾 are

(i) strictly increasing from threshold 0 (Log-Laplace case)
to 𝑒𝜇−1 (Dirac case) provided that 𝜎 < 1,

(ii) fixed at 𝑒𝜇−1 for allLN𝛾 (𝜇, 𝜎 = 1),

(iii) strictly decreasing from 𝑒
𝜇 (Log-Laplace case) to 𝑒𝜇−1

(Dirac case) provided that 𝜎 > 1.

Proof. Assume now that 𝛾 < 0. From (29) we have (𝑑/𝑑𝛾)
(𝑒
𝜇−𝜎
𝛾

) < 0 when 𝜎 > 1 and (𝑑/𝑑𝛾)(𝑒𝜇−𝜎
𝛾

) > 0 when 𝜎 < 1.
Therefore, the local minimum density point 𝑒

𝜇−𝜎
𝛾

(see
Proposition 5) for 𝜎 > 1 is decreasing from 𝑒

𝜇−𝜎
𝛾

|𝛾→−∞ = 𝑒
𝜇

to Mode𝑋0 = 𝑒
𝜇−1 through (20). When 𝜎 = 1, 𝑒𝜇−𝜎

𝛾

=

𝑒
𝜇−1 for all 𝛾 < 0, while for 𝜎 < 1, 𝑒𝜇−𝜎

𝛾

increases from
𝑒
𝜇−𝜎
𝛾

|𝛾→−∞ = 0 to Mode𝑋0 = 𝑒
𝜇−1 through (20).

It is easy to see that for the Log-Laplace caseLL(𝜇, 𝜎, 𝜎),
the local minimum density point 𝑒𝜇−𝜎

𝛾

of 𝑋𝛾<0 with 𝜎 > 1

coincides (in limit) with the local nonsmooth mode point 𝑒𝜇
of 𝑋𝛾; see Figure 1(b3). Also, notice that the local minimum
density point 𝑒𝜇−𝜎

𝛾

, 𝛾 < 0, for the Dirac case D(𝑒
𝜇
), is

the limiting point 𝑒𝜇−1 although the (probability) density in
D(𝑒
𝜇
) case vanishes everywhere except at the infinite pole 𝑒𝜇.

Figure 1 illustrates the probability density functions 𝑓𝑋
𝛾

curves for scale parameters 𝜎 = 2/3, 1, 3/2 of the positive-
ordered lognormally distributed 𝑋𝛾 ∼ LN𝛾≥1(0, 𝜎) in
Figures 1(a1)–1(a3), respectively, while the p.d.f. of negative-
ordered lognormally distributed 𝑋𝛾 ∼ LN𝛾<0(0, 𝜎) are
depicted in Figures 1(b1)–1(b3), respectively. Moreover, the
density points 𝑒𝜇−𝜎

𝛾

on 𝑓𝑋
𝛾

are also depicted (small circles
over p.d.f. curves with their corresponding ticks on 𝑥-axis).
According to Proposition 7, in Figures 1(a1)–1(a3), that is,
for positive-ordered 𝑋𝛾≥1, these density points represent the
mode points on 𝑓𝑋

𝛾

while in Figures 1(b1)–1(b3), that is, for
negative-ordered𝑋𝛾<0, represent the local minimum density
points on 𝑓𝑋

𝛾

curves.
For the evaluation of the cumulative distribution function

(c.d.f.) of the generalized Lognormal distribution, the follow-
ing theorem is stated and proved.

Theorem 8. The c.d.f. 𝐹𝑋
𝛾

of a 𝛾-order Lognormal random
variable𝑋𝛾 ∼ LN𝛾(𝜇, 𝜎) is given by

𝐹𝑋
𝛾

(𝑥)

=
1

2
+

√𝜋

2Γ ((𝛾 − 1) /𝛾) Γ (𝛾/ (𝛾 − 1))

× Erf 𝛾/(𝛾−1) {(
𝛾 − 1

𝛾
)

(𝛾−1)/𝛾 log𝑥 − 𝜇
𝜎

}

(31)

= 1 −
1

2Γ ((𝛾 − 1) /𝛾)
Γ(

𝛾 − 1

𝛾
,
𝛾 − 1

𝛾
(
log𝑥 − 𝜇

𝜎
)

𝛾/(𝛾−1)

) ,

𝑥 ∈ R
∗

+
.

(32)

Proof. From density function 𝑓𝑋𝛾, as in (10), we have

𝐹𝑋
𝛾

(𝑥) = 𝐹𝑋
𝛾

(𝑥; 𝜇, 𝜎, 𝛾) = ∫

𝑥

0

𝑓𝑋
𝛾

(𝑡) 𝑑𝑡

= 𝜎
−1
𝐶
1

𝛾
∫

𝑥

0

𝑡
−1 exp{−

𝛾 − 1

𝛾

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

log 𝑡 − 𝜇
𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾/(𝛾−1)

}𝑑𝑡.

(33)
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Applying the transformation 𝑤 = (log 𝑡 − 𝜇)/𝜎, 𝑡 > 0, the
above c.d.f. is reduced to

𝐹𝑋
𝛾

(𝑥) = 𝐶
1

𝛾
∫

(log 𝑥−𝜇)/𝜎

−∞

exp{−
𝛾 − 1

𝛾
|𝑤|
𝛾/(𝛾−1)

}𝑑𝑤

= Φ𝑍
𝛾

(
log𝑥 − 𝜇

𝜎
) ,

(34)

where Φ𝑍
𝛾

is the c.d.f. of the standardized 𝛾-order normal
distribution 𝑍𝛾 = (1/𝜎)(log𝑋𝛾 − 𝜇) ∼ N𝛾(0, 1). Moreover,
Φ𝑍
𝛾

can be expressed in terms of the generalized error
function. In particular,

Φ𝑍
𝛾

(𝑧) = 𝐶
1

𝛾
∫

𝑧

−∞

exp{−
𝛾 − 1

𝛾
|𝑤|
𝛾/(𝛾−1)

}𝑑𝑤

= Φ𝑍
𝛾

(0) + 𝐶
1

𝛾
∫

𝑧

0

exp{−
𝛾 − 1

𝛾
|𝑤|
𝛾/(𝛾−1)

}𝑑𝑤,

(35)

and as 𝑓𝑍
𝛾

is a symmetric density function around zero, we
have

Φ𝑍
𝛾

(𝑧) =
1

2
+ 𝐶
1

𝛾
∫

𝑧

0

exp{−
𝛾 − 1

𝛾
|𝑤|
𝛾/(𝛾−1)

}𝑑𝑤

=
1

2
+ 𝐶
1

𝛾
∫

𝑧

0

exp
{

{

{

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝛾 − 1

𝛾
)

(𝛾−1)/𝛾

𝑤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾/(𝛾−1)
}

}

}

𝑑𝑤,

(36)

and thus

Φ𝑍
𝛾

(𝑧) =
1

2
+ 𝐶
1

𝛾
(

𝛾

𝛾 − 1
)

(𝛾−1)/𝛾

× ∫

((𝛾−1)/𝛾)
(𝛾−1)/𝛾

𝑧

0

exp {−𝑢𝛾/(𝛾−1)} 𝑑𝑢.

(37)

Substituting the normalizing factor, as in (2), and using (3),
we obtain

Φ𝑍
𝛾

(𝑧) =
1

2
+

√𝜋

2Γ (((𝛾 − 1) /𝛾) + 1) Γ ((2𝛾 − 1) / (𝛾 − 1))

× Erf𝛾/(𝛾−1) {(
𝛾 − 1

𝛾
)

(𝛾−1)/𝛾

𝑧} , 𝑧 ∈ R,

(38)

and finally, through (34), we derive (31), which forms (32)
through (4).

It is essential for numeric calculations to express (31)
considering positive arguments for Erf. Indeed, through (37),
we have

𝐹𝑋
𝛾

(𝑥) =
1

2
+

sgn (log𝑥 − 𝜇)√𝜋
2Γ ((𝛾 − 1) /𝛾) Γ (𝛾/ (𝛾 − 1))

× Erf𝛾/(𝛾−1) {(
𝛾 − 1

𝛾
)

(𝛾−1)/𝛾 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

log𝑥 − 𝜇
𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
} ,

(39)

while applying (4) into (39) it is obtained that

𝐹𝑋
𝛾

(𝑥) =
1 + sgn (log𝑥 − 𝜇)

2
−
sgn (log𝑥 − 𝜇)
2Γ ((𝛾 − 1) /𝛾)

× Γ(
𝛾 − 1

𝛾
,
𝛾 − 1

𝛾

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

log𝑥 − 𝜇
𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾/(𝛾−1)

) .

(40)

As the generalized error function Erf𝑎 is defined in (4),
through the upper incomplete gamma function Γ(𝑎

−1
, ⋅),

series expansions can be used for a more “numerical-
oriented” form of (4). Here some expansions of the c.d.f. of
the generalized Lognormal distribution are presented.

Corollary 9. The c.d.f. 𝐹𝑋
𝛾

can be expressed in the series
expansion form

𝐹𝑋
𝛾

(𝑥) =
1

2
+

((𝛾 − 1)/𝛾)
(𝛾−1)/𝛾

(2/𝛾) Γ ((𝛾 − 1) /𝛾)
(
log𝑥 − 𝜇

𝜎
)

×

∞

∑

𝑘=0

(((1 − 𝛾)/𝛾)
󵄨󵄨󵄨󵄨(log𝑥 − 𝜇)/𝜎

󵄨󵄨󵄨󵄨
𝛾/(𝛾−1)

)
𝑘

𝑘! [(𝑘 + 1) 𝛾 − 1]
,

𝑥 ∈ R
∗

+
.

(41)

Proof. Substituting the series expansion form of (6) into (39)
and expressing the infinite series using the integer powers 𝑘,
the series expansion as in (41) is derived.

Corollary 10. For the negative-ordered lognormally dis-
tributed random variable 𝑋𝛾 with 𝛾 = 1/(1 − 𝑛) ∈ R−, 𝑛 ∈ N,
𝑛 ≥ 2, the finite expansion is obtained as

𝐹𝑋
𝛾

(𝑥)=
1

2
+
1

2
sgn (log𝑥 − 𝜇) −

sgn (log𝑥 − 𝜇)

2 exp {𝑛󵄨󵄨󵄨󵄨(log𝑥 − 𝜇)/𝜎
󵄨󵄨󵄨󵄨
1/𝑛
}

×

𝑛−1

∑

𝑘=0

𝑛
𝑘

𝑘!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

log𝑥 − 𝜇
𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘/𝑛

.

(42)

Proof. Applying the following finite expansion form of the
upper incomplete gamma function,

Γ (𝑛, 𝑥) = (𝑛 − 1)!𝑒
−𝑥
𝑛−1

∑

𝑘=0

𝑥
𝑘

𝑘
, 𝑥 ∈ R, 𝑛 ∈ N

∗
= N \ 0,

(43)

into (40), we readily get (42).

Example 11. For the (−1)-ordered lognormally distributed
𝑋−1 (i.e., for 𝑛 = 2), we have

𝐹𝑋
−1

(𝑥) =
1

2
+
1

2
sgn (log𝑥 − 𝜇) − sgn (log𝑥 − 𝜇)

×

1 + 2√
󵄨󵄨󵄨󵄨(log𝑥 − 𝜇) /𝜎

󵄨󵄨󵄨󵄨

2 exp {2√󵄨󵄨󵄨󵄨(log𝑥 − 𝜇) /𝜎
󵄨󵄨󵄨󵄨}

,

(44)
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while for the (−1/2)-ordered lognormally distributed 𝑋−1/2

(i.e., for 𝑛 = 3), we have

𝐹𝑋
−1/2

(𝑥) =
1

2
+
1

2
sgn (log𝑥 − 𝜇) − sgn (log𝑥 − 𝜇)

×

1 + 3
3√
󵄨󵄨󵄨󵄨(log𝑥 − 𝜇) /𝜎

󵄨󵄨󵄨󵄨 + 9
3

√((log𝑥 − 𝜇)/𝜎)2

2 exp {3 3√󵄨󵄨󵄨󵄨(log𝑥 − 𝜇) /𝜎
󵄨󵄨󵄨󵄨}

.

(45)

Example 12. For the second-ordered Lognormal random
variable 𝑋2 ∼ LN2(𝜇, 𝜎), we immediately derive, from (31),
that

𝐹𝑋
2

(𝑥) = Φ𝑋
2

(
log𝑥 − 𝜇

𝜎
) =

1

2
+
1

2
Erf2 (

log𝑥 − 𝜇
√2𝜎

)

=
1

2
+
1

2
erf (

log𝑥 − 𝜇
√2𝜎

) ;

(46)

that is, the c.d.f. of the usual Lognormal is derived, as it is
expected, due toLN2 = LN; see Theorem 3.

Example 13. For the infinite-ordered Lognormal 𝑋±∞ ∼

LN±∞(𝜇, 𝜎), setting (𝛾 − 1)/𝛾 = 1, we obtain through (41)
and the exponential series expansion that

𝐹𝑋
±∞

(𝑥)

=
1

2
+
1

2
√𝜋Erf1 (

log𝑥 − 𝜇
𝜎

)

=
1

2
−
1

2
sgn (log𝑥 − 𝜇)

∞

∑

𝑘=0

1

(𝑘 + 1)!
(−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

log𝑥 − 𝜇
𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

𝑘+1

=
1

2
+
1

2
sgn (log𝑥 − 𝜇) − 1

2
sgn (log𝑥 − 𝜇)

× exp{−
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

log𝑥 − 𝜇
𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
} ,

(47)

and hence

𝐹𝑋
±∞

(𝑥) =

{{

{{

{

1

2
𝑒
𝜇/𝜎

𝑥
1/𝜎
, 𝑥 ∈ (0, 𝑒

𝜇
] ,

1 −
𝑒
𝜇/𝜎

2𝑥1/𝜎
, 𝑥 ∈ (𝑒

𝜇
, +∞) ,

(48)

which is the c.d.f. of the Log-Laplace distribution as in (15).
This is expected as LN±∞(𝜇, 𝜎) = LL(𝑒

𝜇
, 1/𝜎, 1/𝜎); see

Theorem 3.

It is interesting to mention here that the same result can
also be derived through (42), as this finite expansion can be
extended for 𝑛 = 1, which provides (in limit) the c.d.f. of the
infinite-ordered Lognormal distribution.

Example 14. Similarly, for the first-ordered random variable
𝑋1 ∼ LN1(𝜇, 𝜎), the expansion (41) can be written as

𝐹𝑋
𝛾

(𝑥)

=
1

2
+

((𝛾 − 1)/𝛾)
(𝛾−1)/𝛾

2Γ (((𝛾 − 1) /𝛾) + 1)
(
log𝑥 − 𝜇

𝜎
)

×
[
[

[

1 + (𝛾 − 1)

∞

∑

𝑘=1

(((1 − 𝛾)/𝛾)
󵄨󵄨󵄨󵄨(log𝑥 − 𝜇)/𝜎

󵄨󵄨󵄨󵄨
𝛾/(𝛾−1)

)
𝑘

𝑘! [(𝑘 + 1) 𝛾 − 1]

]
]

]

,

(49)

and provided that (log𝑥 − 𝜇)/𝜎 ≤ 1, we obtain

𝐹𝑋
1

(𝑥) = lim
𝛾→1+

𝐹𝑋
𝛾

(𝑥) =
1

2
+
log𝑥 − 𝜇

2𝜎
(1 + 0)

=
log𝑥 − 𝜇 + 𝜎

2𝜎
,

(50)

with 𝐹𝑋
1

(𝑒
𝜇−𝜎

) = 0 and 𝐹𝑋
1

(𝑒
𝜇+𝜎

) = 1. Therefore,

𝐹𝑋
1

(𝑥) =

{{{

{{{

{

0, 𝑥 ∈ (0, 𝑒
𝜇−𝜎

) ,

1

2𝜎
(log𝑥 − 𝜇 + 𝜎) , 𝑥 ∈ [𝑒

𝜇−𝜎
, 𝑒
𝜇+𝜎

] ,

1, 𝑥 ∈ (𝑒
𝜇+𝜎

, +∞) ,

(51)

coincides with the c.d.f. of the Log-Uniform distribution
LU (𝑎 = 𝑒

𝜇−𝜎
, 𝑏 = 𝑒

𝜇+𝜎
) as in (15). This is expected as

LN1(𝜇, 𝜎) = LU(𝑒
𝜇−𝜎

, 𝑒
𝜇+𝜎

); see Theorem 3.

Table 1 provides the probability values 𝑃𝛾;1 = Pr{𝑋𝛾 ≤ 𝑖},
𝑖 = 1/2, 1, 2, . . . , 5, for various 𝑋𝛾 ∼ LN𝛾(0, 1). Notice that
𝑃𝛾;1 = 1/2 for all 𝛾 values due to the fact that 1 = 𝑒

𝜇
|𝜇=0 =

Med𝑋𝛾 (see Theorem 8); that is, the point 1 coincides with
the 𝛾-invariant median of the LN𝛾(0, 1) family discussed
previously. Moreover, the last two columns provide also the
1st and 3rd quartile points 𝑞1;𝛾 and 𝑞3;𝛾 of𝑋𝛾; that is, Pr{𝑋𝛾 ≤
𝑞𝑘;𝛾} = 𝑘/4, 𝑘 = 1, 3, for various 𝛾 values. These quartiles are
evaluated using the quantile function Q𝑋

𝛾

of r.v.𝑋𝛾; that is,

Q𝑋
𝛾

(𝑃) := inf {𝑥 ∈ R
∗

+
| 𝐹𝑋

𝛾

(𝑥) ≥ 𝑃}

= exp{ sgn (2𝑃 − 1) 𝜎

× [
𝛾

𝛾 − 1
Γ
−1
(
𝛾 − 1

𝛾
, |2𝑃 − 1|)]

(𝛾−1)/𝛾

} ,

𝑃 ∈ (0, 1) ,

(52)

for 𝑃 = 1/4, 3/4, that is derived through (40). The values of
the inverse upper incomplete gamma function Γ−1((𝛾−1)/𝛾, ⋅)
were numerically calculated.

Figure 2 illustrates the c.d.f. 𝐹𝑋
𝛾

curves, as in (39), for cer-
tain r.v. 𝑋𝛾 ∼ LN𝛾(0, 𝜎) and for scale parameters 𝜎 = 2/3,
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Table 1: Probabilitymass values𝑃𝛾;𝑖 = Pr{𝑋𝛾 ≤ 𝑖}, 𝑖 = 1/2, 1, 2, . . . , 5, and the 1st and 3rd quartiles 𝑞1;𝛾, 𝑞3;𝛾 for various generalized lognormally
distributed𝑋𝛾 ∼ LN𝛾(0, 1).

𝛾 𝑃𝛾;1/2 𝑃𝛾;1 𝑃𝛾;2 𝑃𝛾;3 𝑃𝛾;4 𝑃𝛾;5 𝑞1;𝛾 𝑞3;𝛾

−50 0.2501 0.5000 0.7499 0.8326 0.8739 0.8987 0.4998 2.0008
−10 0.2505 0.5000 0.7495 0.8297 0.8698 0.8940 0.4990 2.0038
−5 0.2508 0.5000 0.7492 0.8264 0.8652 0.8887 0.4982 2.0071
−2 0.2515 0.5000 0.7485 0.8187 0.8539 0.8756 0.4964 2.0145
−1 0.2521 0.5000 0.7479 0.8097 0.8408 0.8601 0.4945 2.0223
−1/2 0.2524 0.5000 0.7476 0.7989 0.8248 0.8410 0.4925 2.0303
−1/10 0.2528 0.5000 0.7482 0.7757 0.7895 0.7984 0.4986 2.0426
1 0.1534 0.5000 0.8466 1.0000 1.0000 1.0000 0.6065 1.6487
3/2 0.2381 0.5000 0.7619 0.8848 0.9437 0.9721 0.5172 1.9334
2 0.2441 0.5000 0.7559 0.8640 0.9172 0.9462 0.5094 1.9630
3 0.2472 0.5000 0.7528 0.8505 0.8989 0.9267 0.5049 1.9804
4 0.2481 0.5000 0.7519 0.8452 0.8917 0.9188 0.5034 1.9867
5 0.2486 0.5000 0.7514 0.8425 0.8878 0.9145 0.5025 1.9899
10 0.2494 0.5000 0.7506 0.8375 0.8810 0.9068 0.5011 1.9954
50 0.2499 0.5000 0.7501 0.8341 0.8761 0.9013 0.5002 1.9992
±∞ 0.2500 0.5000 0.7500 0.8333 0.8750 0.9000 0.5000 2.0000

1, 3/2 in the 3 subfigures, respectively. Moreover, the 1st and
3rd quartile points Q𝑋

𝛾

(1/4) and Q𝑋
𝛾

(3/4) are also depicted
(small circles over c.d.f. curves with their corresponding ticks
on 𝑥-axis).

Theorem 15. The (non-log-scaled) location parameter 𝑒𝜇 is in
fact the geometricmean aswell as themedian for all generalized
lognormally distributed 𝑋𝛾 ∼ LN𝛾(𝜇, 𝜎). Moreover, this
median is also characterized by vanishing median absolute
deviation.

Proof. Considering (39) and the fact that Erf𝑎0 = 0, 𝑎 ∈ R∗
+
,

it holds that Med𝑋𝛾 = 𝐹
−1

𝑋
𝛾

(1/2) = 𝑒
𝜇. For the geometric

mean (𝜇𝑔)𝑋
𝛾

= 𝑒
E[log𝑋

𝛾
], we readily obtain (𝜇𝑔)𝑋

𝛾

= 𝑒
𝜇 as

log𝑋𝛾 ∼ N𝛾(𝜇, 𝜎
2
) with E[𝑋𝛾] = 𝜇. A dispersion measure

for the median is the so-called median absolute deviation or
MAD, defined by MAD(𝑋𝛾) = Med | 𝑋𝛾 − Med𝑋𝛾 |. For
𝑋𝛾 ∼ LN𝛾(𝜇, 𝜎), we have 𝑋𝛾 − Med𝑋𝛾 = 𝑋𝛾 − 𝑒

𝜇
∼

LN𝛾(𝜇, 𝜎; −𝑒
𝜇
); that is, 𝑋𝛾 − 𝑒

𝜇 follows the generalized
Lognormal distributionwith threshold−𝑒𝜇. Furthermore, |𝑌|
is the “folded distribution” case of 𝑌 := 𝑋𝛾 − 𝑒

𝜇 which is
distributed through p.d.f. of the form

𝑓|𝑌| (𝑥) = 𝑓𝑌 (−𝑥) + 𝑓𝑌 (𝑥) , 𝑥 ∈ R+, (53)

where 𝑓𝑌 is the p.d.f. of 𝑌. For example, see [17] on the
folded normal distribution. However, the density function𝑓𝑌
is defined in (−𝑒𝜇, +∞) due to threshold−𝑒𝜇, while it vanishes
elsewhere; that is,

𝑓|𝑌| (𝑥) = {
𝑓𝑌 (−𝑥) + 𝑓𝑌 (𝑥) , 0 ≤ 𝑥 ≤ 𝑒

𝜇
,

𝑓𝑌 (𝑥) , 𝑥 > 𝑒
𝜇
.

(54)

Therefore, the c.d.f. of |𝑌| is given by

𝐹|𝑌| (𝑥) = ∫

𝑥

0

𝑓|𝑌| (𝑡) 𝑑𝑡 = ∫

𝑒
𝜇

0

𝑓𝑌 (−𝑡) 𝑑𝑡 + ∫

𝑒
𝜇

0

𝑓𝑌 (𝑡) 𝑑𝑡

+ ∫

𝑥

𝑒𝜇
𝑓𝑌 (𝑡) 𝑑𝑡, 𝑥 ∈ R+.

(55)

Applying the transformation 𝑤 = (1/𝜎) [log(𝑒𝜇 − 𝑡) − 𝜇], 𝑡 <
𝑒
𝜇, into the first integral of (55) and 𝑧 = (1/𝜎) [log(𝑡+𝑒𝜇)−𝜇],
𝑡 > −𝑒

𝜇, into the other two integrals, we obtain

𝐹|𝑌| (𝑥) = 𝐶
1

𝛾
∫

0

−∞

exp{−
𝛾 − 1

𝛾
|𝑤|
𝛾/(𝛾−1)

}𝑑𝑤 + 𝐶
1

𝛾

× ∫

(1/𝜎) log 2

0

exp{−
𝛾 − 1

𝛾
|𝑧|
𝛾/(𝛾−1)

}𝑑𝑧

+ 𝐶
1

𝛾
∫

𝑔(𝑥)

(1/𝜎) log 2
exp{−

𝛾 − 1

𝛾
|𝑧|
𝛾/(𝛾−1)

}𝑑𝑧,

𝑔 (𝑥) :=
log (𝑥 + 𝑒𝜇) − 𝜇

𝜎
, 𝑥 ∈ R+,

(56)

and hence

𝐹|𝑌| (𝑥) = Φ𝑍 (0) + [Φ𝑍 (
log 2
𝜎

) − Φ𝑍 (0)]

+ [Φ𝑍 (𝑔 (𝑥)) − Φ𝑍 (
log 2
𝜎

)]

= Φ𝑍(
log (𝑥 + 𝑒𝜇) − 𝜇

𝜎
) ,

(57)
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Figure 2: Graphs of the c.d.f. 𝐹𝑋
𝛾

,𝑋𝛾 ∼ LN𝛾(0, 𝜎), for 𝜎 = 2/3, 1, 3/2, and various 𝛾 values.

withΦ𝑍 being the c.d.f. of the standardized r.v.𝑍 ∼ N𝛾(0, 1).
From (38) and the fact that Erf𝑎0 = 0, 𝑎 ∈ R∗

+
, it is clear that

(57) implies MAD𝑋𝛾 = Med|𝑋𝛾 − 𝑒
𝜇
| = 𝐹
−1

|𝑋
𝛾
−𝑒𝜇|

(1/2) = 0, for
every 𝑋𝛾 ∼ LN𝛾(𝜇, 𝜎), and the theorem has been proved.

3. Moments of the 𝛾-Order
Lognormal Distribution

For the evaluation of themoments of the generalized Lognor-
mal distribution, the following holds.
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Proposition 16. The 𝑡th raw moment 𝜇(𝑡)
𝑋

of a generalized
lognormally distributed random variable 𝑋 ∼ LN𝛾(𝜇, 𝜎) is
given by

𝜇
(𝑡)

𝑋
=

𝑒
𝑡𝜇

Γ ((𝛾 − 1) /𝛾)

∞

∑

𝑛=0

(𝑡𝜎)
2𝑛

(2𝑛)!
(

𝛾

𝛾 − 1
)

2𝑛((𝛾−1)/𝛾)

× Γ((2𝑛 + 1)
𝛾 − 1

𝛾
)

(58)

and coincides with the moment generating function of the 𝛾-
order normally distributed log𝑋; that is,𝑀log𝑋(𝑡) = 𝜇

(𝑡)

𝑋
.

Proof. From the definition of the 𝑡th raw moment 𝜇(𝑡)
𝑋
, we

have

𝜇
(𝑡)

𝑋
= E [𝑋𝑡] = ∫

R
+

𝑥
𝑡
𝑓𝑋 (𝑥) 𝑑𝑥

=
1

𝜎
𝐶
1

𝛾
∫
R
+

𝑥
𝑡−1 exp{−

𝛾 − 1

𝛾

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

log𝑥 − 𝜇
𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾/(𝛾−1)

}𝑑𝑥,

(59)

and applying the transformation 𝑧 = ((𝛾 − 1)/𝛾)
(𝛾−1)/𝛾

(1/𝜎)

(log𝑥 − 𝜇), 𝑥 > 0, we get

𝜇
(𝑡)

𝑋
= 𝐶
1

𝛾
(

𝛾

𝛾 − 1
)

(𝛾−1)/𝛾

∫
R

exp{𝑡𝜇 + 𝑛(
𝛾

𝛾 − 1
)

(𝛾−1)/𝛾

𝜎𝑧}

× exp {−|𝑧|𝛾/(𝛾−1)} 𝑑𝑧.
(60)

Through the exponential series expansion

exp{𝑡(
𝛾

𝛾 − 1
)

(𝛾−1)/𝛾

𝜎𝑧} =

∞

∑

𝑛=0

(𝑡𝜎)
𝑛

𝑛!
(

𝛾

𝛾 − 1
)

𝑛((𝛾−1)/𝛾)

𝑧
𝑛
,

(61)

it is obtained that

𝜇
(𝑡)

𝑋
= 2𝐶
1

𝛾
(

𝛾

𝛾 − 1
)

(𝛾−1)/𝛾

𝑒
𝑡𝜇
∞

∑

𝑛=0

(𝑡𝜎)
2𝑛

(2𝑛)!
(

𝛾

𝛾 − 1
)

2𝑛((𝛾−1)/𝛾)

× ∫
R
+

𝑧
2𝑛 exp {−𝑧𝛾/(𝛾−1)} 𝑑𝑧.

(62)

Finally, substituting the normalizing factor 𝐶1
𝛾
as in (2) into

(62) and utilizing the known integral [16],

∫
R+

𝑥
𝑚
𝑒
−𝑏𝑥
𝑛

𝑑𝑥 =
Γ ((𝑚 + 1) /𝑛)

𝑛𝑏(𝑚+1)/𝑛
, 𝑛, 𝑚, 𝑏 ∈ R

∗

+
, (63)

we obtain (58).
Moreover, for 𝑌 := log𝑋 ∼ N𝛾(𝜇, 𝜎

2
) we have 𝑀𝑌(𝑡) =

E[𝑒𝑡𝑌] = E[𝑋𝑡] = 𝜇
(𝑡)

𝑋
, and the proposition has been proved.

Example 17. For the second-ordered lognormally distributed
𝑋 ∼ LN2(𝜇, 𝜎), (58) implies

𝜇
(𝑡)

𝑋
=

𝑒
𝑡𝜇

√𝜋

∞

∑

𝑛=0

(2𝑡
2
𝜎
2
)
𝑛

(2𝑛)!
Γ (𝑛 +

1

2
) , 𝑡 ∈ R+, (64)

and through the gamma function identity

Γ (𝑛 +
1

2
) =

(2𝑛)!

22𝑛𝑛!
√𝜋, 𝑛 ∈ N, (65)

we have

𝜇
(𝑡)

𝑋
= 𝑒
𝑡𝜇
∞

∑

𝑛=0

(𝑡𝜎)
2𝑛

2𝑛𝑛!
= 𝑒
𝑡𝜇
∞

∑

𝑛=0

1

𝑛!
(
1

2
𝑡
2
𝜎
2
)

𝑛

= 𝑒
𝑡𝜇+(1/2)(𝑡𝜎)

2

, 𝑡 ∈ R+,

(66)

which is the 𝑡th raw moment of the usual lognormally
distributed 𝑋 ∼ LN(𝜇, 𝜎), with mean 𝜇𝑋 := 𝜇

(1)

𝑋
= E[𝑋] =

exp{𝜇 + (1/2)𝜎
2
}. This is true as𝑀log𝑋(𝑡) = 𝜇

(𝑡)

𝑋
= exp{𝑡𝜇 +

(1/2)(𝑡𝜎)
2
} is the known moment-generating function of the

normally distributed log𝑋 ∼ N(𝜇, 𝜎
2
).

Theorem 18. The 𝑘th central moment (about the mean) 𝜇(𝑡)
𝑋

of a generalized lognormally distributed random variable 𝑋 ∼

LN𝛾(𝜇, 𝜎) is given by

𝜇
(𝑘)

𝑋
=

𝑒
𝑘𝜇

Γ ((𝛾 − 1) /𝛾)

𝑘

∑

𝑛=0

(
𝑘

𝑛
)(−

𝜇𝑋

𝑒𝜇
)

𝑛

𝑆𝑘−𝑛, 𝑘 ∈ N, (67)

where

𝑆𝑘 =

∞

∑

𝑚=0

(𝑘𝜎)
2𝑚

(2𝑚)!
(

𝛾

𝛾 − 1
)

2𝑚((𝛾−1)/𝛾)

Γ((2𝑚 + 1)
𝛾 − 1

𝛾
) ,

𝑘 ∈ N.

(68)

Proof. From the definition of the 𝑘th central moment 𝜇(𝑘)
𝑋

we
have

𝜇
(𝑘)

𝑋
:= E [(𝑋 − 𝜇𝑋)

𝑘
] = ∫

R
+

(𝑥 − 𝜇𝑋)
𝑘
𝑓𝑋 (𝑥; 𝜇, 𝜎, 𝛾) 𝑑𝑥,

(69)

while using the binomial identity we get

𝜇
(𝑘)

𝑋
=

𝑘

∑

𝑛=0

(
𝑘

𝑛
) (−𝜇𝑋)

𝑛
∫
R
+

𝑥
𝑘−𝑛

𝑓𝑋 (𝑥) 𝑑𝑥

=

𝑘

∑

𝑛=0

(
𝑘

𝑛
) (−𝜇𝑋)

𝑛
𝜇
(𝑘−𝑛)

𝑋
.

(70)

Applying Proposition 16, (70) implies that

𝜇
(𝑘)

𝑋
=

𝑒
𝑘𝜇

Γ ((𝛾 − 1) /𝛾)

𝑘

∑

𝑛=0

(
𝑘

𝑛
)(−

𝜇𝑋

𝑒𝜇
)

𝑛 ∞

∑

𝑚=0

[(𝑘 − 𝑛) 𝜎]
2𝑚

(2𝑚)!

× (
𝛾

𝛾 − 1
)

2𝑚((𝛾−1)/𝛾)

Γ ((2𝑚 + 1) ((𝛾 − 1) /𝛾)) ,

(71)
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while taking the summation index 𝑛 until 𝑘 − 1, we finally
obtain (67), and the theorem has been proved.

Example 19. Recall Example 17. Substituting (66) and the
mean 𝜇𝑋 = 𝑒

𝜇+(1/2)𝜎
2

into (70), the second-ordered lognor-
mally distributed𝑋 ∼ LN2(𝜇, 𝜎) provides

𝜇
(𝑘)

𝑋
=

𝑘

∑

𝑛=0

(
𝑘

𝑛
) (−1)

𝑛
𝑒
𝑘𝜇+(1/2)[𝑛+(𝑘−𝑛)

2

]𝜎
2

, 𝑘 ∈ N, (72)

while

𝜎
2

𝑋
:= Var [𝑋] = 𝜇

(2)

𝑋
= 𝑒
2𝜇+𝜎
2

(𝑒
𝜎
2

− 1) , (73)

which are the 𝑘th central moment and the variance, respec-
tively, of the usual lognormally distributed 𝑋 ∼ LN(𝜇, 𝜎).
The same result can be derived directly through (67) for 𝛾 = 2

and the use of the known gamma function identity, as in (65).

Theorem20. Themean 𝜇𝑋 := E [𝑋], variance 𝜎2
𝑋
:= Var[𝑋],

coefficient of variation 𝐶𝑉𝑋, skewness 𝜆𝑋 and kurtosis 𝜅𝑋 of
the generalized lognormally distributed 𝑋 ∼ LN𝛾(𝜇, 𝜎) are,
respectively, given by

𝜇𝑋 =
𝑒
𝜇

Γ ((𝛾 − 1) /𝛾)
𝑆1, (74)

𝜎
2

𝑋
= − 𝜇

2

𝑋
+

𝑒
2𝜇

Γ ((𝛾 − 1) /𝛾)
𝑆2, (75)

𝐶𝑉
2

𝑋
= Γ(

𝛾 − 1

𝛾
)
𝑆2

𝑆2
1

− 1, (76)

𝜆𝑋 = − 𝐶𝑉
−3

𝑋
− 𝐶𝑉
−1

𝑋
+

𝑒
3𝜇

𝜎
3
𝑋
Γ ((𝛾 − 1) /𝛾)

𝑆3, (77)

𝜅𝑋 = − 𝐶𝑉
−4

𝑋
− 6𝐶𝑉

−2

𝑋
− 4

𝜆𝑋

𝐶𝑉𝑋

+
𝑒
4𝜇

𝜎4
𝑋
Γ ((𝛾 − 1) /𝛾)

𝑆4,

(78)

where the sums 𝑆𝑖, 𝑖 = 1, . . . , 4, are given by (68).

Proof. From Proposition 16 we easily obtain (74), as 𝜇𝑋 :=

𝜇
(1)

𝑋
. FromTheorem 18 we have

𝜎
2

𝑋
:= 𝜇
(2)

𝑋
= 𝜇
2

𝑋
+ [Γ(

𝛾 − 1

𝛾
)]

−1

(𝑒
2𝜇
𝑆2 − 2𝑒

𝜇
𝜇𝑋𝑆1) . (79)

Hence, substituting 𝑆1 from (74), (75) holds. Moreover, the
squared coefficient of variation is readily obtained via (75)
and (74). By definition, skewness 𝜆𝑋 is the standardized
third (central) moment; that is, 𝜆𝑋 := Skew[𝑋] = 𝜇

(3)

𝑋
/𝜎
3

𝑋
.

Theorem 18 provides that

𝜆𝑋 = −𝐶𝑉
−3

𝑋
+ [𝜎
3

𝑋
Γ(

𝛾 − 1

𝛾
)]

−1

× (𝑒
3𝜇
𝑆3 − 3𝑒

2𝜇
𝜇𝑋𝑆2 + 3𝑒

𝜇
𝜇𝑋𝑆1) .

(80)

Substituting 𝑆1 and 𝑆2 from (74) and (75), we obtain (77).
Finally, kurtosis 𝜅𝑋 is (by definition) the standardized fourth
(central) moment; that is, 𝜅𝑋 := Kurt[𝑋] = 𝜇

(4)

𝑋
/𝜎
4

𝑋
, which

provides, throughTheorem 18, that

𝜅𝑋 = 𝐶𝑉
−4

𝑋
+ [𝜎
4

𝑋
Γ(

𝛾 − 1

𝛾
)]

−1

× (𝑒
4𝜇
𝑆4 − 4𝑒

3𝜇
𝜇𝑋𝑆3 + 6𝑒

2𝜇
𝜇
2

𝑋
𝑆2 − 4𝑒

𝜇
𝜇
3

𝑋
𝑆1) .

(81)

Substituting 𝑆𝑖, 𝑖 = 1, 2, 3, from (74), (75), and (77), we obtain
(78).

Example 21. For the second-ordered lognormally distributed
𝑋 ∼ LN2(𝜇, 𝜎), utilizing (65) into (68) we get 𝑆𝑛 =

√𝜋𝑒
(𝑛
2

𝜎
2

)/2, 𝑛 ∈ N∗. Applying this to Theorem 20 we derive
(after some algebra)

𝜇𝑋 = 𝑒
𝜇+(1/2)𝜎

2

, 𝜎
2

𝑋
= 𝑒
2𝜇+𝜎
2

(𝑒
𝜎
2

− 1) ,

𝐶𝑉𝑋 =
√𝑒𝜎
2

− 1,

𝜆𝑋 = (𝑒
𝜎
2

+ 2)√𝑒𝜎
2

− 1, 𝜅𝑋 = 𝑒
4𝜎
2

+ 2𝑒
3𝜎
2

+ 3𝑒
2𝜎
2

− 3,

(82)

which are the mean, variance, coefficient of variation, skew-
ness, and kurtosis, respectively, of usual lognormally dis-
tributed𝑋 ∼ LN(𝜇, 𝜎).

For the usual lognormally distributed random variable
𝑋 ∼ LN, it is known that Mode𝑋 < Med𝑋 < 𝜇𝑋. The
following corollary examines this inequality for the LN𝛾
family of distributions.

Corollary 22. For the 𝛾-ordered lognormally distributed𝑋𝛾 ∼
LN𝛾(𝜇, 𝜎), it is true that Mode𝑋𝛾 ≤ Med𝑋𝛾 = (𝜇𝑔)𝑋

𝛾

≤

𝜇𝑋
𝛾

. The first equality holds for the Log-Laplace distributed
𝑋+∞ with 𝜎 < 1 as well as for all the negative-ordered 𝑋𝛾<0
where Mode𝑋𝛾 is considered to be the local (nonsmooth)
mode point of𝑋𝛾. The second equality holds for the degenerate
Dirac case of𝑋0.

Proof. From (74) andTheorem 15 we have

Med𝑋𝛾 = (𝜇𝑔)𝑋
𝛾

= 𝑒
𝜇
< 𝜇𝑋

𝛾

, (83)

for every 𝑋𝛾 ∼ LN𝛾(𝜇, 𝜎). The above inequality becomes
equality for the limiting Dirac case of 𝑋0. For the relation
between the mode and the median of𝑋𝛾, the following cases
are considered.

(i) The positive-ordered Lognormal case 𝛾 > 1: from
(20) we have

Mode𝑋𝛾 = 𝑒
𝜇−𝜎
𝛾

< 𝑒
𝜇
= Med𝑋𝛾. (84)

For the Log-Laplace case of𝑋+∞, it holds

Mode𝑋𝛾 = 𝑒
𝜇
= Med𝑋𝛾, (85)
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provided that 𝜎 < 1, while for 𝜎 ≥ 1 we have

Mode𝑋𝛾 = 0 < 𝑒
𝜇
= Med𝑋𝛾. (86)

For 𝜎 = 1, the inequality (84) clearly holds.
(ii) The negative-ordered Lognormal case 𝛾 < 0: from

Proposition 4 the inequality as in (86) holds. More-
over, if Mode𝑋𝛾 is considered as the nonsmooth
local mode point of the negative-ordered𝑋𝛾 then the
equality as in (85) holds.

From the above cases and (83), the corollary holds true.

Corollary 23. The raw and central moments of a Log-Uni-
formly distributed random variable𝑋 ∼ LU(𝑎, 𝑏), 0 < 𝑎 < 𝑏,
are given by

𝜇
(𝑡)

𝑋
=

𝑏
𝑡
− 𝑎
𝑡

𝑡 log (𝑏/𝑎)
, 𝑡 ∈ R, (87)

𝜇
(𝑘)

𝑋
=

(𝑎 − 𝑏)
𝑘

log𝑘 (𝑏/𝑎)
+

1

log (𝑏/𝑎)

×

𝑘−1

∑

𝑛=0

(
𝑘

𝑛
)
(𝑎 − 𝑏)

𝑛
(𝑏
𝑘−𝑛

− 𝑎
𝑘−𝑛

)

(𝑘 − 𝑛) log𝑛 (𝑏/𝑎)
, 𝑘 ∈ N,

(88)

respectively, while the mean, variance, coefficient of variation,
skewness, and kurtosis of 𝑋 are given, respectively, by

𝜇𝑋 =
𝑏 − 𝑎

log (𝑏/𝑎)
, (89)

𝜎
2

𝑋
=

(𝑏 − 𝑎)
2

log2 (𝑏/𝑎)
+
(𝑏 − 𝑎) (𝑏 + 𝑎)

2 log (𝑏/𝑎)
, (90)

𝐶𝑉𝑋 = √1 +
𝑏 + 𝑎

2 (𝑏 − 𝑎)
log 𝑏

𝑎
, (91)

𝜆𝑋 =
1

𝜎
3
𝑋

[
𝑏
3
− 𝑎
3

3 log (𝑏/𝑎)
− 3

(𝑏 − 𝑎)
2
(𝑏 + 𝑎)

2 log2 (𝑏/𝑎)
+ 2

(𝑏 − 𝑎)
3

log3 (𝑏/𝑎)
] ,

(92)

𝜅𝑋 =
1

𝜎4
𝑋

[
𝑏
4
− 𝑎
4

4 log (𝑏/𝑎)
− 4

(𝑏 − 𝑎) (𝑏
3
− 𝑎
3
)

3 log2 (𝑏/𝑎)

+3
(𝑏 − 𝑎)

3
(𝑏 + 𝑎)

log3 (𝑏/𝑎)
− 3

(𝑏 − 𝑎)
4

log4 (𝑏/𝑎)
] .

(93)

Proof. Recall Proposition 16 with𝑋𝛾 ∼ LN𝛾(𝜇, 𝜎). Through
the gamma function additive identity (58) can be written as

𝜇
(𝑡)

𝑋
𝛾

=
𝑒
𝑡𝜇

𝑡𝜎Γ ((𝛾 − 1) /𝛾 + 1)

∞

∑

𝑚=0

(𝑡𝜎)
2𝑚+1

(2𝑚 + 1)!
(

𝛾

𝛾 − 1
)

2𝑚((𝛾−1)/𝛾)

× Γ((2𝑚 + 1)
𝛾 − 1

𝛾
+ 1) .

(94)

Thus, letting 𝑋 := 𝑋1 ∼ LN1(𝜇, 𝜎) = LU(𝑎, 𝑏) with
𝜇 = (1/2) log(𝑎𝑏) and 𝜎 = (1/2) log(𝑏/𝑎), it holds (recall the
exponential odd series expansion) that

𝜇
(𝑡)

𝑋
= lim
𝛾→1+

𝜇
(𝑡)

𝑋
𝛾

=
𝑒
𝑡𝜇

𝑡𝜎

∞

∑

𝑚=0

(𝑡𝜎)
2𝑚+1

(2𝑚 + 1)!
=
𝑒
𝑡(𝜇+𝜎)

− 𝑒
𝑡(𝜇−𝜎)

2𝑡𝜎
,

𝑡 ∈ R,

(95)

and hence (87) holds. Moreover, 𝜇𝑋 := 𝜇
(1)

𝑋
= E[𝑋] = (1/2𝜎)

(𝑒
𝜇+𝜎

− 𝑒
𝜇−𝜎

), and therefore (89) holds.
Working similarly, (67) implies

𝜇
(𝑘)

𝑋
= lim
𝛾→1+

𝜇
(𝑘)

𝑋
𝛾

= 𝑒
𝑘𝜇
𝑘

∑

𝑛=0

(
𝑘

𝑛
)(−

𝜇𝑋

𝑒𝜇
)

𝑛 ∞

∑

𝑚=0

[(𝑘 − 𝑛) 𝜎]
2𝑚

(2𝑚 + 1)!
,

𝑘 ∈ N.

(96)

Using the exponential odd series expansion, the above expan-
sion becomes

𝜇
(𝑘)

𝑋
=
𝑒
𝑘𝜇

2𝜎

𝑘

∑

𝑛=0

(
𝑘

𝑛
)(−

𝜇𝑋

𝑒𝜇
)

𝑛 𝑒
(𝑘−𝑛)𝜎

− 𝑒
−(𝑘−𝑛)𝜎

(𝑘 − 𝑛)
, 𝑘 ∈ N,

(97)

and, through (89), we obtain (88). Moreover, for 𝑘 = 2, 𝜎2
𝑋
:=

Var[𝑋] = 𝜇
(2)

𝑋
− 𝜇
2

𝑋
implies (90), and hence (91) also holds.

For 𝑘 = 3 and 𝑘 = 4, through 𝜇(3)
𝑋

and 𝜇(4)
𝑋
, we obtain (92) and

(93), respectively.

Corollary 24. The raw and central moments of a Log-Laplace
distributed random variable𝑋 ∼ LL(𝜇, 𝜎, 𝜎) are given by

𝜇
(𝑡)

𝑋
=

𝜇
𝑡
𝜎
2

𝜎2 − 𝑡2
> 𝜇
𝑡
, 𝜎 > 𝑡, 𝑡 ∈ R, (98)

𝜇
(𝑘)

𝑋
= 𝜇
𝑘
𝑘

∑

𝑛=0

(
𝑘

𝑛
)

𝜎
2(𝑛+1)

(1 − 𝜎2)
𝑛
[𝜎2 − (𝑘 − 𝑛)

2
]
, 𝜎 > 𝑘, 𝑘 ∈ N.

(99)

The mean, variance, coefficient of variation, skewness, and
kurtosis of 𝑋 are given, respectively, by

𝜇𝑋 =
𝜇𝜎
2

𝜎2 − 1
> 𝜇, 𝜎 > 1, (100)

𝜎
2

𝑋
=

𝜇
2
𝜎
2
(2𝜎
2
+ 1)

(𝜎2 − 4) (𝜎2 − 1)
2
, 𝜎 > 2, (101)

𝐶𝑉𝑋 =
1

𝜎

√
2𝜎
2
+ 1

𝜎2 − 4
, 𝜎 > 2, (102)

𝜆𝑋 =
2 (15𝜎

4
+ 7𝜎
2
+ 2)

𝜎 (𝜎2 − 9)
√

𝜎
2
− 4

(2𝜎2 + 1)
3
, 𝜎 > 3, (103)
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𝜅𝑋 =
3 (8𝜎
8
+ 212𝜎

6
+ 95𝜎

4
+ 33𝜎

2
+ 12) (𝜎

2
− 4)

(𝜎2 − 16) (𝜎2 − 9) (2𝜎2 + 1)
2

,

𝜎 > 4.

(104)

Proof. Let 𝑋𝛾 ∼ LL𝛾(𝜇, 𝜎, 𝜎) = LN𝛾(log 𝜇, 1/𝜎, 1/𝜎). For
𝛾 = ±∞, that is, 𝛾/(𝛾 − 1) = 1, the raw moments as in (58)
provide

𝜇
(𝑡)

𝑋
= 𝜇
(𝑡)

𝑋
±∞

= 𝜇
𝑡
∞

∑

𝑘=0

(
𝑡

𝜎
)

2𝑘

, 𝑡 ∈ R, (105)

as𝑋 = 𝑋±∞, while through the even geometric series expan-
sion, it is

𝜇
(𝑡)

𝑋
±∞

=
1

2
𝜇
𝑡
[

∞

∑

𝑘=0

(
𝑡

𝜎
)

𝑘

+

∞

∑

𝑘=0

(−
𝑡

𝜎
)

𝑘

]

=
1

2
𝜇
𝑡
(

𝜎

𝜎 − 𝑡
+

𝜎

𝜎 + 𝑡
) ,

(106)

provided that 𝜎 > 𝑡, and hence (98) holds. Moreover, 𝜇𝑋 :=
𝜇
(1)

𝑋
= E[𝑋], and hence (100) holds.
Working similarly, (67) implies

𝜇
(𝑘)

𝑋
= 𝜇
𝑘
𝜎
2
𝑘

∑

𝑛=0

(
𝑘

𝑛
)

(−𝜇𝑋/𝜇)
𝑛

𝜎2 − (𝑘 − 𝑛)
2
, 𝑘 ∈ N, (107)

provided 𝜎 > 𝑘, and hence, through (100), the central
moments (99) are obtained.

Moreover, for 𝑘 = 2 and due to 𝜎2
𝑋
:= Var[𝑋] = 𝜇

(2)

𝑋
− 𝜇
2

𝑋
,

(101) holds true, while for 𝑘 = 3 and 𝑘 = 4 we derive, through
𝜇
(3)

𝑋
and 𝜇(4)

𝑋
, (103) and (104), respectively.

Example 25. For a uniformly distributed r.v. 𝑈 ∼ U(𝑎, 𝑏) =

N1(𝜇, 𝜎) with 𝑎 = 𝜇 − 𝜎 and 𝑏 = 𝜇 + 𝜎, it holds that
LU := 𝑒

𝑈
∼ LU(𝑒

𝜇−𝜎
, 𝑒
𝜇+𝜎

) due to Theorem 3, and therefore
LU is a Log-Uniform distributed r.v. as LU ∼ LU(𝑒

𝑎
, 𝑒
𝑏
).

Applying (87), the known moment-generating function of
the uniformly distributed 𝑈 ∼ U(𝑎, 𝑏) is derived; that is,
𝑀𝑈(𝑡) := E[𝑒𝑡𝑈] = 𝜇

(𝑡)

LU = (𝑒
𝑡𝑏
− 𝑒
𝑡𝑎
)(1/𝑡(𝑏 − 𝑎)).

Similarly, for a Laplace distributed r.v. 𝐿 ∼ L(𝜇, 𝜎) =

N±∞(𝜇, 𝜎), it holds that LL := 𝑒
𝐿
∼ LL(𝑒

𝜇
, 1/𝜎, 1/𝜎) due to

Theorem 3, and therefore LL is a Log-Laplace distributed ran-
dom variable. Applying (98), we derive the known moment-
generating function of the Laplace distributed 𝐿 ∼ L(𝜇, 𝜎);
that is,𝑀𝐿(𝑡) := E[𝑒𝑡𝐿] = 𝜇

(𝑡)

LL = 𝑒
𝑡𝜎
(1 − 𝑡
2
𝜎
2
)
−1.

4. Conclusion

The family of the 𝛾-order Lognormal distributions was
introduced, which under certain values of 𝛾 includes the
Log-Uniform, Lognormal, and Log-Laplace distributions as
well as the degenerate Dirac distribution. The shape of these
distributions for positive and negative shape parameters 𝛾 as
well as the cumulative distribution functions, was extensively
discussed and evaluated through corresponding tables and
figures. Moreover, a thorough study of moments was carried

out, in which nonclosed forms as well as approximationswere
obtained and investigated in various examples. This general-
ized family of distributions derived through the family of the
𝛾-order normal distribution is based on a strong theoretical
background as the logarithmic Sobolev inequalities provide.
Further examinations and calculations can be producedwhile
an application to real data is upcoming.
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