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We proposed a new family of lifetime distributions, namely, complementary exponentiated exponential geometric distribution.
This new family arises on a latent competing risk scenario, where the lifetime associated with a particular risk is not observable
but only the maximum lifetime value among all risks. The properties of the proposed distribution are discussed, including a
formal proof of its probability density function and explicit algebraic formulas for its survival and hazard functions, moments,
rth moment of the ith order statistic, mean residual lifetime, and modal value. Inference is implemented via a straightforwardly
maximum likelihood procedure. The practical importance of the new distribution was demonstrated in three applications where
our distribution outperforms several former lifetime distributions, such as the exponential, the exponential-geometric, theWeibull,
the modified Weibull, and the generalized exponential-Poisson distribution.

1. Introduction

Several new classes of models have been introduced in recent
years grounded in the simple exponential distribution. The
main idea is to propose lifetime distributions which can
accommodate practical applications where the underlying
hazard functions are nonconstant, presenting monotone
shapes, since the exponential distribution does not provide a
reasonable fit in such situations. For instance, we can cite [1],
which proposed a variation of the exponential distribution,
the exponential geometric (EG) distribution, with decreasing
hazard function, [2], which introduced the exponentiated
exponential distribution as a generalization of the usual
exponential distribution, which can accommodate data with
increasing and decreasing hazard functions, [3], which pro-
posed a generalized exponential distribution, which can
accommodate data with increasing and decreasing hazard
functions, [4], which proposed the exponentiated type distri-
butions extending the Fréchet, gamma, Gumbel, andWeibull
distributions, [5], which proposed another modification of
the exponential distributionwith decreasing hazard function,

[6], which generalizes the distribution proposed by [5] by
including a power parameter in this distribution, which can
accommodate increasing, decreasing, and unimodal haz-
ard functions, [7], which proposed the Poisson-exponential
distribution, and [8], which proposed the complementary
exponential geometric distribution, which is complementary
to the exponential geometric distribution proposed by [1].
The last two proposed distributions accommodate increasing
hazard functions.

In this paper, following [8], we propose a new distribution
family by extending the exponentiated exponential distribu-
tion [2] by compounding it with a geometric distribution,
hereafter the complementary exponentiated exponential geo-
metric distribution or simplistically the CE2G distribution.
The new distribution genesis is stated on a complementary
risk problem base [9] in presence of latent risks, in the
sense that there is no information about which factor was
responsible for the component failure and only themaximum
lifetime value among all risks is observed. This family have
one shape and two scale parameters accommodating increas-
ing, decreasing, and bathtub failure rates.
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The paper is organized as follows. In Section 2 we intro-
duce the new CE2G distribution, derive the expressions for
the probability density, survival, and hazard functions and the
𝑝th quantile, and present its genesis. In Section 3 we present
some of its properties, such as its characteristic function,
𝑟th raw moment, mean and variance, order statistics, 𝑟th
moment of the 𝑖th order statistic, mean residual lifetime,
and modal value. In Section 8 we present the inferential
procedure. In Section 10 the practical importance of the new
distribution was demonstrated in three applications where
our distribution outperforms several former lifetime distri-
butions, such as the exponential, the exponential-geometric,
the Weibull, the modified Weibull, and the generalized
exponential Poisson distribution. Some final comments in
Section 11 conclude the paper.

2. The CE2G Model

Let𝑌 be a nonnegative random variable denoting the lifetime
of a component in some population. The random variable 𝑌
is said to have a CE2G distribution with parameters 𝜆 > 0,
𝛼 > 0, and 0 < 𝜃 < 1 if its probability density function (pdf)
is given by

𝑓 (𝑦) =
𝛼𝜆𝜃𝑒
−𝜆𝑦

(1 − 𝑒
−𝜆𝑦

)
𝛼−1

[1 − (1 − 𝜃) (1 − 𝑒−𝜆𝑦)
𝛼

]
2

, 𝑦 > 0, (1)

where 𝜆 is a scale parameter of the distribution, and 𝛼 and 𝜃
are shape parameters. Figure 1(a) shows the CE2Gprobability
density function for 𝜆 = 1, 𝜃 = 0.05, 0.5, 0.95, and 𝛼 =

0.3, 1.0, 3 and we can see that the function can be decreasing
or unimodal.

The survival function of a CE2G distributed random
variable is given by

𝑆 (𝑦) =
1 − (1 − 𝑒

−𝜆𝑦

)
𝛼

1 − (1 − 𝜃) (1 − 𝑒−𝜆𝑦)
𝛼

, 𝑦 > 0, (2)

where, 𝛼 > 0, 𝜃 ∈ (0, 1), and 𝜆 > 0.
From (2) and (1), the failure rate function, according to

the relationship ℎ(𝑦) = 𝑓(𝑦)/𝑆(𝑦), is given by

ℎ (𝑦) =
𝛼𝜆𝜃𝑒
−𝜆𝑦

(1 − 𝑒
−𝜆𝑦

)
𝛼−1

[1 − (1 − 𝑒−𝜆𝑦)
𝛼

] [1 − (1 − 𝜃) (1 − 𝑒−𝜆𝑦)
𝛼

]
. (3)

The initial value is not finite if 𝛼 < 1 and otherwise is
given by ℎ(0) = 𝜆𝜃 if 𝛼 = 1 or ℎ(0) = 0 if 𝛼 > 1 and the
long-term hazard function value is ℎ(∞) = 𝜆. The failure
rate (3) can be increasing, decreasing, or bathtub as shown
in Figure 1(b), which shows some failure rate function shapes
to 𝜆 = 1, 𝜃 = 0.05, 0.5, 0.95, and 𝛼 = 0.3, 1.0, 3.

The 𝑝th quantile of the CE2G distribution is given by

𝑄 (𝑢) = 𝐹
−1

(𝑢) = −
ln (1 − (𝑢/ (𝜃 (1 − 𝑢) + 𝑢))1/𝛼)

𝜆
, (4)

where 𝑢 has the uniform 𝑈(0, 1) distribution and 𝐹(𝑦) = 1 −
𝑆(𝑦) is the distribution function of 𝑌.

Consider that in the study of reliability we can observe
only the maximum component lifetime for each component
among all risks. On many occasions, the information about
what risk produces the dead of the component in analysis is
not available or it is impossible that the true cause of failure
is specified. Complementary risks (CR) problems arise in
several areas and an extensive literature is available. Interested
readers can see [10–12].

Then, in this context, ourmodel can be derived as follows.
Let𝑀 be a random variable denoting the number of failure
causes, 𝑚 = 1, 2, . . . and considering 𝑀 with geometrical
probability distribution given by

𝑃 (𝑀 = 𝑚) = 𝜃(1 − 𝜃)
𝑚−1

, (5)

where 0 < 𝜃 < 1 and𝑀 = 1, 2, . . ..
Also consider 𝑡

𝑖

, 𝑖 = 1, 2, 3, . . . realizations of a random
variable denoting the failure times, that is, the time-to-event
due to the 𝑖th CR and, from [2], 𝑇

𝑖

has an exponentiated
exponential probability distribution with parameters 𝜆 and
𝛼, given by

𝑓 (𝑡
𝑖

; 𝜆, 𝛼) = 𝛼𝑔 (𝑡
𝑖

; 𝜆) 𝐺 (𝑡
𝑖

; 𝜆)

= 𝛼𝜆 exp {−𝜆𝑡
𝑖

} (1 − exp {−𝜆𝑡
𝑖

})
𝛼−1

,

(6)

where 𝑔(⋅) and 𝐺(⋅) are the pdf and df, respectively, of the
exponential distribution with parameter 𝜆.

In the latent complementary risks scenario, the number of
causes𝑀 and the lifetime 𝑡

𝑗

associatedwith a particular cause
are not observable (latent variables), but only the maximum
lifetime 𝑌 among all causes is usually observed. So, we only
observe the random variable given by

𝑌 = max {𝑇
1

, 𝑇
2

, . . . , 𝑇
𝑀

} . (7)

The following result shows that the randomvariable𝑌 has
probability density function given by (1).

Proposition 1. If the random variable 𝑌 is defined as (7),
then, considering (5) and (6), 𝑌 is distributed according
to a CE2G distribution, with probability density function
given by (1).

Proof. The conditional density function of (7) given𝑀 = 𝑚

is given by

𝑓 (𝑦 | 𝑀 = 𝑚, 𝜆, 𝛼)

= 𝑚𝛼𝜆𝑒
−𝜆𝑦

(1 − 𝑒
−𝜆𝑦

)
𝛼−1

[(1 − 𝑒
−𝜆𝑦

)
𝛼

]
𝑚−1

;

𝑡 > 0, 𝑚 = 1, . . .

(8)
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Figure 1: (a) Probability density function of the CE2G distribution. (b) Failure rate function of the CE2G distribution. We fixed 𝜆 = 1.

Then, the marginal probability density function of 𝑌 is given
by

𝑓 (𝑦) =

∞

∑

𝑚=1

𝑚𝛼𝜆𝑒
−𝜆𝑦

(1 − 𝑒
−𝜆𝑦

)
𝛼−1

[(1 − 𝑒
−𝜆𝑦

)
𝛼

]
𝑚−1

× 𝜃(1 − 𝜃)
𝑚−1

= 𝜃𝛼𝜆𝑒
−𝜆𝑦

(1−𝑒
−𝜆𝑦

)
𝛼−1

∞

∑

𝑚=1

𝑚[(1−𝑒
−𝜆𝑦

)
𝛼

(1−𝜃)]
𝑚−1

= 𝜃𝛼𝜆𝑒
−𝜆𝑦

(1 − 𝑒
−𝜆𝑦

)
𝛼−1

∞

∑

𝑚=1

[(1 − 𝑒
−𝜆𝑦

)
𝛼

(1 − 𝜃)]
𝑚−1

1 − (1 − 𝑒−𝜆𝑦)
𝛼

(1 − 𝜃)

= 𝜃𝛼𝜆𝑒
−𝜆𝑦

(1 − 𝑒
−𝜆𝑦

)
𝛼−1

[
1

1 − (1 − 𝜃) (1 − 𝑒−𝜆𝑦)
𝛼

]

2

.

(9)

This completes the proof.

3. Some Properties

Many of the most important features and characteristics of
a distribution can be studied through its moments, such as

mean and variance. A general expression for rth ordinary
moment 𝜇󸀠

𝑟

= 𝐸(𝑌
𝑟

) of the CE2G distribution is hard to be
obtained and we resume the mean and variance as follows.

The moment generating function of the 𝑌 variable with
density function given by (1) can be obtained analytically, if
we consider the expression, given in [13, page 329, Equation
(1.6)].

∫

1

0

𝑧
𝑝−1

(1 − 𝑧)
𝑛−1

(1 + 𝑏𝑧
𝑚

)
𝑙

𝑑𝑧

= Γ (𝑛)

∞

∑

𝑘=0

(
𝑙

𝑘
)
(𝑏)
𝑘

Γ (𝑝 + 𝑘𝑚)

Γ (𝑝 + 𝑛 + 𝑘𝑚)
.

(10)

For any real number 𝑡, let Φ
𝑌

(𝑡) be the characteristic
function of 𝑌, that is, Φ

𝑌

(𝑡) = 𝐸[𝑒
𝑖𝑡𝑌

], where 𝑖 denotes the
imaginary unit. With the preceding notations, we state the
following.

Proposition 2. For the random variable 𝑌 with CE2G distri-
bution, we have that its characteristic function is given by

Φ (𝑡) = 𝛼𝜃Γ (1 −
𝑖𝑡

𝜆
)

∞

∑

𝑘=0

(
−2

𝑘
)
Γ (𝛼 [𝑘 + 1]) (𝜃 − 1)

𝑘

Γ (𝛼 [𝑘 + 1] + 1 − 𝑖𝑡/𝜆)
,

(11)

where 𝑖 = √−1.
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Proof. Consider the following:

Φ
𝑌

(𝑡) = ∫

∞

0

𝑒
𝑖𝑡𝑦

𝑓 (𝑦) 𝑑𝑦

= ∫

∞

0

𝑒
𝑖𝑡𝑦

𝛼𝜆𝜃𝑒
−𝜆𝑦

(1 − 𝑒
−𝜆𝑦

)
𝛼−1

[1 − (1 − 𝜃) (1 − 𝑒−𝜆𝑦)
𝛼

]
2

𝑑𝑦

= 𝛼𝜃∫

1

0

𝑧
𝛼−1

(1 − 𝑧)
−𝑖𝑡/𝜆

(1 − (1 − 𝜃) 𝑧𝛼)
2

𝑑𝑧,

(12)

where the last equality follows from the change of variable
𝑧 = 1 − 𝑒

−𝜆𝑦.
Comparing the last integral with (10), obtaining 𝑛 = 1 −

𝑖𝑡/𝜆, 𝑏 = 𝜃 − 1, 𝑚 = 𝛼 = 𝑝, and 𝑙 = −2, and making the
appropriate substitutions completed the proof.

Proposition 3. A random variable 𝑌 with density given by (1)
has mean and variance given, respectively, by

𝐸 (𝑌) =
𝜃

𝜆

∞

∑

𝑘=0

(
−2

𝑘
)
(𝜃−1)

𝑘

(𝑘+1)
[Ψ (0, 𝛼 [𝑘+1]+1) − Ψ (0, 1)] ,

Var (𝑌) = 𝜃

𝜆2

{

{

{

∞

∑

𝑘=0

[(
−2

𝑘
)
(𝜃 − 1)

𝑘

(𝑘 + 1)

− (Ψ(0, 1)
2

+
𝜋
2

6
+ Ψ (0, 𝛼 [𝑘 + 1] + 1)

× [Ψ (0, 𝛼 [𝑘+1]+1) − 2Ψ (0, 1)]

−Ψ (1, 𝛼 [𝑘 + 1] + 1) )]

− 𝜃[

∞

∑

𝑘=0

(
−2

𝑘
)
(𝜃 − 1)

𝑘

(𝑘 + 1)

× (Ψ (0, 𝛼 [𝑘+1]+1) − Ψ (0, 1)) ]

2

} ,

(13)

whereΨ(𝑛, 𝑧) = (𝑑𝑛+1/𝑑𝑧𝑛+1) ln(Γ(𝑧)) is known as PsiGamma
function.

Proof. The first result follows from the relationship
Φ
󸀠

𝑌

(𝑡)/𝑖|
𝑡=0

= 𝐸(𝑌). From the literature, Φ󸀠󸀠
𝑌

(𝑡)/𝑖
2

|
𝑡=0

= 𝐸(𝑌
2

)

and Var(𝑌) = 𝐸(𝑌2)− [𝐸(𝑌)]2, and with a little algebra follow
the results.

Skewness is ameasure of the asymmetry of the probability
distribution. The skewness value can be positive or negative,
or even undefined. Qualitatively, a negative skew indicates
that the tail on the left side of the probability density function
is longer than the right side and the bulk of the values lie to
the right of the mean. A positive skew indicates that the tail
on the right side is longer than the left side and the bulk of the

values lie to the left of the mean. The skewness of a random
variable 𝑌, say 𝛾

1

, is given by the third standardized moment

𝛾
1

=
𝐸 [(𝑌 − 𝜇)

3

]

(𝐸 [(𝑌 − 𝜇)
2

])
3/2

=
𝐸 (𝑌
3

) − 3𝐸 (𝑌
2

) 𝐸 (𝑌) + 3𝐸
2

(𝑌) 𝐸 (𝑌) − 𝐸
3

(𝑌)

[𝐸 (𝑌2) − 𝐸2 (𝑌)]
3/2

.

(14)
Kurtosis is any measure of the “peakedness” of the

probability distribution of a real-valued random variable.
In a similar way to the concept of skewness, kurtosis is a
descriptor of the shape of a probability distribution. It is
common practice to use the kurtosis to provide a comparison
of the shape of a given distribution to that of the normal
distribution. One common measure of kurtosis, originating
with Karl Pearson, say 𝛾

2

, is based on a scaled version of the
fourth moment, given by

𝛾
2

=
𝐸 [(𝑌 − 𝜇)

4

]

(𝐸 [(𝑌 − 𝜇)
2

])
2

=
𝐸 (𝑌
4

) − 4𝐸 (𝑌
3

) 𝐸 (𝑌) + 6𝐸 (𝑌
2

) 𝐸
2

(𝑌) − 3𝐸
4

(𝑌)

[𝐸 (𝑌2) − 𝐸2 (𝑌)]
2

.

(15)
Algebraic expressions of kurtosis and skewness are exten-

sive to show, due to the fact that is necessary the alge-
braic moment expressions up order four. This moment can
be obtained by algebraic manipulation to determine 𝐸(𝑌),
𝐸(𝑌
2

),𝐸(𝑌3), and𝐸(𝑌4) in (14) and (15) through the Equation
(11). Figure 2 shows the kurtosis (𝛾

2

) and skewness (𝛾
1

) of the
CE2G distribution for 𝛼 with 𝜆 = 1, 𝜃 = 0.1, 0.5, 0.9 and for 𝜃
with 𝜆 = 1, 𝛼 = 0.3, 1.0, 3.

4. Order Statistics

Order statistics are among the most fundamental tools in
nonparametric statistics and inference. Let 𝑌

1

, . . . , 𝑌
𝑛

be
a random sample taken from the CE2G distribution and
𝑌
1:𝑛

, . . . , 𝑌
𝑛:𝑛

denote the corresponding order statistics. Then,
the pdf 𝑓

𝑖:𝑛

(𝑦) of the 𝑖th order statistics 𝑌
𝑖:𝑛

is given by

𝑓
𝑖:𝑛

(𝑥) =
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!
𝐹(𝑦)
𝑘−1

(1 − 𝐹 (𝑦))
𝑛−𝑘

𝑓 (𝑦) .

(16)
The 𝑟th moment of the 𝑖th order statistic 𝑌

𝑖:𝑛

can be
obtained from the following result due to [14]:

𝐸 [𝑌
𝑟

𝑖:𝑛

] =𝑟

𝑛

∑

𝑝=𝑛−𝑖+1

(−1)
𝑝−𝑛+𝑖−1

(
𝑝 − 1

𝑛 − 𝑖
)(
𝑛

𝑝
)∫

∞

0

𝑦
𝑟−1

[𝑆 (𝑦)]
𝑝

𝑑𝑦.

(17)
Consider the binomial series expansion given by

(1 − 𝑥)
−𝑟

=

∞

∑

𝑘=0

(𝑟)
𝑘

𝑘!
𝑥
𝑘

, (18)
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Figure 2: (a) Kurtosis and skewness of CE2G distribution for fixed 𝜆 = 1. (b) Kurtosis and skewness of CE2G distribution for fixed 𝜆 = 2.

where (𝑟)
𝑘

is a Pochhammer symbol, given (𝑟)
𝑘

= 𝑟(𝑟 +

1) ⋅ ⋅ ⋅ (𝑟 + 𝑘 − 1) and if |𝑥| < 1 the series converge, and

(−𝑟)
𝑘

= (−1)
𝑘

(𝑟 − 𝑘 + 1)
𝑘

. (19)

Proposition 4. For the random variable 𝑌 with CE2G distri-
bution, we have that 𝑟th moment of the 𝑖th order statistic is
given by

𝐸 [𝑌
𝑟

𝑖:𝑛

] =
𝑟!

𝜆𝑟

𝑛

∑

𝑝=𝑛−𝑖+1

∞

∑

𝑗=0

∞

∑

𝑘=0

𝑝

∑

𝑙=0

∞

∑

𝑚=0

(−1)
𝑝−𝑛+𝑖+𝑟+𝑚+𝑙−2

(
𝑝 − 1

𝑛 − 𝑖
)(

𝑛

𝑝
)

×
(1 − 𝜃)

𝑗

(𝑝)
𝑗

(𝑝 − 𝑙+1)
𝑙

(𝛼 (𝑗+𝑙)+𝑘 − 𝑚 + 1)
𝑚

𝑗!𝑙!𝑚!(𝑚 + 1)
𝑟

.

(20)

Proof. From (2) and (18), we have that

∫

∞

0

𝑦
𝑟−1

[𝑆(𝑦)]
𝑝

𝑑𝑦

= ∫

∞

0

𝑦
𝑟−1

(
1 − (1 − 𝑒

−𝜆𝑦

)
𝛼

1 − (1 − 𝜃) (1 − 𝑒−𝜆𝑦)
𝛼

)

𝑝

𝑑𝑦

=
(−1)
𝑟−1

𝜆𝑟
∫

1

0

ln𝑟−1 (1 − 𝑥)
(1 − 𝑥)

(
1 − 𝑥
𝛼

1 − (1 − 𝜃) 𝑥𝛼
)

𝑝

𝑑𝑥

=
(−1)
𝑟−1

𝜆𝑟

∞

∑

𝑗=0

∞

∑

𝑘=0

𝑝

∑

𝑙=0

(1 − 𝜃)
𝑗

(𝑝)
𝑗

(−𝑝)
𝑙

𝑗!𝑙!

× ∫

1

0

𝑥
𝛼(𝑗+𝑙)+𝑘ln𝑟−1 (1 − 𝑥) 𝑑𝑥.

(21)

Using the change of variable ln(1−𝑥) = −𝑢 and the expansion
(18) results in the kernel of the gamma distribution function
as

∫

∞

0

𝑦
𝑟−1

[𝑆(𝑦)]
𝑝

𝑑𝑦

=
(−1)
𝑟−1

𝜆𝑟

∞

∑

𝑗=0

∞

∑

𝑘=0

𝑝

∑

𝑙=0

∞

∑

𝑚=0

(1 − 𝜃)
𝑗

(𝑝)
𝑗

(−𝑝)
𝑙

𝑗!𝑙!

×
(−[𝛼(𝑗 + 𝑙) + 𝑘])

𝑚

𝑚!

(𝑟 − 1)!

(𝑚 + 1)
𝑟

.

(22)

Now considering (22) in (17) and the property (19), the result
follows.

5. Entropy

An entropy of a randomvariable𝑌 is ameasure of variation of
the uncertainty. A popular entropy measure is Rényi entropy
[15].
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If 𝑌 has the probability density function (1) then Rényi
entropy is defined by

𝛾 (𝜌) =
1

1 − 𝜌
log(∫𝑓𝜌 (𝑦) 𝑑𝑦) , (23)

where 𝜌 > 0 and 𝜌 ̸= 1.

Proposition 5. If the randomvariable𝑌 is defined as (7), then,
the Rényi entropy, is given by

𝛾 (𝜌) =
1

1 − 𝜌

×log((𝛼𝜃)𝜌𝜆𝜌−1
∞

∑

𝑘=0

[(1−𝜃)
𝑘

(2𝜌)
𝑘

Γ (𝜌 (𝛼−1)+𝑘𝛼+1)

×Γ (𝜌) (𝑘!Γ (𝛼 (𝜌+𝑘)+1))
−1

]) .

(24)

Proof. From (23), we can calculate

∫𝑓
𝜌

(𝑦) 𝑑𝑦

= ∫

∞

0

(𝛼𝜆𝜃)
𝜌

𝑒
−𝜆𝜌𝑦

(1 − 𝑒
−𝜆𝑦

)
𝜌(𝛼−1)

[1 − (1 − 𝜃)(1 − 𝑒−𝜆𝑦)
𝛼

]
2𝜌

𝑑𝑦

= (𝛼𝜆𝜃)
𝜌

∫

∞

0

∞

∑

𝑘=0

[𝑒
−𝜆𝜌𝑦

(1 − 𝑒
−𝜆𝑦

)
𝜌(𝛼−1)+𝑘𝛼

× (1 − 𝜃)
𝑘

(2𝜌)
𝑘

𝑘!
] 𝑑𝑦

= (𝛼𝜃)
𝜌

∫

∞

0

∞

∑

𝑘=0

[(1 − 𝑒
−𝜆𝑦

)
𝜌(𝛼−1)+𝑘𝛼

(1 − 𝜃)
𝑘

×
(2𝜌)
𝑘

𝑘!
(𝜆𝑒
−𝜆𝑦

)
𝜌−1

]𝜆𝑒
−𝜆𝑦

𝑑𝑦

= (𝛼𝜃)
𝜌

𝜆
𝜌−1

∞

∑

𝑘=0

[(1 − 𝜃)
𝑘

(2𝜌)
𝑘

𝑘!
∫

∞

0

𝑢
𝜌(𝛼−1)+𝑘𝛼

× (1 − 𝑢)
𝜌−1

𝑑𝑢]

= (𝛼𝜃)
𝜌

𝜆
𝜌−1

∞

∑

𝑘=0

[(1 − 𝜃)
𝑘

(2𝜌)
𝑘

𝑘!

×
Γ (𝜌 (𝛼 − 1) + 𝑘𝛼 + 1) Γ (𝜌)

Γ (𝛼 (𝜌 + 𝑘) + 1)
] .

(25)

So, using the (25) in 𝛾(𝜌), the result follows.

6. Reliability

In the context of reliability, the stress-strength model
describes the life of a component which has a random
strength 𝑌 that is subjected to a random stress 𝑋. The
component fails at the instant hat, the stress applied to
it exceeds the strength, and the component will function
satisfactorily whenever 𝑌 > 𝑋. So, 𝑅 = Pr(𝑋 < 𝑌) is
a measure of component reliability. In the area of stress-
strength models there has been a large amount of work
as regards estimation of the reliability 𝑅 when 𝑌 and 𝑋

are independent random variables belonging to the same
univariate family of distributions.

Proposition6. If the randomvariable𝑌 is defined as (7), then,
the reliability 𝑅 = 𝑃(𝑋, 𝑌) for𝑋 and 𝑌 i.i.d is given by

𝜃
2

∞

∑

𝑘=0

(1 − 𝜃)
𝑘

(3)
𝑘

𝑘! (𝑘 + 2)
. (26)

Proof. For𝑋 and 𝑌 i.i.d. CE2G r.v.’s where𝑋 is the stress and
𝑌 is the strength, the reliability 𝑅 = 𝑃(𝑋 < 𝑌) is given by

𝑅 = ∫

∞

0

∫

𝑦

0

𝛼𝜆𝜃𝑒
−𝜆𝑥

(1 − 𝑒
−𝜆𝑥

)
𝛼−1

[1 − (1 − 𝜃) (1 − 𝑒−𝜆𝑥)
𝛼

]
2

×
𝛼𝜆𝜃𝑒
−𝜆𝑦

(1 − 𝑒
−𝜆𝑦

)
𝛼−1
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𝛼

]
2

𝑑𝑥 𝑑𝑦

= ∫

∞

0

𝜃(1 − 𝑒
−𝜆𝑦

)
𝛼
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𝛼

]
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𝛼𝜆𝜃𝑒
−𝜆𝑦
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−𝜆𝑦

)
𝛼−1

[1 − (1 − 𝜃) (1 − 𝑒−𝜆𝑦)
𝛼

]
2

𝑑𝑦

=

∞

∑

𝑘=0

𝜃
2

𝛼𝜆
(3)
𝑘

𝑘!
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𝑘

× ∫

∞

0

(1 − 𝑒
−𝜆𝑦

)
𝛼(𝑘+2)−1

𝑒
−𝜆𝑦

𝑑𝑦

=

∞

∑

𝑘=0

∞

∑

𝑗=0

𝜃
2

𝛼𝜆
(3)
𝑘

(1 − 𝛼 (𝑘 + 2))
𝑗

𝑘!𝑗!
(1 − 𝜃)

𝑘

× ∫

∞

0

𝑒
−𝜆(𝑗+1)𝑦

𝑑𝑦

=

∞

∑

𝑘=0

∞

∑

𝑗=0

𝜃
2

𝛼
(3)
𝑘

(1 − 𝛼 (𝑘 + 2))
𝑗

𝑘!𝑗! (𝑗 + 1)
(1 − 𝜃)

𝑘

=

∞
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𝜃
2

(3)
𝑘

𝑘! (𝑘 + 2)
(1 − 𝜃)

𝑘

.

(27)

This completes the proof.
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7. Residual Lifetime Distribution

Given that there was no failure prior to time 𝑡, the residual
lifetime distribution of a random variable 𝑋, distributed as
CE2G distribution, has the survival function given by

𝑆
𝑡

(𝑥) = Pr [𝑋 > 𝑥 + 𝑡 | 𝑋 > 𝑡]

= (
1 − (1 − 𝑒

−𝜆(𝑥+𝑡)

)
𝛼

1 − (1 − 𝑒−𝜆𝑡)
𝛼

)

× (
1 − (1 − 𝜃) (1 − 𝑒

−𝜆𝑡

)
𝛼

1 − (1 − 𝜃) (1 − 𝑒−𝜆(𝑥+𝑡))
𝛼

) .

(28)

The mean residual lifetime of a continuous distribution
with survival function 𝐹(𝑥) is given by

𝜇 (𝑡) = 𝐸 (𝑋 − 𝑡 | 𝑋 > 𝑡) =
1

𝑆 (𝑡)
∫

∞

𝑡

𝑆 (𝑢) 𝑑𝑢. (29)

Proposition 7. For the random variable 𝑌 with CE2G distri-
bution, we have that the mean residual lifetime is given by

𝜇 (𝑡) =
1

𝜆
(
1 − (1 − 𝜃) (1 − 𝑒

−𝜆𝑡

)
𝛼

1 − (1 − 𝑒−𝜆𝑡)
𝛼

)

×

∞

∑

𝑘=0

∞

∑

𝑖=0

1

∑

𝑗=0

(1 − 𝜃)
𝑖

(−1)
𝑗

𝑗!

× (
1 − (1 − 𝑒

𝜆𝑡

)
𝛼(𝑖+𝑗)+𝑘+1

𝛼 (𝑖 + 𝑗) + 𝑘 + 1
) .

(30)

Proof. From (29) and using 𝑆(𝑦) given by (2), we have that

1

𝑆 (𝑡)
∫

∞

𝑡

𝑆 (𝑢) 𝑑𝑢 =
1 − (1 − 𝜃) (1 − 𝑒

−𝜆𝑡

)
𝛼

1 − (1 − 𝑒−𝜆𝑡)
𝛼

× ∫

∞

𝑡

1 − (1 − 𝑒
−𝜆𝑢

)
𝛼

1 − (1 − 𝜃) (1 − 𝑒−𝜆𝑢)
𝛼

𝑑𝑢

=
1

𝜆

1 − (1 − 𝜃) (1 − 𝑒
−𝜆𝑡

)

1 − (1 − 𝑒−𝜆𝑡)
𝛼

× ∫

1

1−𝑒

−𝜆𝑡

1 − 𝑥
𝛼

(1 − 𝑥𝛼 (1 − 𝜃)) (1 − 𝑥)
𝑑𝑥.

(31)

Now using (18) andmaking a binomial expansion in a similar
way of the proof of Proposition 4 on (22), the result follows.

8. Inference

Assuming the lifetimes are independently distributed and are
independent from the censoring mechanism, the maximum
likelihood estimates (MLEs) of the parameters are obtained
by direct maximization of the log-likelihood function given
by

ℓ (𝜃, 𝜆, 𝛼) = ln (𝛼𝜃𝜆)
𝑛

∑

𝑖=1

𝑐
𝑖

− 𝜆

𝑛

∑

𝑖=1

𝑐
𝑖

𝑦
𝑖

+ (𝛼 − 1)

𝑛

∑

𝑖=1

𝑐
𝑖

ln (1 − 𝑒−𝜆𝑦𝑖)

+

𝑛

∑

𝑖=1

(1 − 𝑐
𝑖

) ln (1 − (1 − 𝑒−𝜆𝑦𝑖)
𝛼

)

−

𝑛

∑

𝑖=1

(1 + 𝑐
𝑖

) ln (1 − (1 − 𝜃) (1 − 𝑒−𝜆𝑦𝑖)
𝛼

) ,

(32)

where 𝑐
𝑖

is a censoring indicator, which is equal to 0 or
1, respectively, if the data is censored or observed. The
advantage of this procedure is that it runs immediately using
existing statistical packages. We have considered the optim
routine of the R [16].

Large-sample inference for the parameters are based on
the MLEs and their estimated standard errors. For (𝛼, 𝜃, 𝜆),
we consider the observed Fisher informationmatrix given by

𝐼
𝐹

(𝛼, 𝜃, 𝜆) = (

𝐼
𝛼𝛼

𝐼
𝛼𝜃

𝐼
𝛼𝜆

𝐼
𝜃𝛼

𝐼
𝜃𝜃

𝐼
𝜃𝜆

𝐼
𝜆𝛼

𝐼
𝜆𝜃

𝐼
𝜆𝜆

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝛼,𝜃,𝜆)=(𝛼̂,

̂

𝜃,

̂

𝜆)

, (33)

where the elements of the matrix 𝐼
𝐹

(𝛼, 𝜃, 𝜆) are given in the
appendix.

Under conditions that are fulfilled for the parameters𝛼, 𝜃,
and 𝜆 in the interior of the parameter space, the asymptotic
distribution of (𝛼̂, 𝜃, 𝜆̂), as 𝑛 → ∞, is a normal 3-variate with
zero mean and variance covariance matrix 𝐼−1

𝐹

(𝛼, 𝜃, 𝜆).
In order to compare different distributions, we relied

upon several authors in the literature, for example, [6,
17–19], which use the Akaike information criterion (AIC)
and Bayesian information criterion (BIC) values, which are
defined, respectively, by −2ℓ(⋅) + 2𝑞 and −2ℓ(⋅) + 𝑞 log(𝑛),
where ℓ(⋅) is the LogLikehood evaluated in the MLE vector
on respective distribution, 𝑞 is the number of parameters
estimated, and 𝑛 is the sample size. The best distribution
corresponds to a lower AIC and BIC values.

9. Simulation Study

Regarding the performance of the MLEs in the process of
estimation, a study was performed based on one hundred
generated dataset from the CE2G with six different sets of
parameters for 𝑛 = 20, 50, 100, 200, 500, and 1000. In order
to have unbounded parameters, we consider the following
restrictions on the parameters in estimation process. For



8 Journal of Probability and Statistics

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

TTT plot

0 0.2 0.4 0.6 0.8 1

TTT plot

0 0.2 0.4 0.6 0.8 1

TTT plot

G
(n
/
r)

n/r

G
(n
/
r)

n/r

G
(n
/
r)

n/r

(a)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

Time

0 500 1000 1500

Time

0 200 400 600

Time

E
EG
CE2G
GEP
Weibull

Gamma
MW
EE
BS
BS-G

S
(t
)

es
ti

m
at

ed
S
(t
)

es
ti

m
at

ed
S
(t
)

es
ti

m
at

ed

(b)

Figure 3: (a) Empirical TTT plot for the dataset 𝑇1, 𝑇2, and 𝑇3, respectively. (b) Models fitting for the dataset 𝑇1, 𝑇2, and 𝑇3, respectively.

the parameter 𝜃, we considered the transformation 𝜃 =

𝑒
𝜃

∗

/(1 + 𝑒
𝜃

∗

), where 𝜃∗ ∈ R, and for 𝛼 and 𝜆 consider an
exponential transformation. Based on the literature of the
MLEs, we can return on the original parameters thought of
the transformations. For the calculus of their variances, we
use the delta method. The values (𝛼, 𝜆, 𝜃) = (1, 1, 0.5) were
used as the initial values for all numerics simulations since
𝜆 > 0, 𝛼 > 0, and 0 < 𝜃 < 1.

The results are condensated in Table 1, which shows the
averages of the MLEs, Av(𝛼̂, 𝜆̂, 𝜃), together with coverage
probability of the 95% confidence intervals for parameters of

the CE2G, 𝐶(𝛼, 𝜆, 𝜃), the bias, the mean squarer error, MSE,
and their deviance, Sd(𝛼̂, 𝜆̂, 𝜃). These results suggest that the
MLEs estimates have performed adequately. The deviance of
theMLEs decrease when sample size increases.The empirical
coverage probabilities are close to the nominal coverage level,
particularly, as sample size increases.

10. Applications

In this section, we compare the CE2G distribution fit with
several usual lifetime distributions on three datasets extracted
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Table 2: Values of the—max ℓ(⋅) and AIC for all fitted distributions.

E EE EG Weibull Gamma CE2G MW GEP BS BS-G
𝑇1

AIC 1723.7 1657.2 1725.8 1630.5 1649.4 1616.0 1660.0 1659.3 1919.7 1708.5
BIC 1726.7 1663.2 1731.7 1636.5 1655.3 1624.9 1668.9 1668.2 1925.6 1717.3

𝑇2

AIC 6649.8 5703.2 6651.8 5599.0 5605.9 5571.0 5664.7 5705.3 5648.3 5601.3
BIC 6653.9 5711.3 6659.9 5607.1 5613.8 5583.1 5676.8 5717.4 5656.3 5613.4

𝑇3

AIC 549.8 538.2 551.8 530.3 536.5 530.6 530.7 540.3 550.8 534.0
BIC 551.5 541.6 555.2 533.7 539.8 535.6 535.7 545.3 554.1 539.0

from the literature. The first dataset, 𝑇1, refers to the serum-
reversal time (days) of 143 children contaminated with HIV
from vertical transmission at the university hospital of the
Ribeirão Preto Scholl of Medicine (Hospital das Cĺınicas da
Faculdade de Medicina de Ribeirão Preto) from 1986 to 2001
[20]. Serum reversal can occur in children born frommothers
infected with HIV.

The second dataset, 𝑇2, is lifetimes in hours of 417 forty-
watt, 110-volt internally frosted incandescent lamps taken
from 42 weekly quality control [21]. Survival times, in days,
are given for the control group of lamps on original dataset.

The third dataset, 𝑇3, gives the survival times for labora-
tory mice, which were exposed to a fixed dose of radiation
at an age of 5 to 6 weeks. The cause of death for each mouse
was determined after autopsy to be one of three possibilities:
thymic lymphoma (C1), reticulum cell sarcoma (C2), or other
causes (C3) [22]. Consider here the minces of C3 in the
control group.

Firstly, in order to identify the shape of a lifetime data
failure rate function, we will consider a graphical method
based on the TTT plot [23]. In its empirical version, the TTT
plot is given by 𝐺(𝑟/𝑛) = [(∑𝑟

𝑖=1

𝑌
𝑖:𝑛

) + (𝑛 − 𝑟)𝑌
𝑟:𝑛

]/(∑
𝑛

𝑖=1

𝑌
𝑖:𝑛

),
where 𝑟 = 1, . . . , 𝑛 and 𝑌

𝑖:𝑛

, 𝑖 = 1, . . . , 𝑛 represent the order
statistics of the sample. It has been shown that the failure rate
function is increasing (decreasing) if the TTT plot is concave
(convex). Figure 3(a) shows concaveTTTplots for the𝑇1,𝑇2,
and 𝑇3 datasets, indicating increasing failure rate functions.

We compare the CE2G distribution fits with the expo-
nential distribution with probability density function given
by 𝑓(𝑥) = 𝜆𝑒

−𝜆𝑥, the exponentiated exponential distribu-
tion, EE, with probability density function given by 𝑓(𝑥) =
𝛼 ∗ 𝜆𝑒

−𝜆𝑥

(1 − 𝑒
−𝜆𝑥

)
𝛼−1, the EG distribution [1] with prob-

ability density function given by 𝑓(𝑥) = 𝜆(1 − (1 −

𝜃)𝑒
−𝜆𝑥

)
−1, the Weibull distribution with probability density

function given by 𝑓(𝑥) = (𝜃/𝜆)(𝑥/𝜆)
𝜃−1

𝑒
−(𝑥/𝜆)

𝜃

, where
the shape parameter is 𝜃 and scale parameter is 𝜆, the
gamma distribution with probability density function given
by 𝑓(𝑥) = (1/𝜆𝜃Γ(𝜃))𝑥𝜃−1𝑒−𝑥/𝜆, with shape parameter 𝜃 and
scale parameter 𝜆, the modified Weibull (MW) distribution
with probability density function given by 𝑓(𝑥) = 𝛼𝑥𝜃−1(𝜃 +
𝜆𝑥)𝑒
𝜆𝑥

𝑒
−𝛼𝑥

𝜃 exp{𝜆𝑥}, where 𝛼, 𝜃 ≥ 0 and 𝜆 > 0, the generalized
exponential Poisson (GEP) distribution [6] with probability

density function given by 𝑓(𝑥) = (𝛼𝛽𝜆/(1 − 𝑒
−𝜆

)
𝛼

)(1 −

𝑒
−𝜆+𝜆 exp(−𝛽𝑥)

)
𝛼−1

𝑒
−𝜆−𝛽𝑥+𝜆 exp(−𝛽𝑥), the generalized Birnbaum-

Saunders (BS-G) distribution [24] with probability density
function given by𝑓(𝑦) = ((√(𝑦 − 𝜇)/𝛽+√𝛽/(𝑥 − 𝜇))/2𝛼(𝑥−
𝜇))𝜙([√(𝑦 − 𝜇)/𝛽 − √𝛽/(𝑥 − 𝜇)]/𝛼), where 𝜙(⋅) is the prob-
ability density distribution of the standard normal distri-
bution, and the Birnbaum-Saunders (BS) distribution. The
BS distribution is obtained considering 𝜇 = 0 in the BS-G
probability density function.

Table 2 provides theAIC andBIC criterion values for each
distribution. They provide evidence in favor of our CE2G
distribution for the datasets𝑇1 and𝑇2 in all of the three com-
parison criterion. For the dataset 𝑇3, the CE2G distribution
provides similar fitting to theWeibull andMWdistributions,
implying that the CE2G distribution is a competitor to the
usual survival distributions. These results are corroborated
by the empirical Kaplan-Meier survival functions and the
fitted survival functions shown inFigure 3(b).TheMLEs (and
their corresponding standard errors in parentheses) of the
parameters 𝛼, 𝜃(×1000), and 𝜆(×10000) of the CE2G dis-
tribution are given, respectively, by 3.7469 (0.5688), 41.4860
(9.7659), and 17536.46 (7.1814) for 𝑇1, by 5.1765 (19.4159),
0.2625 (0.9915), and 94.6676 (3.8720) for𝑇2, and by 0.0018180
(0.9818), 0.0698 (0.3770), and 78.7704 (11.5084) for 𝑇3.

11. Concluding Remarks

In this paper, a new lifetime distribution is provided and
discussed. The CE2G distribution accommodates increasing,
decreasing, and bathtub failure rate functions and arises in
a latent complementary risks scenario, where the lifetime
associated with a particular risk is not observable but only
the maximum lifetime value among all risks. The properties
of the proposed distribution are discussed, including a formal
proof of its probability density function and explicit algebraic
formulas for its survival and hazard functions, moments, 𝑟th
moment of the 𝑖th order statistic, mean residual lifetime,
modal value, and the observed Fisher information matrix.
Maximum likelihood inference is implemented straightfor-
wardly. The practical importance of the new distribution
was demonstrated in three applications where the CE2G
distribution provided the best fit in comparison with several
other former lifetime distributions.
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Appendix

In this appendix, we show the values of the elements of the
observed Fisher information matrix in (33). From (32), we
obtain
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𝑖
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𝑖
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𝑖
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2𝛼

𝑖
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𝑖
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𝑖

𝐿
𝑖
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𝑖
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𝛼 (1 + 𝑐

𝑖

) (1 − 𝜃) 𝐿
𝛼

𝑖
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𝑖

)𝑋
𝑖

𝐿
𝑖

𝑇
𝑖

−
(1 + 𝑐
𝑖

) (1 − 𝜃) 𝐿
𝛼

𝑖

𝑋
𝑖

𝐿
𝑖

𝑇
𝑖
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𝛼 (1 + 𝑐

𝑖

) (1 − 𝜃)
2

𝐿
2𝛼

𝑖

ln (𝐿
𝑖

)𝑋
𝑖

𝐿
𝑖

𝑇2
𝑖
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𝐼
𝜃𝜃

=

𝑛

∑
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(
𝑐
𝑖

𝜃2
−
(1 + 𝑐
𝑖

) 𝐿
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𝑖

𝑇2
𝑖
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𝐼
𝜃𝜆
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𝜆𝜃
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∑

𝑖=1
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𝛼
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𝑋
𝑖
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𝑇
𝑖
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𝑖
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𝑐
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𝑖
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2

𝑖
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(A.1)

where 𝐿
𝑖

= 1 − 𝑒
−𝜆𝑦

𝑖 , 𝑅
𝑖

= 1 − 𝐿
𝛼

𝑖

, 𝑇
𝑖

= 1 − (1 − 𝜃)𝐿
𝛼

𝑖

, and
𝑋
𝑖

= 𝑦
𝑖

𝑒
−𝜆𝑦

𝑖 .
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