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Survival analysismethods deal with a type of data, which is waiting time till occurrence of an event. One commonmethod to analyze
this sort of data is Cox regression. Sometimes, the underlying assumptions of the model are not true, such as nonproportionality
for the Cox model. In model building, choosing an appropriate model depends on complexity and the characteristics of the data
that effect the appropriateness of the model. One strategy, which is used nowadays frequently, is artificial neural network (ANN)
model which needs a minimal assumption. This study aimed to compare predictions of the ANN and Cox models by simulated
data sets, which the average censoring rate were considered 20% to 80% in both simple and complex model. All simulations and
comparisons were performed by R 2.14.1.

1. Introduction

Many different parametric, nonparametric, and semipara-
metric regression methods are increasingly examined to
explore the relationship between a response variable and a
set of covariates. The choice of an appropriate method for
modeling depends on the methodology of the survey and the
nature of the outcome and explanatory variables.

A common research question in medical research is to
determine whether a set of covariates are correlated with the
survival or failure times. Twomajor characteristics of survival
data are censoring and violation of normal assumption for
ordinary least squares multiple regressions. These two char-
acteristics of time variable are reasons that straightforward
multiple regression techniques cannot be used. Different
parametric and semiparametricmodels in survival regression
were introduced which model survival or hazard function.
Parametric models, for instance, exponential or weibull, pre-
dict survival function while accelerated failure time models
are parametric regression methods with logarithm failure
time as dependent variable [1, 2].

Choosing an appropriate model for the analysis of the
survival data depends on some conditions which are called

the underlying assumptions of the model. Sometimes, these
assumptions may not be true, for example: (a) lack of inde-
pendence between consequent waiting times to occurrence of
an event or nonproportionality of hazards in semiparametric
models, (b) lack of independency of censoring or the distri-
bution of failure times in the case of parametric models [1–3].

Although, the Cox regression model is an efficient strat-
egy in analyzing survival data, but when the assumptions of
this model are fail, the free assumption methods could be
suitable.

Artificial neural network (ANN) models, which are
completely nonparametric, have been used increasingly in
different areas of sciences. Although analyzing the data using
ANN methodology is usually more complex than traditional
approaches, ANNmodels aremore flexible and efficientwhen
our main aim is prediction or classification of an outcome
using different explanatory variables [4–17].

Note that when several covariates and complex interac-
tions are of concern the best method is ANN; otherwise,
based on model assumptions simple regression models can
be appropriately used.

In this study, simulated data sets with different rates of
censoring were used to predict the outcome using ANN and



2 Journal of Probability and Statistics

traditional Cox regression models, and then the results of
predictions were compared.

2. Methods

2.1. Cox RegressionModel. Suppose that𝑇 denotes a continu-
ous nonnegative random variable describing the failure time
of an event (i.e., time-to-event) in a system. The probability
density function of 𝑡; that is, the actual survival time is 𝑓(𝑡).
The survival function, 𝑆(𝑡), is probability that the failure
occurs later than time 𝑡. The related hazard function, ℎ(𝑡),
denotes the probability density of an event occurring around
time 𝑡, given that it has not occurred prior to time 𝑡.

As we know, an inherent characteristic of survival data
is censoring. Right censored data which is the commonest
formof censoring occurswhen survival times are greater than
some defined time point [1, 2].The generated data used in this
study contains right-censored data.

Proportional hazards model, which also called Cox
regression, is a popular method in analysis of survival data.
This model is presented as

ℎ (𝑡 | 𝑥) = ℎ0 (𝑡) exp (𝛽
󸀠x) . (1)

In this model, 𝛽 is the regression coefficients vector, x is a
vector of covariates, and ℎ

0
(𝑡) is the baseline hazard which

is unspecified and a function of time. The likelihood and
partial likelihood function for right censored survival data
[18], given by (2) and (3):
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𝛿
𝑖
, is censoring status where 𝛿

𝑖
= 1 if the observation is com-

plete and 𝛿
𝑖
= 0 if it is censored. 𝑅(𝑡

𝑖
) is defined as the risk set

at time 𝑡
𝑖
.

To fit the Cox regression and estimate 𝛽, the partial
likelihood in (3) is maximized using iteratively reweighted
least squares to implement the Newton-Raphson method.
However, in the high-dimensional case, this approach cannot
be used to estimate 𝛽; even 𝛽 is not unique.

2.2. Neural Networks Model. An ANN consists of several
layers. Layers are interconnected group of artificial neurons.
In addition, each layer has a weight that indicates the amount
of the effect of neurons on each other. Usually an ANN
model has three layers that called input, hidden (middle), and
output. The input layer contains the predictors. The hidden

layer contains unobservable nodes and applies a nonlinear
transformation to the linear combination of input layer. The
value of each hidden node is a function of the predictors.The
output layer contains the outcome which is some functions
of the hidden units. In hidden and output layers, the exact
form of the function depends on the network type and user
definition (based on response variable).

There are different methods for learning in the NN.
For example, in multiple layers perceptron (MLP), which
is the most commonly used, the learning performs with
minimization of the mean square error of the output and by
back-propagation learning algorithm [16, 19, 20].

In this paper, we use the activation transfer function (𝑔
ℎ
)

as sigmoid function in hidden and in output layers (𝑔
𝑜
). The
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Note that X󸀠
𝑖
is 𝑖th row of the input data matrix X, 𝐻

𝑖ℎ
is a

nonlinear function of linear combination of input data, 𝛽 is
the vector weights of the hidden to the output units, and 𝛼 is
the matrix weights of the input to the hidden units. Equation
(4) together yield the MLP model:
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By the sigmoid activation function, (5) can be written as
below which is a nonlinear regression:
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where: 𝛽,𝛼
1
,𝛼
2
, . . . ,𝛼

𝐻
are unknown parameter vectors, X

𝑖

is a vector of known constants, and 𝜀
𝑖
are residuals. The

parameters (weights) can be estimated by optimizing some
criterion function such as maximizing the log-likelihood
function or minimizing the sum of squared errors.

In an MLP framework, a serious problem is overfitting.
To control of the overfitting, usually a penalty term is added
to the optimization criterion. To this, penalized least squares
criterion for parameter estimation is given by [1]:
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where the penalty term is 𝑝
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In likelihood schema which is often used in shrinkage

method, an adaption of (7) is [8, 21]
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The penalty weight 𝜆 regulates between over- and underfit-
ting. A best value of 𝜆 is between 0.001 and 0.1 and is chosen
by cross-validation [1, 8]. In this paper, we use (8) to get the
parameter estimated. It is mentioned that, for an outcome
(the response variable) with two classes 𝛿 = (0/1), 𝑝

𝑖
is

probability of event for the 𝑖th patient, and the error function
provides the cross-entropy error function as
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An ANN can be modeled as a generalized linear modeling
with nonlinear predictors [8–11]. Bignazoli et al. [8] intro-
duced a method called partial logistic ANN, and Lisboa [22]
developed it with fit smooth estimates of the discrete time
hazard in structure. It is similar to MLP [23] with additional
covariate, namely, time as an input and given by
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where 𝑁
𝑖
and 𝑁

ℎ
denote the number of the input and the

hidden nodes, respectively. 𝑏
ℎ
and 𝑏 denote bias term in the

hidden and output layers, respectively. After the estimation
of the network weights, w, a single output node estimates
conditional failure probability values from the connections
with themiddle units, and the survivorship is calculated from
the estimated discrete time hazard by multiplying the condi-
tionals for survival over time interval. Then −log(likelihood)
statistics could be obtained as [8]
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where 𝛿 is the censoring indicator function.

2.3. Model Fitting. The ultimate goal of the learning process
is to minimize the error by net. In training step, to fit the
model by a fixed number of hidden nodes, we use penalized
likelihood as

𝐸
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= 𝐸 + 𝜆 (∑𝛽

2
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2
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) . (12)

By using this, we improve the convergence of the optimiza-
tion and also control overfitting problem [1, 8, 9, 16, 21].

To identify the number of the hidden nodes and then
model selection, Bayesian Information Criterion (BIC) and
Network Information Criterion (NIC) [8, 23, 24], that is,
generalization of Akaike Information Criterion (AIC), are
calculated:

BIC = −2 × log likelihood + log (𝑁) × 𝑃,

NIC = 2𝐸∗ + 2𝑃,
(13)

where 𝑃 is the number of the parameters estimated, and𝑁 is
the number of observations in training set. The best model
is with the smallest value of these criterions. In addition,
to assess prediction accuracy in validation (testing) group,
we calculated classification accuracy and mean square error
(MSE).

The best model is selected with the smallest value ofMSE.
The models considered 2, 3, 4, 5, 10, 15, and 20 hidden nodes.
Theweight decay was considered 0.012 which is chosen based
on some empirical study [25].

At finally, in order to comparison of the Cox and ANN
predictions, classification accuracy and concordance indexes
were calculated. All simulations and comparisons were per-
formed by R 2.14.1.

3. Simulation

In order to compare the accuracy of the predictions by ANN
and Cox regression, four different simulation schemes, based
on Monte Carlo simulation, were used. In each schema,
hazard at any time 𝑡 was considered as exponential form
[26], namely, 𝜆 (Table 1). For each schema, 1,000 independent
randomobservations were generated and thenwith the based
on the relationship between exponential parameter and inde-
pendent variables, survival times were generated. Afterward,
the survival times were transformed as right censored. In this
context, if generated time 𝑡

𝑖
is greater than the quantile of

exponential function with parameter of 𝜆, it is considered as
censorship.This process was repeated 100 times. To access the
accuracy of predictions, each sample is randomly divided to
two parts. The first part, the training group, was consisting
of 700 observations, and the 300 remainder observations
were allocated to second group, that is, the testing group.
Furthermore, in all simulation, the average rates of censorship
were considered equal to 20%, 30%, 40%, 50%, 60%, 70%, and
80%. In addition, the models were considered with the main
effects and without/with any interaction terms as simple and
complex model, respectively.

In simulation 1 and 2, two covariates were used which
was generated randomly from binomial and standard normal
distributions. The models of these simulations were consist-
ing of any and one interaction terms. In simulation 3, three
covariates were used which was generated randomly from
binomial and standardnormal distributions, respectively.The
model of this simulation has had two interaction terms. In
simulation 4, four covariates were used which was generated
randomly from binomial and standard normal distributions.
The models of these simulations are complex and consist of
two-, three- and four-interaction terms (Table 1).
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Table 3: Results of concordance indexes of simulation study in
testing subset (300 cases with 100 replications).

Model∗ ANN Cox Reg.
I:

20% 0.821 ± 0.028 0.820 ± 0.031

30% 0.819 ± 0.027 0.820 ± 0.030

40% 0.824 ± 0.028 0.823 ± 0.030

50% 0.823 ± 0.027 0.823 ± 0.029

60% 0.823 ± 0.027 0.822 ± 0.030

70% 0.825 ± 0.027 0.822 ± 0.032

80% 0.826 ± 0.030 0.823 ± 0.031

II:
20% 0.818 ± 0.029 0.817 ± 0.031

30% 0.817 ± 0.034 0.815 ± 0.046

40% 0.818 ± 0.032 0.818 ± 0.031

50% 0.816 ± 0.035 0.814 ± 0.032

60% 0.816 ± 0.031 0.813 ± 0.032

70% 0.814 ± 0.033 0.811 ± 0.031

80% 0.812 ± 0.034 0.808 ± 0.036

III:
20% 0.808 ± 0.030 0.798 ± 0.035

30% 0.799 ± 0.033 0.790 ± 0.033

40% 0.812 ± 0.043 0.795 ± 0.038

50% 0.805 ± 0.028 0.795 ± 0.030

60% 0.804 ± 0.028 0.790 ± 0.033

70% 0.805 ± 0.028 0.791 ± 0.034

80% 0.803 ± 0.028 0.790 ± 0.032

IV:
20% 0.764 ± 0.033 0.759 ± 0.036

30% 0.773 ± 0.029 0.762 ± 0.033

40% 0.777 ± 0.030 0.759 ± 0.035

50% 0.779 ± 0.035 0.764 ± 0.034

60% 0.812 ± 0.039 0.790 ± 0.036

70% 0.764 ± 0.036 0.744 ± 0.035

80% 0.766 ± 0.035 0.741 ± 0.037
∗

Four models with different rates of censoring.

The model selection is based on BIC for learning set and
SSE criterion for the testing subset data as a verification. The
results in Table 2 show that the simple model performs with
less hidden node but complex model performs better with
more hidden nodes. The MSE values confirm these results
(Table 2).

In the next step, to compare of ANN and Cox regression
predictions, concordance indexes were calculated from clas-
sification accuracy table in testing subset. Concordance index
was reported as a generalization of the area under receiver
operating characteristic curve for censored data [27, 28].This
indexmeans that the proportion of the cases that are classified
correctly in noncensored (event) and censored groups and 0
to 1 values indicated as the ability of the models accuracy.The
concordance index of ANN and Cox regression models was

reported in Table 3.The results of simulation study in simpler
model showed that there was not any different between
the predictions of Cox regression and NN models. But NN
predictions were better than Cox regression predictions in
complex model with high rates of censoring.

4. Conclusion

In this paper, we presented two approaches for modeling of
survival data with different degrees of censoring: Cox regres-
sion and neural network models. A Monte-Carlo simulation
study was performed to compare predictive accuracy of Cox
and neural network models in simulation data sets.

In the simulation study, four different models were
considered.The rate of censorship in each of thesemodelswas
considered from 20% up 80%.These models were considered
with the main effects and also with the interaction terms.
Then the ability of these models in prediction was evaluated.
As was seen, in simple models and with less censored cases,
there was little difference in ANN and Cox regressionmodels
predictions. It seems that for simpler models, the levels of
censorship have no effect on predictions, but the predictions
in more complex models depend on the levels of censorship.
The results showed that the NN model for more complex
models was provided better predictions. But for simpler
models predictions there was not any different in results.
This result was consistent with the finding fromXiang’s study
[26]. Therefore, NN model is proposed in two cases of: (1)
occurrence of high censorship (i.e., censoring rate of 60% and
higher) and/or (2) in the complex models (i.e., with many
covariates and any interaction terms). This is a very good
result and can be used in practical issues which often are
faced onwithmany numbers of variables and alsomany cases
of censorship. For that reason, in these two cases the ANN
strategy can be used as an alternate of traditional Cox model.
Finally, it is mentioned that there are some flexible alternative
methods, such as piecewise exponential and grouped time
models which can be used for survival data and then its ability
compared with ANNmodel.
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