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We present a new algorithm for highly accurate computation of axisymmetric potential flow. The principal
feature of the algorithm is the use of orthogonal curvilinear coordinates. These coordinates ate used to write
down the equations and to specify quadrilateral elements following the boundary. In particular, boundary
conditions for the Stokes’ stream-function are satisfied exactly. The velocity field is determined by differentiating
the stream-function. We avoid the use of quadratures in the evaluation of Galerkin integrals, and instead use
splining of the boundaries of elements to take the double integrals of the shape functions in closed form. This
is very accurate and not time consuming.
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1. INTRODUCTION

Computation of axisymmetric potential flow in water passages of a turbine is an essential
step for quasi-three-dimensional solution of problems of analysis and design of the
cascade of turbine blade profiles (see, e.g., [8], [3]). The equation for axisymmetric
potential flow must be written in the terms of the Stokes’ stream-function, y, since the
boundary conditions for the velocity potential, ¢, cannot be specified along the water
passages, while the boundary conditions for y can be easily specified for the entire
boundary (see Section 2).

This equation may be solved numerically using both finite difference and finite element
methods. Finite difference methods cannot yield a sufficiently accurate solution even in the
case of a curvilinear orthogonal grid precisely fitting the boundaries. The reason for this
is that finite difference solutions satisfy the boundary conditions for y only at a finite
number of points along the boundary (see Section 2).

*To whom correspondence should be addressed.
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Finite element methods have been applied to the solution of the equation for y written
in cartesian coordinates and typically using a rectilinear grid. In this case the outer nodal
points of the finite element grid are located on the boundary, however the element sides
connecting them are not congruent to the corresponding segments of the boundary. This
can lead to large errors in the computation of the Stokes’ stream-function y, especially
where there are sharp changes of the boundary. Curvilinear elements (but not coordinates)
have been considered for the above reasons in [6], Section 2.4, for the special case of
isoparametric triangular or quadrilateral elements with quadratic approximation of
serendipity class.

Another difficulty with the finite element method arises from the need to evaluate many
double integrals, a costly procedure. Accuracy is often traded off for speed by using a
Gaussian quadrature method (see, e.g., [6], Section 2.4.3; [7], Section 3.8): each
one-dimensional integral is approximated by a linear combination of samples at a finite set
of points, usually 3, in the domain. For a double integral this usually means 9 samples.
Typical relative error for the velocity field found by such a procedure is around 4%-5%
and, depending on the circumstances, is sometimes as high as 15%.

To overcome the difficulties with finite element and finite difference methods mentioned
above and to achieve high precision, consistency, satisfaction of boundary conditions and
high execution speed, we propose a procedure described in detail in subsequent sections.

The main feature of this procedure is the use of an orthogonal curvilinear coordinate
system p, g. In our case, the equation for y is written in this coordinate system. The usage
of the orthogonal curvilinear system enables us to define the element geometry directly in
terms of p and g. Furthermore, we define the shape functions in terms of two
nondimensional parameters which are linearly related to p and g.

One consequence of this is that the sides of the outer elements follow the boundary.
Thus, since the shape functions can specify a quadratic distribution, the solution satisfies
the boundary conditions exactly. Specifically, y is constant along the solid boundaries of
the water passage. At the remaining boundary y is defined as follows: it is a given linear
function at the entrance and a given quadratic function at the exit (see Section 2).

Another consequence of this approach is that we can integrate the shape functions
analytically, independently of the geometry of the passage, and express the Galerkin
integrals as linear combinations of integrals of the shape functions. This technique is
accurate and fast. Our experience shows that it is about 10 times faster than Simpson’s
rule at the same level of precision. In addition, since the integrals of the shape functions
do not depend on the geometry of the passage, they do not need to be recalculated when
the geometry is changed.

The orthogonal curvilinear coordinate system p, g is constructed by solving a
two-dimensional flow problem in the same passage. The p-axes are defined as streamlines
and g-axes as equipotentials for the two-dimensional flow.

The stream-function distribution for this flow is obtained using an iterated finite
difference scheme. Iteration is used to take care of unpleasant edge effects at the
approximate boundary given by the finite difference grid. At each step we find the
stream-function and adjust the boundary conditions along the approximate boundary for
the next step in order to achieve proper boundary conditions along the genuine smooth
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boundary. The streamlines are obtained from interpolation of the stream-function
distribution. The equipotentials are obtained as a family of curves orthogonal to the
streamlines.

The relative error for the stream-function found by this procedure is quite high (around
3%). However, the grid lines, thus obtained, look sufficiently nice and the ratio of Lamé
functions, constant along the actual stream lines, had they been found exactly, is close to
constant along the grid lines. The latter fact is important for an increase of accuracy of the
solution.

Once the grid lines, and thus, curvilinear coordinates, are determined, we apply the
Galerkin method to calculate the Stokes’ stream-function distribution. The grid lines are
represented by splines, so that double integrals of the shape functions can be evaluated
analytically. The Galerkin integrals are written as linear combinations of the integrals of
the shape functions. The velocity field is obtained by differentiation of the Stokes’
stream-function and, thus, equals the gradient of the potential.

We have performed a comparison with a closed form solution in a case permitting the
latter [5] yielding a relative error in the velocity field of about 0.01%, where the
curvilinear coordinates were derived from exact equipotentials and streamlines. In
addition, we have performed internal consistency checks in many practical cases,
indicating a relative error in velocity < 0.490%. See Section 5 for details.

2. FORMULATION OF THE PROBLEM

Let (5 6, z) denote the cylindrical coordinates for R, We make the following assumptions
about the flow

(1) the flow has potential ¢,
(i) the flow is axisymmetric with respect to the z-axis,
(iii) the flow is meridional,
(iv) the flow enters from radial infinity r = +oo, where the passage consists of two
planes that are perpendicular to the z-axis,
(v) the flow exits at z = —co, where the passage is either a circular cylinder or a cone.

The problem for a flow with the above assumptions cannot be formulated as a Dirichlet
problem for the potential ¢, because given a potential difference between the entrance and
the exit, we do not know a priori the potential distribution along the solid boundaries of
the passage. The potential ¢ can be formulated as a solution of a von Neumann or a mixed
problem. However, the solution of a von Neumann problem offers less precision unless the
method of singularities is used. The method of singularities, while shown to work in
certain idealized situations, like flow around a sphere [1], has not been developed for
problems that occur in practice.

On the other hand, the problem can be formulated as a Dirichlet problem for the
Strokes’ stream-function y. The boundary conditions are as follows:

(i) w is constant along the solid walls of the passage,
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(ii) at the entrance (r = +oo) Y is a linear function of z,
(iii) at the exit (z = — oo) Y is a quadratic function of r,

Boundary condition (i) implies that the normal component of the velocity

dy

v, 7, 0,
where ¢ is arc length along the boundary.

Since a finite difference solution satisfies the boundary condition (i) only at finitely
many points, v, may well vanish nowhere at the boundary. In fact, Y may even be
discontinuous. Thus, finite difference techniques cannot provide accurate satisfaction of
the boundary condition.

Finite element solutions will satisfy the boundary conditions at the boundary of the grid.
If the shape of the elements is arbitrary, then the the boundary of the grid does not coincide
with the true boundary of the water passage. Thus, while the boundary conditions are
satisfied at the boundary of the grid, they are not necessarily satisfied at the true boundary.
In our method we solve this problem by finding an orthogonal curvilinear coordinate
system and using it to define elements in such a way that the boundary of the finite element
grid coincides with the true boundary of the water passage.

Let (p, g, 0) be such a system, that is, an orthogonal curvilinear coordinate system, such
that 0 is the same as in cylindrical coordinates and the solid boundaries of the passage are
curves of constant g. Axisymmetry implies that derivatives with respect to 0 are 0. For
meridional flow vy = 0. We take this into account and express various differential
operators in the (p, g ) coordinate system using Lamé metric functions h,, h,, he = r (see,
e.g., 10.51(5), 10.611 [4]). Due to the absence of sources we have

1 0 9
vV-v= (—(hrv)+—(hrv)>=0,
hhr\dp " " 9q "

We can write the components of velocity v as

® 1 oy b = 1 oy
P h,roq’ “ hyrop

Using the equality of the second mixed partial derivatives of y we obtain

a

1
(va)e):_(ap

9
(hv)——(hv))=0,
hphq 99 aq PP

that is, the flow is irrotational,

O (koW 3 ( BV _
op \ h,r dp dq \ h,r oq

SO
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Letting c, = hl, / hq, cy = hq /h,, we obtain

c 62_w+1 9e, Y ¢, 03y ¢, Oy lac,oy c,dr dy
2

4 91 4t T4 __ P T _ Pt —
r op° rap dp r apop r aq2 r dq oq r dq dq
that is,
& & dc dlnr) d dc dlnr\o
cq—‘i-{+cp—u2l+ —I-c, A —+-e, Yoo (1)
op dq op op ap dq aq dq

Using the expression for the Laplacian of y

v [i("_q”’_‘/'>+i<’£?i’>]
hhgr L op \ h, op dg \ h, 9q

1 ] Yy dlnrdy 9 oy dln r dy
= 5\ e te ot g |t |
hyh, | op\ “dp dp dp 9q dq dq 9q

we transform (1) into

25—+
vy h, op op h, dq oq

" <1 dnray 1 8lnr6w> _ )

3. GRID GENERATION AND SPLINING

In this section we describe the construction of an orthogonal curvilinear coordinate system
(p, q) for the water passage. We use a finite difference scheme with boundary corrections
to solve the two-dimensional Dirichlet problem for the stream-function y,(x, y). The (x, y)
coordinates of the two-dimensional problem correspond to the (r, z) coordinates of our
axisymmetric setup. The goal here is not to obtain a particularly accurate solution, but to
produce sufficiently nice streamlines, which serve as lines of constant g. The orthogonal
family of curves is constructed separately.

We use interpolation and splining to obtain locally polynomial representations of curves
of constant p or g and expressions for various quantities related to the ( p, g) coordinates,
such as partial derivatives and Lamé functions. In the next section the grid lines become
the basis for the partition of the domain into elements.

Domain. The idealized water passage from r = +oco to z = —oo is truncated at the
entrance and the exit for practical purposes. At the entrance the passage is truncated by a
cylinder and at the exit by a plane, if the passage is cylindrical, or a sphere, if the passage
is conical. The position of truncating surfaces was determined empirically by finding
where the dependence of the results on the position becomes negligible.
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Let € be the domain produced by sectioning the truncated passage with the r- z plane.
We assume that Q is a curvilinear solid quadrilateral with smooth edges and use cartesian
coordinates (x, y).

Finite differences. We use a two-dimensional finite difference scheme with a regular
cartesian grid. Since we are dealing with the Laplace equation in two dimensions, we may
solve the finite difference scheme using a widely used iterative procedure rather than
solving a linear system. We start by generating a square grid with spacing 2Ah over the
domain and setting the values at the boundary nodes. Then we interpolate in the horizontal
direction to obtain a first approximation to the values at the nodes.

The iterative procedure for the finite difference scheme is based on the following
observations. Consider third order Taylor approximations of y, at (x, y):

o, oy, (Ax)* 3y, (Ax)®
‘Vz(x‘*'AX,)’):Wz(x’)’)'*'a_szx"' axzz 2 + 6x32 6

+ 0 ((Ax)"),

oy, Py (A’ By, (A’

- = - —Ax+ + N
Vr(x—Ax, y) = yy(x, y) o Ax w2 w6 0 ((Ax)*),
Wy, dy Ay dy, Ay
Y, (x, y+Ay) = yy(x, y) + 6y2Ay + ayzz > + 8y32 6 +0 ((Ay)4),
oY, 62‘1’2 (Ay)2 33% (A)’)3 4
,y—Ay) = L y) — —Ay + - + .
Vy(x, y—Ay) = yy(x, y) P 5 6 o ((Ay)*)

Letting Ax = Ay = Ah, adding the above expressions, and solving for y,(x, y) gives

V(x + Ax,y) + yo(x — Ax, y) + yy(x, y + Ay) + y,(x, y — Ay)
4

oy, vy, | (AR .
222 (2R + .
[ Py 3y ) 0 ((AR)*)

WZ(X’ )’) =

Since y, is harmonic, we see that the average of the values at the four corners of a
square is a third order approximation for the value at the center of the square. Thus, at each
step of the iterative procedure we average the values of four nodes for each square of the
grid and obtain approximations for the values at the center of each square. Then we
average the results at four neighboring centers, also forming a square indicated by dotted
lines in Figure 1, to obtain new approximations for the values at the nodes.

Boundary correction. If the boundary conditions are applied at the nodes of the finite
difference grid near the boundary and not at the boundary itself, then certain unpleasant
effects are observed for the streamlines near the boundary. We correct this problem by
occasionally adjusting the values at the boundary nodes of the grid using a second order
Taylor expansion in the horizontal direction. After the difference scheme converges, we
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Figure 1 Boundary correction for the finite difference scheme.

perform the correction and run the scheme again. This is done several times until the
overall scheme converges. In the following paragraphs we describe the correction
procedure.

Consider a boundary grid node C and nearby nodes A and B with the same y coordinate.
Suppose the true boundary intersects the segment CA at the point L (see Figure 1). Then

oy, Fy,| LAV
“’2"‘~“’2'L+ax LILAH-ax2 A

oy, Fy,| LBV
lp= Yl +——| |LB|+—5 .
V)l g %L+c9xL +8x2L 2

We solve this system for the first and second partial derivatives of y, with respect to x at
L and use these approximate values to obtain

32%
| LC |+ —
L axz

oy,

| LC 12
Vol e= ol + = :

L 2
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The boundary value is substituted for y,l, in the above formula and the resulting y, . is
used to set the value at the boundary node C.

Curvilinear coordinate grid. We construct a curvilinear coordinate grid such that the
streamlines, that is, the lines of constant y,, are precisely the lines of constant q.
Subsequently we construct an orthogonal family of curves with minimal arc length and
distributed roughly regularly according to the two-dimensional potential ¢,. We take these
curves to be lines of constant p.

At each level y the function y,(x, y) is represented by cubic splines using Hermite
interpolant polynomials. The splining technique is described in detail in [2]. The
ingredients, besides the values of y, at the nodes, are the partial derivatives of y, at the
endpoints and the condition that the second derivatives should match at the internal nodes.
The partial derivatives of y, at the boundary are estimated using the values of y, at a few
nodes and Taylor’s formula of appropriate order. In this algorithm we used five points.

We use a regular partition of the interval between the boundary values of y, and at each
level of the square grid find the x coordinates of points with a given value of y,. A linear
search finds the neighboring grid nodes such that the given value of , is in the interval
between the values of y, at the nodes. Linear interpolation between the two nodes gives
a seed to Newton’s method.

Once a set of points with the same given value of y, is found, the corresponding
streamline is represented by splines using Hermite interpolant polynomials in terms of the
arc length of the curve (see [2]). The partial derivatives at the entrance are

dx { dy 0

dat ’ dat )
At the exit, in the case of a cylinder, we have

dx dy

—=0, —=-1,

dl dat

and, in the case of a cone, the derivative of (x, y) with respect to € is normal to the
bounding sphere.

Obtaining a set of curves orthogonal to the streamlines is a slightly more intricate
procedure. The first goal is to obtain a reasonable partition of a streamline. We start with
a regular partition of one of the boundary streamlines. At each point of the partition we
draw a perpendicular and calculate the distance along it to the next streamline. The
distances and the values of y, are used to find the distribution of velocity along the
streamline and the two-dimensional potential ¢,. The potential interval from the entrance
to the exit is partitioned regularly.

The second goal is to construct orthogonal curves from the boundary streamline to the
next streamline. This is achieved iteratively to obtain approximately minimal arc length
along each orthogonal curve. The procedure is repeated to continue the curves to other
streamlines. The derivatives at the boundary used to construct the spline representation are
estimated from Taylor’s formula and values at several points similarly to what was done
previously in this type of situation.
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Figure 2 Curvilinear coordinate grid.

Figure 2 shows a curvilinear coordinate grid generated during a practical application.
Two-dimensional splining. In the next section we require spline representations for
various quantities involving the curvilinear coordinates in all of the domain. This is
particularly useful for a fast accurate computation of the Galerkin integrals. Given a
coordinate grid (p,,q,), 1 Sn <N, 1 <m < M, a function f is splined from its sample

values and those of its partial derivatives in each grid quadrilateral using the following
formula:

2 2
fip=2 E[Ho,(r,,) Ho(T) f(Pusizt> Gusj—1)

i=1j=
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of
+ H,; (1,) Hy (7,) Ap, 5’

CPuvi-ts Gu+j—r)
of
+ H, (1) H (1)) Ag,, ™ ) 3
p (P,.+,-|,q,,+/_.)
where
Pn=P <DPn+1» Adn<9 < 9m+1>
_p=p, _ 4~ 4n
P BAp,T Y Ag,

Apn = DPn+17 Poo Aqm A+ 1 ~ 9w

and H’s are the Hermite interpolant polynomials
Hy () = 1-37428,  Hy(1) = 3227,

H, () = t=24F,  Hp() = — £+r.

4. FINITE ELEMENT SCHEME

Finite element methods, also known as Ritz-Galerkin methods, are based on the idea of
approximating a functional linear space by a finite dimensional subspace generated by a
basis of locally supported functions, called shape functions. The domain is partitioned into
subsets, called elements. The shape functions are defined on each element. An ap-
proximate solution to a given problem is determined by a linear system for the
components with respect to the basis of shape functions for the approximating subspace.

In this section we construct a finite element scheme using curvilinear coordinates ( p, q),
based on a conventional scheme for cartesian coordinates, and derive the formulae for the
coefficients of the linear system for our particular problem. The domain in the r—z plane
is partitioned with a grid into curvilinear quadrilaterals, whose sides are lines of constant
p and q. We define elements, local interpolating shape functions on them and generate an
approximating space § with interpolating global shape functions g,(p, ¢), 1 Sn < K.

Domain. In the preceding section we truncated the passage at the entrance and the exit
and constructed orthogonal curvilinear coordinates ( p, g) for the domain € produced by
sectioning the truncated passage with the -z plane.

Recall that the edges of Q are curves of constant p or g with p varying from entrance
to exit:

Q= {( p, q) Pentrance = p = Pexit> Dinner = q = qouter} .
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Elements

Figure 3 Finite element scheme.

Grid. In the preceding section we partitioned Q with a grid of curves of constant p or
g. For convenience we used the same Ap and Ag throughout the grid, although this is by
no means mandatory. Given two even integers N and M, let

Ap - Pexit — Pentrance Aq - Qouter ~ Ginner

N ’ M ’
DPn= pemrance+ I’lAp, 9m = Qinner + mAq

Elements. Each element is defined to be a quadrilateral consisting of four grid
quadrilaterals with one common node in the middle of the element (see Figure 3). Thus,
an element contains a total of 9 grid nodes.

An element E,,,, where n and m are even, is bounded by the curves p =p,, p = p,..2, 4
= ¢, 4 = G,u.»- On each such element E,,, we define local variables

Local shape functions. On each element we define local shape functions
0; = 6,1,)61,),
where ; are the Lagrange interpolant polynomials for the nodes 7, =0, t, = 1, t; = Y.

_tk

o) = II -

9
keili T
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so that 6; (t,) = §,;. Specifically,
0,(=1-0(1-21, 6,)=—t(1-21), 65()=41(1-1),
0,(n=41—3, 6,(t)=4t—1, 6,(t)=—8r+4.

For each of the 9 nodes in a given element, exactly one of the ¢;; takes the value 1 at that
node and vanishes on all curved grid edges in the element that do not contain the node.

Global shape functions. For each grid node we construct a globally defined interpolat-
ing shape function by patching local shape functions on elements that share the node and
extending by zero. The number of elements that can share a node is between one and four.
Specifically, a global shape function corresponding to a particular node is defined by its
restrictions to the elements. If an element does not contain the node the value is zero.
Otherwise it coincides with the local shape function on that element corresponding to the
given node.

It is an easy exercise to see that the global shape functions are continuous. Note that
while these shape functions are defined globally, the support of each global shape function
is a subset of at most 4 adjacent elements. Moreover each global shape function is 1 at the
node it corresponds to and vanishes on all grid edges not containing the node. In particular,
it vanishes at all other nodes, thus earning the title interpolating.

Galerkin integrals. A general function in the approximating space § can be written in
the form

K
V(p, Q)=I;‘ngk( p. 9,

where y, are coefficients to be determined, g, are the global shape functions correspond-
ing to each node in the grid after a suitable reindexing, and k = NM. Since g, are
interpolating functions, v, are the values of V¥ at the nodes.

To obtain the desired linear system we require the left hand side of (1) evaluated at ¥
to be annihilated by the projection to G :

fj‘ 26 o 161nr81;7+ 1 dlnr oy oy do 0. 1=k = K
Q vV h2 p dp hz dq dq 8\p> q)h,n,r ap aq s =k<K
p 4

We apply Green’s first identity (10.713 [4]) to obtain

- 1dlnray 1 dlnray
ff Vy Vg +2 | ———+——— & | Wi, dpdq
Q Rt op op 42 09 oq
P q

= 6_![7 de 1= k=K 4
mgkanr , = k=K
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Since the values y, of V at the nodes lying on 0Q are given by the boundary conditions,
we need not project onto the corresponding g,. Let £ be the set of all indices k such that
&, corresponds to an interior node. The global shape functions g, with k € £ vanish on €,
so the contour integral on the right hand side of (4) is zero. Since

1 1 oy d
_al’_g_+__‘_l’ﬁ

72 2
h, ap h, oq oq

VY - Vg =

we obtain for k € £

E)gk or ) oy ( og, _or )aw] B
fo[ ( 26pgk 6p+cpr8q+2 &k dp dqg = 0.
Since g, are patched from ¢,; defined on each element, we use additivity of integration and

integrate in each element. Suppose that on an element E, = E, , , we have g, =
8, (t,)6; (t,). Then

lalnraly 1 dlnroy
ffE [vw ng+2( o0 7 o0 6q>gk] hh,r dp dg
1 oy
+
ff[( 1)+ 2 RO (t)>2Aat

+c (@ )dej“‘+2—9 [(1,)8; : alp 4ApAq dt,dt, = 0
2A dr, ) | onga, |FOPA9 A A= 0

We expand the derivatives of y

I%’.

9 de;
s
g Ve ar dt, O (1), a,

9 db,
2 __ /B
P = t‘[

where B is an index enumerating the 9 nodes of each element, to obtain

Iy = ;Wkaﬁ J iy

where

de,
Joup= ff[ ( ———6 (t)+4Aq 6 (t,)6; (t)) Zﬁgfﬂ(t‘l)
4

sp A8, ar e]
*e, rEG,-m (t")d_tq + 4Ap£6,~ak (1,8, (1,) ) 6, (t,) =] dt, dt, = 0.
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We use the two-dimensional spline formula (3) to write

or or
cr, C,r, Cpa, ng,
as linear combinations of products of Hermite interpolant polynomials Hy; (7,) H, ; (T,);
ki =0, 1; ij = 1,2 in each of the four grid quadrilaterals in the element. The Lagrange
interpolant polynomials 6;; and their derivatives are polynomials of #, or 7., S0 Jg is
easily computed as a sum of four double integrals of polynomials in #, and 7, of total
degree < 13.

5. VERIFICATION

The results of the finite element procedure were compared to an analytic solution in a
simple situation permitting the latter [5]. In this case we used a grid given by exact
streamlines and equipotential lines. The highest relative error in velocity was < 0.01%.
Here is an excerpt from the results of comparison.

i psi psie erpsi vs ve ervs
19 14 5.55598 5.55556 0.00008 0.36712 0.36694 0.00049

19 15 5.55596 5.55556 0.00007 0.37506 0.37488 0.00048
19 16 5.55590 5.55556 0.00006 0.38297 0.38279 0.00046
19 17 5.55556 5.55556 0.00000 0.39084 0.39067 0.00045

Comparison to an Analytic Case.

In order to obtain accuracy information in practice, we have built internal consistency
checks into the program. These include

(i) The constancy with respect to g of the potential difference ¢,, from entrance to exit
along a p-axis,

(i1) The constancy with respect to p of the flow rate Q. along g-axes from the entrance
to the exit.

We show an output excerpt for the results of internal consistency checks in a practical
case.

j phim
1 -17.069549183000
2 -17.201735611433
3 -17.149428519433

11 -17.152069202377
-17.150913379990
-17.146290989711

—
w N

7 -17.148353666618
maximum error in phi rel. to the average 4.8311698964712D-03
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Qf erqf
1.3069628856269 0.
1.3069629121763 2.0313825674024D-08
1.3069628438258 3.1983363498923D-08
1.3069628767708 6.7760792488346D-09
1.3069629258666 3.0788670647797D-08

w oW = e

25 1.3065537028256 3.1307912856568D-04
26 1.3056575431130 9.9876020066009D-04
27 1.3043514765804 1.9980743716836D-03
28 1.3051600449769 1.3794122770178D-03

exact flow rate 1.3069628856269
maximum error in flow rate 1.9980743716836D-03

Internal Consistency Checks in a Practical Case.

6. CONCLUSIONS

e The results of the work show that consistent use of curvilinear coordinates in the finite
element scheme leads to a significant increase in accuracy over conventional methods.

e Comparison with an exact solution does not reflect well the relative errors obtained in
the solution of practical cases. This makes it absolutely essential to develop and perform
consistency checks for each practical application.
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