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Consider an unconstrained mechanical system consisting of n masses m;, m,, ... , m,. Its
motion in an inertial Cartesian rectangular coordinate system is governed by the system
of differential equations

Mx=F (x, X, ), (1)

where the 3n by 3n constant diagonal matrix M has the masses m; in sets of three along
its diagonal, and the 3n-vector F is the vector containing the components of the “given”
or “impressed” forces in the three coordinate directions. Consider the point x(0) = x,,
x(0) = X,. We shall assume that F has continuous partial derivatives in a closed bounded
domain G around the point (x,, X,) and for values of ¢ in an interval —a < t < a. Then the
solution of equation (1) exists and is unique, locally. Hence we assume that the solution
of the unconstrained equation of motion leads, locally, to a unique solution.
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We now impose further, a set of m smooth (actually C? is sufficient) constraints of the
form

e(x (), x(®),n=0, i=1,2,...,m, 2
which, upon differentiation with respect to ¢, yield the equation

A X, )x=b(x X, 1), ?3)

where the matrix A and the vector b are again continuous functions of their arguments. As
is usual in mechanics, we shall assume that the initial conditions X, X, at time ¢ = 0 for
the constrained system are such that equation set (2) is satisfied. Then the equation of
motion of the constrained mechanical system was derived in [1] and [2], and can be
expressed as

Mx=F (x,x, ) + M (AM~V*" [ b (x, X, /) — A(X, X,t) M "' F]. 4)

We present here two useful results related to the existence and uniqueness of the solutions
of equation (4).

THEOREM 1 Let G be a closed bounded domain in the 6n-dimensional space (X, x).
Consider now the closed bounded domain G, in the (6n+ 1)-dimensional space determined
by G and values of t in the interval —b <t < b. Let the point (X, Xy, 0) be an interior point
of G,. Furthermore, let

(1) A, b and F be defined, and continuous functions of their arguments, in G,, and,
(2) the rank of A remain the same throughout G,.

Then a solution x(t) of (4) passing through (X, 5(0, 0) exists and is defined in the interval
(=h,h), where,

min (D,b)

h=———Fre. 5
(1+u\/6n) ©

Here D is the minimum Euclidean distance from the point (X, X,, 0) to the boundary of
G,, and u is the maximum absolute value in G, among the components of the
right-hand-side vector when equation (4) is expressed as a system of first order differential
equations.

Proof. Since AM "2 is a continuous function of X, X, and 7, and its rank is constant in
G,, (AM~")* is a continuous function in the same domain and hence the right-hand side
of eq. (4) becomes a continuous function of its arguments. Hence the result (see, e.g., [3]).

THeOREM 2 IfA, b and F are continuous and differentiable with respect to their arguments
in G, and if the rank of A is constant in G, then eq. (4) has a unique solution in a
neighborhood of the point (x,, Xy, 0), and passing through it.

Proof Since the rank of AM ™' is constant in G,, it is continuous in G,. Hence
(AM~"?)* is differentiable in G, [4]. The result then follows, (see [3]).
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Changes in the rank of the matrix A occur infrequently in practical, well-modeled
problems in mechanics. When they do, they can usually be averted by the use of
alternative, yet equivalent, ways of specifying the constraints, and by a reparametrization
of the problem through the choice of a different set of Lagrangian coordinates. Most
practical problems which arise in the dynamics of mechanical systems with bilateral
nonholonomic constraints (such as those illustrated, for example, in [5] and [6]) thus
satisfy the conditions of Theorem 2, and therefore yield unique motions (trajectories), at
least locally.

If the matrix A is not of a constant rank for all ¢ in [a, b], then there exists a collection
of open intervals (q;, b; ) whose union is dense in [a, b] such that A* (¢) is continuous on
each of the subintervals (a;, b; ). The situation for generalized inverses of operator-valued
functions is more complicated; continuity and perturbation results for generalized inverses
of linear operators are given in [7] and the references cited therein. The physical
interpretation and implications of the case when the rank of the matrix A(?) is not constant
in constrained mechanical systems lead to some interesting questions in the modeling and
analysis of such systems.
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