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We prove the existence of mild and strong solutions of integrodifferential equations with
nonlocal conditions in Banach spaces. Further sufficient conditions for the controlla-
bility of integrodifferential systems are established. The results are obtained by using the
Schauder fixed-point theorem. Examples are provided to illustrate the theory.

1. Introduction

Byszewski [9] has studied the existence and uniqueness of mild, strong, and classical so-
lutions of the following nonlocal Cauchy problem:

du(t)
dt

+Au(t)= f
(
t,u(t)

)
, t ∈ (0,a], (1.1)

u
(
t0
)

+ g
(
t1, t2, . . . , tp,u(·))= u0, (1.2)

where 0≤ t0 < t1 < ··· < tp ≤ a, a > 0,−A is the infinitesimal generator of aC0-semigroup
in a Banach space X , u0 ∈ X , and f : [0,a]×X → X , g : [0,a]p ×X → X are given func-
tions. Subsequently he has investigated the same type of problem for different kinds of
evolution equations in Banach spaces [10, 11, 12, 13, 14]. Ntouyas and Tsamatos [31]
have established the global existence of solutions of semilinear evolution equations with
nonlocal conditions. Balachandran [1], Balachandran and Ilamaran [6], Balachandran
and Chandrasekaran [3], Dauer and Balachandran [17], and Balachandran et al. [7] have
studied the nonlocal Cauchy problem for various classes of integrodifferential equations.
Physical motivation for this kind of problem is given in [18, 25].

It is well known [36] (when A= 0 and g = 0) that only the continuity of f is not suffi-
cient to assure local existence of solutions, even when X is a Hilbert space. Therefore, one
has to restrict either the function f or the semigroup operator. Usually restrictions on
f are imposed, as either f should satisfy the local Lipschitz condition, or be monotonic,
or be completely continuous. Here we assume that the nonlinear terms satisfy the bound-
edness condition.
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2. Preliminaries

Consider the one-dimensional model in viscoelasticity

ρutt(t,x) + kut(t,x)= ψx(t,x) +h(t,x),

ψ(t,x)= Eux(t,x) +
∫ t

0
a(t− s)ux(s,x)ds, (t,x)∈R

+× [0,1],

u(t,0)= u(t,1)= 0, t ∈R
+,

u(0,x)= u0(x), x ∈ [0,1],

(2.1)

where u is the displacement, ψ is the stress, h is the external force, ρ,E > 0 and k are
constants, and R+ = [0,∞). The first equation is the linear momentum equation while
the second is the constitutive relation between stress and strain. If we set E = 1, w = ut,
and v = ux, then we obtain

[
v′(t)
w′(t)

]
=



0 ∂x
∂x
ρ

0



{[

v(t)

w(t)

]
+
∫ t

0

[
a(t− s) 0

0 0

][
v(t)

w(t)

]
ds

}

+




0 0

0 −k
ρ



[
v(t)

w(t)

]
+




0
h(t)
ρ


 , t ≥ 0.

(2.2)

The above equation can be written in the abstract form as

x′(t)=A
[
x(t) +

∫ t
0
F(t− s)x(s)

]
ds+Kx(t) + f (t), t ≥ 0,

x(0)= x0.
(2.3)

Here A is an unbounded operator, while K and F(t) are bounded operators for t ≥ 0 on
a Banach space X .

In general, F(t)A �= AF(t) and A(x+ y)=Ax+Ay is true only if x, y ∈D(A). Thus the
above equation is distinct from the equation

x′(t)=Ax(t) +
∫ t

0
F(t− s)Ax(s)ds+Kx(t) + f (t), t ≥ 0,

x(0)= x0,
(2.4)

which has been studied in [19]. If we consider a nonlinear term instead of Kx(t) + f (t),
then (2.4) becomes

x′(t)= A
[
x(t) +

∫ t
0
F(t− s)x(s)

]
ds+ f

(
t,x(t)

)
, t ≥ 0,

x(0)= x0.
(2.5)

This type of equation also occurs in the study of viscoelastic beams and thermovisco-
elasticity (see [19, 29] and the references therein). If the nonlocal condition (1.2) is
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introduced to the above equation, it will also have a better effect than the classical con-
dition. The nonlocal Cauchy problem for the above equation has been discussed by Lin
and Liu [28]. The Cauchy problem for integrodifferential equations in Banach spaces has
been studied by several authors [16, 21, 23, 24].

In this section we consider the following integrodifferential equation with a nonlocal
condition:

x′(t)=A
[
x(t) +

∫ t
0
F(t− s)x(s)ds

]
+ f
(
t,x(t)

)

+
∫ t

0
g
(
t, s,x(s),

∫ s
0
k
(
s,τ,x(τ)

)
dτ
)
ds, t ∈ [0,a]= J,

(2.6a)

x(0) +h
(
x
(
t1
)
, . . . ,x

(
tp
))= x0, (2.6b)

whereA generates a strongly continuous semigroup in a Banach space X , F(t) is a bound-
ed operator for t ∈ J , and f : J ×X → X , k : ∆×X → X , g : ∆×X ×X → X , and h : Xp →
X are given functions. Here ∆ = {(t, s) : 0 ≤ s ≤ t ≤ a}, F(t) ∈ B(X), t ∈ J , F(t) : Y → Y ,
and for x(·) continuous in Y , AF(·)x(·) ∈ L1(J,X). For x ∈ X , F′(t)x is continuous in
t ∈ J , where B(X) is the space of all linear and bounded operators on X , and Y is the
Banach space formed from D(A), the domain of A, endowed with the graph norm. Then
there exists a unique resolvent operator for the equation

x′(t)=A
[
x(t) +

∫ t
0
F(t− s)x(s)ds

]
. (2.7)

The resolvent operator R(t)∈ B(X) for t ∈ J satisfies the following conditions [20]:

(a) R(0)= I (the identity operator on X),
(b) for all x ∈ X , R(t)x is continuous for t ∈ J ,
(c) R(t)∈ B(Y), t ∈ J . For y ∈ Y , R(t)y ∈ C1([0,a],X)∩C([0,a],Y) and

d

dt
R(t)y = A

[
R(t)y +

∫ t
0
F(t− s)R(s)yds

]

= R(t)Ay +
∫ t

0
R(t− s)AF(s)yds, t ∈ J.

(2.8)

The existence and uniqueness of solutions via variations of constants formula and
other properties of resolvent operators have been studied in [20]. In this paper we study
the existence of a mild and strong solution of the integrodifferential equation (2.6a) with
nonlocal condition (2.6b) by utilizing the techniques developed by Pazy [33], Byszewski
[9], and Lin and Liu [28]. The results generalize the results of [14, 28]. We also study the
controllability problem for the above equation.

Let Y = C(J,X) and define the sets

Xr =
{
x ∈ X : ‖x‖ ≤ r}, Yr =

{
y ∈ Y : ‖y‖ ≤ r}, (2.9)

where the constant r is defined below. Assume the following conditions.
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(i) The resolvent operator R(t) is compact and there exists a constant M1 > 0 such that

∥∥R(t)
∥∥≤M1. (2.10)

(ii) The nonlinear operators f : J ×X → X , g : ∆×X ×X → X , and k : ∆×X → X are
continuous and there exist constants M2 > 0, M3 > 0 such that

∥∥ f (t,x(t)
)∥∥≤M2 for t ∈ J, x ∈ Xr,∥∥g(t, s,x(s), y(s)
)∥∥≤M3 for (t, s)∈ ∆, x, y ∈ Xr.

(2.11)

(iii) The operator h : I p ×X → X is continuous and there exists a constant H > 0 such
that

∥∥h(x(t1), . . . ,x(tp))∥∥≤H for x ∈ Yr,
h
(
αx
(
t1
)

+ (1−α)y
(
t1
)
, . . . ,αx

(
tp
)

+ (1−α)y
(
tp
))

= αh(x(t1), . . . ,x(tp))+ (1−α)h
(
y
(
t1
)
, . . . , y

(
tp
))

for x, y ∈ Yr.
(2.12)

(iv) The set {y(0) : y ∈ Yr, y(0)= x0−h(y(t1), . . . , y(tp))} is precompact in X .
To simplify the notation, we take

Q(t)=
∫ t

0
k
(
t, s,x(s)

)
ds. (2.13)

Then (2.6a) takes the form

x′(t)= A
[
x(t) +

∫ t
0
F(t− s)x(s)ds

]
+ f
(
t,x(t)

)
+
∫ t

0
g
(
t, s,x(s),Q(s)

)
ds,

x(0) +h
(
x
(
t1
)
, . . . ,x

(
tp
))= x0.

(2.14)

Definition 2.1. A continuous solution x(t) of the integral equation

x(t)= R(t)
[
x0−h

(
x
(
t1
)
, . . . ,x

(
tp
))]

+
∫ t

0
R(t− s)

[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds

(2.15)

is called a mild solution of problem (2.6).

Definition 2.2. A function x is said to be a strong solution of problem (2.6) on J if x is
differentiable a.e. on J , x′ ∈ L1(J,X) and satisfies

x′(t)= A
[
x(t) +

∫ t
0
F(t− s)x(s)ds

]
+ f
(
t,x(t)

)
+
∫ t

0
g
(
t, s,x(s),Q(s)

)
ds,

x(0) +h
(
x
(
t1
)
, . . . ,x

(
tp
))= x0 a.e. on J.

(2.16)
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3. Existence of mild and strong solutions

Theorem 3.1. Assume that hypotheses (i), (ii), (iii), and (iv) hold. Then problem (2.6) has
a mild solution on J .

Proof. We define the set Y0 in Y by

Y0 =
{
x ∈ Y : x(0) +h

(
x
(
t1
)
, . . . ,x

(
tp
))= x0,

∥∥x(t)
∥∥≤ r for 0≤ t ≤ a}, (3.1)

where r =M1‖x0‖+HM1 +M1a(M2 +M3a).
Clearly, Y0 is a bounded closed convex subset of Y .
Define a mapping Ψ : Y → Y0 by

(Ψx)(t)= R(t)
[
x0−h

(
x
(
t1
)
, . . . ,x

(
tp
))]

+
∫ t

0
R(t− s)

[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds.

(3.2)

Since

∥∥(Ψx)(t)
∥∥≤ ∥∥R(t)x0

∥∥+
∥∥R(t)h

(
x
(
t1
)
, . . . ,x

(
tp
))∥∥

+
∫ t

0

∥∥∥∥R(t− s)
[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]∥∥∥∥ds

≤M1
∥∥x0
∥∥+HM1 +M1a

(
M2 +M3a

)= r,
(3.3)

then Ψ maps Y0 into Y0. Further, the continuity of Ψ from Y0 into Y0 follows from the
fact that f , g, k, and h are continuous. Moreover Ψ maps Y0 into a precompact subset of
Y0. We prove that the set Y0(t) = {(Ψx)(t) : x ∈ Y0} is precompact in X , for every fixed
t, 0 ≤ t ≤ a. For t = 0, the set Y0(0) is precompact in X . Let t > 0 be fixed. Define, for
0 < ε < t,

(
Ψεx

)
(t)= R(t)x0−R(t)h

(
x
(
t1
)
, . . . ,x

(
tp
))

+
∫ t−ε

0
R(t− s)

[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds.

(3.4)

Since R(t) is compact for every t > 0, the set

Yε(t)=
{(
Ψεx

)
(t) : x ∈ Y0

}
(3.5)

is precompact in X for every ε, 0 < ε < t.
Further, for x ∈ Y0, we have

∥∥(Ψx)(t)− (Ψεx)(t)∥∥
≤
∥∥∥∥
∫ t
t−ε

R(t− s)
[
f
(
s,u(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds
∥∥∥∥

≤M1
(
M2 + aM3

)
ε,

(3.6)
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which implies that Y0(t) is totally bounded, that is, Y0(t) is precompact in X . We will
show that

Ψ
(
Y0
)= S= {(Ψx) : x ∈ Y0

}
(3.7)

is an equicontinuous family of functions.
For 0 < t < s, we have

∥∥(Ψx)(t)− (Ψx)(s)
∥∥

≤ ∥∥(R(t)−R(s)
)
x0
∥∥+

∥∥(R(t)−R(s)
)
h
(
x
(
t1
)
, . . . ,x

(
tp
))∥∥

+
∥∥∥∥
∫ t

0

(
R(t− τ)−R(s− τ)

)[
f
(
τ,x(τ)

)
+
∫ τ

0
g
(
τ,θ,x(θ),Q(θ)

)
dθ
]
dτ
∥∥∥∥

+
∥∥∥∥
∫ s
t
T(s− τ)

[
f
(
τ,u(τ)

)
+
∫ τ

0
g
(
τ,θ,x(θ),Q(θ)

)
dθ
]
dτ
∥∥∥∥

≤ ∥∥R(t)−R(s)
∥∥(∥∥x0

∥∥+H
)

+
(
M2 + aM3

)
M1|s− t|

+
(
M2 + aM3

)∫ t
0

∥∥R(t− τ)−R(s− τ)
∥∥dτ.

(3.8)

The right-hand side of the above inequality is independent of x ∈ Y0 and tends to zero
as s→ t (as a consequence of the continuity of R(t) in the uniform operator topology for
t > 0 which follows from the compactness of R(t), t > 0). It is also clear that S is bounded
in Y . Thus by Arzelá-Ascoli’s theorem, S is precompact. Hence by the Schauder fixed-
point theorem, Ψ has a fixed point in Y0 and any fixed point of Ψ is a mild solution of the
nonlocal Cauchy problem (2.6). �

Next we prove the strong solution of (2.6).

Theorem 3.2. Assume that conditions (i), (ii), (iii), and (iv) hold. Further, assume that

(v) X is a reflexive Banach space,
(vi) f : J ×X → X is continuous in t on J and there exists a constant M5 > 0 such that

∥∥ f (t,x)− f (s, y)
∥∥≤M5

(|t− s|+‖x− y‖) t, s∈ J, x, y ∈ Xr, (3.9)

(vii) g : ∆×X ×X → X is continuous in t on J and there exists a constant M6 > 0 such
that

∥∥g(t,τ,x, y)− g(s,τ,x, y)
∥∥≤M6|t− s| (t, s)∈ ∆, x, y ∈ Xr, (3.10)

(viii) x0 ∈D(A), h(x(t1), . . . ,x(tp))∈D(A).
(ix) x is the unique mild solution of problem (2.6).

Then x is the unique strong solution of problem (2.6).
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Proof. Since all the assumptions of Theorem 3.1 are satisfied, problem (2.6) possesses
a mild solution x which, according to assumption (ix), is the unique mild solution of
problem (2.6). We will show that x is a strong solution of problem (2.6) on J . For any
t ∈ J , we have

x(t+ δ)− x(t)

= (R(t+ δ)−R(t)
)[
x0−h

(
x
(
t1
)
, . . . ,x

(
tp
))]

+
∫ δ

0
R(t+ δ− s)

[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds

+
∫ t+δ
δ

R(t+ δ− s)
[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds

−
∫ t

0
R(t− s)

[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds

= (R(t+ δ)−R(t)
)[
x0−h

(
x
(
t1
)
, . . . ,x

(
tp
))]

+
∫ δ

0
R(t+ δ− s)

[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds

+
∫ t

0
R(t− s)[ f (s+ δ,x(s+ δ)

)− f
(
s,x(s)

)]
ds

+
∫ t

0
R(t− s)

∫ s
0

[
g
(
s+ δ,τ,x(τ),Q(τ)

)− g(s+ δ,τ,x(τ),Q(τ)
)
dτ
]
ds

+
∫ t

0
R(t− s)

∫ s+δ
0

g
(
s+ δ,τ,x(τ),Q(τ)

)
dτds.

(3.11)

From our assumptions, we have

∥∥x(t+ δ)− x(t)
∥∥

≤ ∥∥[R(t+ δ)−R(t)
][
x0−h

(
x
(
t1
)
, . . . ,x

(
tp
))]∥∥+ δM1

(
M2 + aM3

)
+
∫ t

0
M1M5

[
δ +

∥∥x(s+ δ)− x(s)
∥∥]ds+ aM1M6δ

(
a+M3

)
≤ δ(∥∥Ax0

∥∥+‖Ah‖)(M1 + a‖F‖M1
)

+ δM1
(
M2 + aM3

)
+M1M5δ + aM1M6δ

(
a+M3

)
+M1M5

∫ t
0

∥∥x(s+ δ)− x(s)
∥∥ds

= Pδ +M1M5

∫ t
0

∥∥x(s+ δ)− x(s)
∥∥ds,

(3.12)

where

P = (∥∥Ax0
∥∥+‖Ah‖)(M1 + a‖F‖M1

)
+M1

(
M2 + aM3

)
+M1M5 + aM1M6

(
a+M3

)
.

(3.13)

Using Gronwall’s inequality, we get

∥∥x(t+ δ)− x(t)
∥∥≤ PδeaM1M5 , t ∈ J. (3.14)

Therefore x is Lipschitz continuous on J .
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The Lipschitz continuity of x on J combined with conditions (vi) and (vii) implies
that t→ f (t,x(t)), t→ g(t, s,x(t),Q(s)) are Lipschitz continuous on J . By [19, 20] and the
definition of strong solution, we see that the linear Cauchy problem

dv(t)
dt

=A
[
v(t)+

∫ t
0
F(t−s)v(s)ds

]
+ f
(
t,x(t)

)
+
∫ t

0
g
(
t, s,x(s),Q(s)

)
ds, t∈[0,a],

v(0)= x0−h
(
x
(
t1
)
, . . . ,x

(
tp
))
,

(3.15)

has a unique strong solution v satisfying the equation

v(t)= R(t)x0−R(t)h
(
x
(
t1
)
, . . . ,x

(
tp
))

+
∫ t

0
R(t− s)

[
f
(
s,x(s)

)
+
∫ s

0
g(s,τ,x(τ),Q(τ))dτ

]
ds

= x(t).

(3.16)

Consequently x is the unique strong solution of problem (2.6) on J . �

4. Controllability results

In this section, we will study a new type of controllability problem for integrodifferential
systems in Banach spaces. With the help of the fixed-point argument, several authors have
investigated the problem of controllability of nonlinear systems in Banach spaces [4, 8,
15, 22, 26, 34, 35]. In particular, the Schauder fixed-point theorem is used to study the
controllability of Volterra systems in [27, 30] and integrodifferential systems in [2, 5, 32].
Now we will establish a set of sufficient conditions for the controllability of semilinear
integrodifferential system (4.1a) with nonlocal condition (4.1b).

Consider the following semilinear integrodifferential system with control parameter:

x′(t)=A
[
x(t) +

∫ t
0
F(t− s)x(s)ds

]

+ (Bu)(t) + f
(
t,x(t)

)
+
∫ t

0
g
(
t, s,x(s),Q(s)

)
ds,

(4.1a)

x(0) +h
(
x
(
t1
)
, . . . ,x

(
tp
))= x0, (4.1b)

where the state x(·) takes values in the Banach space X and the control function u(·)
is given in L2(J,U), a Banach space of admissible control functions with U as a Banach
space. Here B is a bounded linear operator from U into X . Take J = [0,T]. Then, for
system (4.1a), there exists a mild solution of the following form:

x(t)= R(t)
[
x0−h

(
x
(
t1
)
, . . . ,x

(
tp
))]

+
∫ t

0
R(t− s)

[
(Bu)(s) + f

(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds,

(4.2)
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where the resolvent operator R(t)∈ B(X) for t ∈ J and the functions f , g, k, and h satisfy
the conditions stated in Section 3.

Definition 4.1. System (4.1a) is said to be controllable with nonlocal condition (4.1b) on
the interval J if , for every x0,xT ∈ X, there exists a control u∈ L2(J,U) such that the mild
solution x(·) of (4.1a) satisfies

x(0) +h
(
x
(
t1
)
, . . . ,x

(
tp
))= x0, x(T)= xT. (4.3)

To establish the result, we need the following additional hypothesis.

(x) The linear operator W from U into X , defined by

Wu=
∫ T

0
R(T − s)Bu(s)ds, (4.4)

induces an inverse operator W̃−1 defined on L2(J ;U)/kerW , and there exists a
constant M4 > 0 such that ‖BW̃−1‖ ≤M4.

Theorem 4.2. If hypotheses (i), (ii), (iii), (iv), and (x) are satisfied, then system (4.1) is
controllable on J .

Proof. Using hypothesis (x), for an arbitrary function x(·), define the control

u(t)= W̃−1
[
xT −R(T)

[
x0−h

(
x
(
t1
)
, . . . ,x

(
tp
))]

−
∫ T

0
R(T − s)

[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds
]

(t).
(4.5)

Now we will show that, when using this control, the operator, defined by

(Φx)(t)= R(t)
[
x0−h

(
x
(
t1
)
, . . . ,x

(
tp
))]

+
∫ t

0
R(t− s)

[
(Bu)(s) + f

(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds,

(4.6)

has a fixed point. This fixed point is then a solution of (4.1a).
Clearly, (Φx)(T) = xT , which means that the control u steers the semilinear integro-

differential system from the initial state x0 to xT in time T provided we can obtain a fixed
point of the nonlinear operator Φ. Let

Z0 =
{
x ∈ Y : x(0) +h

(
x
(
t1
)
, . . . ,x

(
tp
))= x0,

∥∥x(t)
∥∥≤ r, for t ∈ J}, (4.7)
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where the positive constant r is given by

r =M1
(∥∥x0

∥∥+H
)

+TM1M4
[∥∥xT∥∥+M1

(∥∥x0
∥∥+H

)
+TM1

(
M2 +M3T

)]
+TM1

(
M2 +M3T

)
.

(4.8)

Then Z0 is clearly a bounded, closed, and convex subset of Z. Define a mapping Φ : Z →
Z0 by

(Φx)(t)= R(t)
[
x0−h

(
x
(
t1
)
, . . . ,x

(
tp
))]

+
∫ t

0
R(t−η)BW̃−1

×
[
xT −R(T)

[
x0−h

(
x
(
t1
)
, . . . ,x

(
tp
))]

−
∫ T

0
R(T − s)

[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds
]

(θ)dθ

+
∫ t

0
R(t− s)

[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds.

(4.9)

Since f and g are continuous and ‖(Φx)(t)‖ ≤ r, it follows that Φ is continuous and maps
Z0 into itself. Moreover, Φ maps Z0 into a precompact subset of Z0. To prove this, we first
show that for every fixed t ∈ J , the set

Z0(t)= {(Φx)(t) : x ∈ Z0
}

(4.10)

is precompact in X . This is clear for t = 0 since Z0(0) is precompact by assumption (iv).
Let t > 0 be fixed and for 0 < ε < t, define

(
Φεx

)
(t)= R(t)

[
x0−h

(
x
(
t1
)
, . . . ,x

(
tp
))]

+
∫ t−ε

0
R(t−η)BW̃−1

×
[
xT −R(T)

[
x0−h

(
x
(
t1
)
, . . . ,x

(
tp
))]

−
∫ T

0
R(T − s)

[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds
]

(θ)dθ

+
∫ t−ε

0
R(t− s)

[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds.

(4.11)

Since R(t) is compact for every t > 0, the set

Zε(t)=
{(
Φεx

)
(t) : x ∈ Z0

}
(4.12)
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is precompact in X for every ε, 0 < ε < t. Furthermore, for x ∈ Z0, we have

∥∥(Φx)(t)− (Φεx
)
(t)
∥∥

≤
∥∥∥∥
∫ t
t−ε

R(t−η)BW̃−1

×
[
xT −R(T)

[
x0−h

(
x
(
t1
)
, . . . ,x

(
tp
))]

−
∫ T

0
R(T − s)

[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds
]

(θ)dθ
∥∥∥∥

+
∥∥∥∥
∫ t
t−ε

R(t− s)
[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds
∥∥∥∥

≤ εM1M4
[∥∥xT∥∥+M1

(∥∥x0
∥∥+H

)
+M1

(
M2 +M3T

)
T
]

+ εM1
[
M2 +M3T

]
,

(4.13)

which implies that Z0(t) is totally bounded, that is, precompact in X . We want to show
that

Φ
(
Z0
)= {Φx : x ∈ Z0

}
(4.14)

is an equicontinuous family of functions. For that, let t2 > t1 > 0. Then, we have

∥∥(Φx)
(
t1
)− (Φx)

(
t2
)∥∥

≤ ∥∥R(t1)−R(t2)∥∥(∥∥x0
∥∥+H

)

+
∥∥∥∥
∫ t1

0

[
R
(
t1− θ

)−R(t2− θ)]BW̃−1

×
[
xT −R(T)

[
x0−h

(
x
(
t1
)
, . . . ,x

(
tp
))]

−
∫ T

0
R(T − s)

[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds
]

(θ)dθ

−
∫ t2
t1
R
(
t2−η

)
BW̃−1

×
[
xT −R(T)

[
x0−h

(
x
(
t1
)
, . . . ,x

(
tp
))]

−
∫ T

0
R(T−s)

[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds
]

(θ)dθ
∥∥∥∥

+
∥∥∥∥
∫ t1

0

[
R
(
t1− s

)−R(t2− s)]
[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds

−
∫ t2
t1
R
(
t2− s

)[
f
(
s,x(s)

)
+
∫ s

0
g
(
s,τ,x(τ),Q(τ)

)
dτ
]
ds
∥∥∥∥
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≤ ∥∥R(t1)−R(t2)∥∥(∥∥x0
∥∥+H

)
+
∫ t1

0

∥∥R(t1− s)−R(t2− s)∥∥M4
[∥∥xT∥∥+M1

(∥∥x0
∥∥+H

)
+M1

(
M2 +M3T

)
T
]
ds

+
∫ t2
t1

∥∥R(t2− s)∥∥M4
[∥∥xT∥∥+M1

(∥∥x0
∥∥+H

)
+M1

(
M2 +M3T

)
T
]
ds

+
∫ t1

0

∥∥R(t1− s)−R(t2− s)∥∥(M2 +M3T
)
ds

+
∫ t2
t1

∥∥R(t2− s)∥∥(M2 +M3T
)
ds.

(4.15)

The compactness of R(t), t > 0, implies that R(t) is continuous in the uniform operator
topology for t > 0. Thus, the right-hand side of (4.15), which is independent of x ∈ Z0,
tends to zero as t2− t1 → 0. So Φ(Z0) is an equicontinuous family of functions.

Also Φ(Z0) is bounded in Z, and so by the Arzelá-Ascoli theorem, Φ(Z0) is precom-
pact. Hence, from the Schauder fixed-point theorem, Φ has a fixed point in Z0. Any fixed
point of Φ is a mild solution of (4.1a) on J satisfying (Φx)(t) = x(t) ∈ X . Thus, system
(4.1a) is controllable on J . �

5. Examples

We give some examples of nonlocal conditions. Let p ∈ N and let t1, . . . , tp be given real
numbers such that 0 < t1 < ··· < tp ≤ a. Theorems 3.1 and 3.2 can be applied for h de-
fined by the formula

h(y)=
p∑
i=0

ci y
(
ti
)

for y ∈ X (5.1)

or

h(y)=
p∑
i=0

ci
εi

∫ ti
ti−εi

y(s)ds for y ∈ X, (5.2)

where ci, εi (i= 1, . . . , p) are given positive constants such that 0 < t1− ε1 and ti−1 < ti− εi
(i = 1, . . . , p). For more examples on various types of nonlocal conditions, one can refer
to [10, 11, 14, 25].

Consider the following simplified classical heat equation for material with memory:

zt(t,x)= ∂2

∂x2

[
z(t,x) +

∫ t
0
b(t− s)z(s,x)ds

]
+Bu(t)

+ p
(
t,z(t,x)

)
+
∫ t

0
q
(
t, s,z(s,x),

∫ s
0
e
(
s,τ,z(τ,x)

)
dτ
)
ds,

(5.3)
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and the given nonlocal initial and boundary conditions:

z(0, t)= z(1, t)= 0, x ∈ I = (0,1), t ∈ J,
z(x,0) +h

(
z(x,·))= z0(x),

(5.4)

where b is continuous and bounded and h satisfies an appropriate condition. Here B :U→
X is a linear operator such that there exists an inverse operator W̃−1 on L2(J ;U)/kerW ,
where W is defined by

Wu=
∫ T

0
R(T − s)Bu(s)ds. (5.5)

The resolvent operator R(t) is compact [28] and p : J ×X → X , e : ∆×X → X , and q :
∆×X ×X → X are all continuous and uniformly bounded. Problem (5.3) can be brought
to the form of (4.1a) by making suitable choices of A, B, f , k, and g as follows.

Let X =U = L2(J,R), Aw =wxx, and D(A)= {w ∈ X :wxx ∈ X, w(0)=w(1)= 0}. Let

f (t,w)(x)= p
(
t,w(x)

)
, (t,w)∈ J ×X,

k(t, s,w)(x)= e(t, s,w(x)
)
,

g(t, s,w,σ)(x)= q(t, s,w(x),σ(x)
)
, x ∈ I,

(5.6)

be such that condition (ii) is satisfied. Then system (5.3) becomes an abstract formula-
tion of (4.1a). Also by [24, Theorem 3] the solutions are all bounded. Further, all the
conditions stated in the above theorem are satisfied. Hence system (5.3) is controllable
on J .
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