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We present a new secured data transmission based on a chaotic synchronization and
observability singularity. For this, we adopt an approach based on an inclusion of the
message in the system structure and we use a sliding mode observer for system with un-
known input in order to recover the information. We end the paper with an example of
chaotic system with an observability bifurcation. Moreover, this example highlights some
benefits of the so-called step-by-step sliding mode observer.

1. Introduction

The main objective of this paper is to highlight the efficiency of mathematical tools such
as normal form and bifurcation and also the efficiency of control theory method as slid-
ing mode and observer design in the secure data transmission by the synchronization of
chaotic systems.

Since the last decade (see [16]), by its application to secure communications, the
synchronization of the chaotic systems drew great attention of several control theory
researchers (for the sake of simplicity, synchronization here means a unidirectional syn-
chronization). An interesting approach to chaos synchronization based on the concept
of observer design has been proposed in [15] by Nijmeijer and Mareels. More precisely,
consider the two systems

ẋ = f (x), (1.1)

ż = f (z), (1.2)

where x ∈Rn, z ∈Rn, and f : Rn→Rn is a nonlinear vector field.
We say that systems (1.1) and (1.2) are synchronized if

e(t)= (z(t)− x(t)
)−→ 0 as t −→ +∞, (1.3)

where e(t) represents the synchronization error (for a general definition, see [6]).
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Figure 1.1. Additive chaos masking.

An observer is a dynamical system designed to be driven by the output of another
system (transmitter) and having the property that the state of the observer converges to
the state of the original system. More precisely, given system (1.1) with output y = h(x)∈
Rn, the dynamic system

˙̂x = f (x̂, y) (1.4)

is said to be an observer for system (1.1) if x̂(t) converges to the state x(t) as t→ +∞ for
any initial conditions x(0) and x̂(0) in a considered domain.

From [15], many techniques have been developed to design an observer for a chaotic
system. Under some appropriate assumptions, as, for example, conditions of linearization
by output injection form [13, 14] or conditions for obtaining a generalized Hamilton-
ian form [19], this design may be done without any difficulty. Often, the cryptographic
techniques are based on masking the information by adding it to a chaotic signal on the
transmission line (see Figure 1.1) [7]. Information transfer, in a secured way, by the addi-
tion of the signal carrying the information, is possible, thanks to the synchronization of
two copies of a chaotic system in the sense that their state trajectories tend asymptotically
to be identical when one system is suitably driven by the other. One of the disadvantages
of additive chaos masking of chaotic secure communication schemes is the low efficiency
of cannel usage.

In this paper, we adopt an approach based on including the information in the chaotic
system structure (transmitter). Consequently, information does not evolve a separate
form of chaos but will be constantly handled by the system dynamics. This approach
is called chaotic parameter modulation [24] (shown in Figure 1.2).

In [24], in order to synchronize two chaotic systems and to decipher a confidential
message, Yang and Chua used an adaptive controller. The conception of such controller
is based on the singular perturbation methods (see [12, 20]). In the singular perturbation
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theory (see [12]), various speeds of evolution (different time scales) are exploited. Conse-
quently, it is requested then that the message behavior is slower than the system dynamics
in [24].

The method proposed in this paper consists of an observer design with unknown in-
put (here the message), allowing to reconstitute the confidential message from the only
information passing to the receiver by the transmitter, and this is for a message without
dynamical assumption. However, a question settles, namely, how to design an observer
for the nonlinear systems with observability singularity?

Historically, in nonlinear control theory, the problem of a nonlinear observer design
with linearization of the observation error dynamic for a class of nonlinear systems, called
the output injection form, has been investigated. Unfortunately, the geometric conditions
in order to obtain this form are very often too restrictive with respect to the system con-
sidered (for more details, see [2, 4, 13, 14, 17]).

In this paper, we propose an observer design for a system with unknown input and
which has an observability singularity. To overcome such difficulties and in order to in-
crease the busy band of the message and take into account the structural change of the
system, we use a step-by-step sliding mode observer, which is a variable structure observer
able to take into account some structural singularity and also is robust in the parameter
variations, if an observability matching condition is verified.

For this, we have to recall and give some particular concepts of observer for a sys-
tem with unknown input. In the same way of thinking, in [4], we have introduced the
same concept for observability (observability singularity) and we recover naturally some
properties as universal inputs [8], resonant terms [22], and so on.

2. Structure of the observer for chaos synchronization

The linearization by output injection (see [13, 14]) is a usual tool to design an observer
and consequently to resolve the synchronization problem. This approach to synchroniza-
tion is valid if the nonlinearity of a system depends only on the output. However, by
considering another output, it is possible to design a step-by-step sliding mode observer
(see [2, 17]) in spite of the fact that linearization by output injection is not possible (we
highlight the efficiency of the sliding mode observer and more particularly of the step-
by-step observer with respect to the observability matching condition. This condition is
used in order to ensure the data transmission).

In this section, we design an observer for the well-known Chua circuit (Figure 2.1).
This circuit is a simple oscillator which exhibits a variety of bifurcations and chaos. The
circuit contains a linear resistor (R,R0), a single nonlinear resistor ( f (v1)), and three lin-
ear energy-storage components: an inductor (L) and two capacitors (C1,C2). The state
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Figure 2.1. Chua circuit.

equations for the circuit are as follows:

dv1

dt
= 1

C1

(
v2− v1

R
− f

(
v1
))

,

dv2

dt
= 1

C2

(
v1− v2

R
+ i3

)
,

di3
dt
= 1

L

(− v2−R0i3
)
,

(2.1)

with f (v1)=Gbv1 + 0.5(Ga−Gb)(|v1 +E|− |v1−E|).

Setting x1
∆= v1, x2

∆= v2, x3
∆= i3, and x

∆= (x1,x2,x3)T , we obtain

dx1

dt
= −1

C1R

(
x1− x2

)
+

f
(
x1
)

C1
,

dx2

dt
= 1

C2R

(
x1− x2

)
+
x3

C2
,

dx3

dt
= −1

L

(
x2 +R0x3

)
.

(2.2)

2.1. Nonlinearity of Chua circuit depends only on the output. The problem of a non-
linear observer design with linearization of the observation error dynamics for a class of
nonlinear systems, called the output injection form, has been investigated. Some neces-
sary and sufficient conditions to obtain such a form are given in [13]. From this form,
it is “easy” to design an observer. Unfortunately, the geometric conditions to obtain this
form are very restrictive.

2.1.1. Linearizable error dynamics case. We choose as output y the state x1. It is clear that
the system is globally weakly observable (see [10]) and linearizable by output injection.
Then, there exist many observers for this system. According to our knowledge, the first
classical one was proposed by Parlitz in [16]:
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dx̂1

dt
= 1

C1

(
x̂2− ŷ

R
− f ( ŷ)

)
,

dx̂2

dt
= 1

C2

(
y− x̂2

R
+ x̂3

)
,

dx̂3

dt
= 1

L

(− x̂2−R0x̂3
)
,

y = x1,

(2.3)

where x̂ = (x̂1, x̂2, x̂3)T is the estimated state of x and ŷ is the estimated output. Since [15],
the receiver design was changed and was closer to the observer design.

2.1.2. Step-by-step sliding mode observer. Throughout the paper, we will use a step-by-
step sliding mode observer. This kind of observer is very useful and was developed for
many reasons:

(i) to work with reduced observation error dynamics;
(ii) for a finite-time convergence for all components of the observable states;

(iii) robustness under parameter variations is possible if a specific condition (dual of
the well-known matching condition) is verified.

To do this, we give hereafter such a kind of observer for system (2.2) with y = x1 as
output:

dx̂1

dt
= 1

C1

(
x̂2− y

R
− f (y)

)
+ λ1 sign(y− ŷ),

dx̂2

dt
= 1

C2

(
y− x̃2

R
+ x̂3

)
+E1λ2 sign

(
x̃2− x̂2

)
,

dx̂3

dt
= 1

L

(− x̃2−R0x̃3
)

+E2λ3 sign
(
x̃3− x̂3

)
,

y = x1,

(2.4)

where the sign denotes the usual sign function, and the following conditions are satisfied:
if x̂1 = x1, then E1 = 1, else E1 = 0, and if x̂2 = x̃2 and E1 = 1, then E2 = 1, else E2 = 0.
Moreover, by definition, we have the following auxiliary state:

x̃2 = x̂2 +E1C1Rλ1 sign(y− ŷ),

x̃3 = x̂3 +E2C2Rλ2 sign
(
x̃2− x̂2

)
.

(2.5)

The proof of observation error convergence is a particular case of the proof in Section 5.

Simulations results. Comparing the generalized phase plane of x1, x2 (system (2.2)) and
x̂1, x̂2 (system (2.3) in dashed line) in Figure 2.2 with the generalized phase plane of
x1, x2 (system (2.2)) and x̂1, x̂2 (system (2.4) in dashed line) in Figure 2.3, we note that
the state of classical observer (system (2.3)) stays far from the real state longer than the
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Figure 2.2. Double scroll attractor for systems (2.2) and (2.3).
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Figure 2.3. Double scroll attractor for systems (2.2) and (2.4).

state of the step-by-step observer (system (2.4)). This was confirmed by Figures 2.4 and
2.5, where the observation error was shown, respectively, for the classical observer and
the step-by-step observer.
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Figure 2.4. Observation error for systems (2.2) and (2.3).
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Figure 2.5. Observation error for systems (2.2) and (2.4).
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2.2. Nonlinearity of Chua circuit does not depend on the output. In [3, 18], a gen-
eralized output injection form was introduced, and following this way of thinking, a
very interesting relation between a chaotic system and a generalized Hamiltonian system
was done in [19]. Unfortunately, considering (2.2), with x3 as the output instead of x1,
the nonlinearity is not an output function and the result about output injection (see
[3, 18, 19]) cannot be used to design an observer.

Nevertheless, the observer matching condition (see [17]) was verified (i.e., the non-
linearity f (x1) is in ker(C,CA) (see Section 4)). Therefore, it is possible to design the
following step-by-step sliding mode observer:

dx̂1

dt
= 1

C1

(
x̃2− x̂1

R
− f

(
x̃1
))

+E2λ1 sign
(
x̃1−x̂1

)
,

dx̂2

dt
= 1

C2

(
x̂1− x̃2

R
+ x3

)
+E3λ2 sign

(
x̃2− x̂2

)
,

dx̂3

dt
= 1

L

(− x̂2−R0x3
)

+ λ3sign
(
x3− x̂3

)
,

y = x3,

(2.6)

with the following conditions: if x3= x̂3, then E3 = 1, else E3 = 0, and if x̃2 = x̂2 and E3 = 1,
then E2 = 0, else E2 = 0. Moreover, by definition,

x̃2 = x̂2−E3Lλ3 sign
(
x3− x̂3

)
,

x̃1 = x̂1 +E2C2Rλ2 sign
(
x̃2− x̂2

)
.

(2.7)

The proof of observation error convergence will also be done in the same way of thinking
as the proof of Section 5.

Simulations results. Figures 2.6 and 2.7 highlight the efficiency of the step-by-step ob-
server for system (2.2) with x3 as output. We note that the simulation results are very
close to the previous one obtained with x1 as output.

This section can be summarized in two points.

(i) Considering x1 as output, using linearizable-by-output injection (see [13]), it is
possible to observe the full state of Chua circuit.

(ii) Thanks to a step-by-step sliding mode observer, it is also possible to design a full-
state observer for Chua circuit with a new output x3. For this output, the system
is only observable but it is not linearizable by output injection.

In Sections 3 and 4, we want to do something different from this section and from the
classical literature results. We will consider a system with observability bifurcation (i.e.,
the linear approximation is unobservable in one direction). To do this, we will recall, in
Section 3, some new results on the observability bifurcation (see [1, 4]).
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Figure 2.6. Double scroll attractor for systems (2.2) and (2.6).
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Figure 2.7. Observation error for systems (2.2) and (2.6).
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3. Observability normal form

Hereafter, we just recall one result of [4] for a nonlinear system with one real linear unob-
servable mode. This result is necessary to study the example of Section 2. This example
was a transmission by synchronization of chaotic systems with observability bifurcation.

We consider a nonlinear single-input single-output (SISO) system:

ξ̇ = f (ξ) + g(ξ)u, y = Cξ, (3.1)

where the vector fields f ,g : U ⊂Rn →Rn are assumed to be real-analytic and such that
f (0)= 0.

Setting A= (∂ f /∂ξ)(0) and B = g(0) around the equilibrium point ξe = 0, the system
can be rewritten in the following form:

ż =Az+Bu+ f [2](z) + g[1](z)u+O3(z,u),

y = Cz,
(3.2)

where

f [2](z)=



f [2]
1 (z)

f [2]
2 (z)

...

f [2]
n (z)

 , g[1](z)=



g[1]
1 (z)

g[1]
2 (z)

...

g[1]
n (z)

 (3.3)

with, for all 1≤ i≤ n, f [2]
i (z) and g[1]

i (z), respectively, homogeneous polynomials of de-
grees two and one in z (see [11]).

In order to analyze the observability of system (3.1), we establish a quadratic equiv-
alence, with respect to a quadratic diffeomorphism and output injection (which will be
clarified below). The main drawback of this transformation is to preserve the observabil-
ity properties. We first define the so-called quadratic equivalence.

Definition 3.1. System (3.2) is said to be quadratically equivalent modulo an output in-
jection (QEMOI) to the system

ẋ = Ax+Bu+ f̄ [2](x) + ḡ[1](x)u+β[2](y) + γ[1](y)u+O3(x,u),

y = Cx,
(3.4)

if there exist an output injection

β[2](y) + γ[1](y)u (3.5)
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and a diffeomorphism of the form

x = z−Φ[2](z) (3.6)

which carries f [2](z) + g[1](z)u to f̄ [2](x) + ḡ[1](x)u+ (β[2](y) + γ[1](y)u), where

Φ[2](z)=
(
Φ[2]

1 (z), . . . ,Φ[2]
n (z)

)T
,

β[2](y)=
(
β[2]

1 (y), . . . ,β[2]
n (y)

)T
,

(3.7)

and, for all 1≤ i≤ n, Φ[2]
i (z) and β[2]

i (y) are homogeneous polynomials in z, respectively,

in y, of degree two, and γ[1](y) = (γ[1]
1 (y), . . . ,γ[1]

n (y))T with γ[1]
i (y) is homogeneous of

degree one in y.

Assumption 3.2. The pair (A,C) of system (3.1) has one unobservable real mode.

Under this assumption, there are a linear change of coordinates (z = Tξ) and a Taylor
expansion which transform system (3.1) into the following form:

˙̃z =Aobsz̃+Bobsu+ f̃ [2](z) + g̃[1](z)u+O3(z,u),

żn = αzn +
n−1∑
i=1

αizi + bnu+ f [2]
n (z) + g[1]

n (z)u+O3(z,u),

y = Cobsz̃,

(3.8)

where z̃ = [z1,z2, . . . ,zn−1]T , z = [z̃T ,zn]T ,

Aobs =



a1 1 0 ··· 0

a2 0 1
. . .

...
... 0

...
. . . 0

an−2 0 ··· 0 1
an−1 0 ··· ··· 0


,

Bobs =
(
b1, . . . ,bn−1

)T
,

Cobs =
(

1 0 ··· 0
)
.

(3.9)

Remark 3.3. In this section, we deal with system with linearly observable part in the
Brunovsky form (see [5]). Moreover, the output is always taken equal to the first state

component. Consequently, the diffeomorphism (x = z−Φ[2](z)) is such that Φ[2]
1 (z)= 0.
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Proposition 3.4 [4]. System (3.2) is QEMOI to system (3.4) if and only if the following
two homological equations are verified:

(i) AΦ[2](z)− (∂Φ[2]/∂z)Az = f̄ [2](z)− f [2](z) +β[2](z1),
(ii) −(∂Φ[2]/∂z)B = ḡ[1](z)− g[1](z) + γ[1](z1), where

∂Φ[2](z)
∂z

Az :=
(
∂Φ[2]

1 (z)
∂z

Az, . . . ,
∂Φ[2]

n (z)
∂z

Az

)T

(3.10)

and ∂Φ[2]
i (z)/∂z is the Jacobian of Φ[2]

i (z) for all 1≤ i≤ n.

Now, we can give the normal form associated to the QEMOI relation (see [4]).

Theorem 3.5. There exists a quadratic diffeomorphism which transforms the quadratic part
of system (3.8) into the quadratic normal form

ẋ1 = a1x1 + x2 + b1u+
n∑
i=2

k1ixiu+E1,

ẋ2 = a2x1 + x3 + b2u+
n∑
i=2

k2ixiu+E2,

...

ẋn−2 = an−2x1 + xn−1 + bn−2u+
n∑
i=2

k(n−2)ixiu+En−2,

ẋn−1 = an−1x1 + bn−1u+
n∑

j≥i=2

hi jxixj +h1nx1xn +
n∑
i=2

k(n−1)ixiu+En−1,

ẋn = αnxn +
n−1∑
i=1

αixi + bnu+
n∑
j=2

l1, jx1xj +
n∑

j≥i=2

li, jxix j +
n∑
i=2

knixiu+En,

(3.11)

with Ei = β[2]
i (y) + γ[1]

i (y)u for all 1≤ i≤ n.
The coefficients hi, j , li, j , and ki,i for 2≤ i≤ j ≤ n are called quadratic normal numbers.

Remark 3.6. (1) We call the unobservability submanifold the subset Sn−1 of U given by

Sn−1 =
{
x ∈U |

n−1∑
i=1

hi,nxi + 2hn,nxn + k(n−1),nu= 0

}
. (3.12)

Thus, for a fixed input u, when system evolves on Sn−1 from the dynamics of xn−1, we
cannot recover any information on xn with the linear and quadratic terms.

(2) If x ∈ Sn−1 and kn−1,n �= 0, then with an appropriate change of input u (universal
input [8]), we can modify Sn−1 to locally restore the quadratic observability. Moreover, if
kn−1,n = 0 and if there exists i∈ [1,n] such that ki,n �= 0, then the quadratic observability
may be restored.
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(3) If x ∈ Sn−1 such that u is not a function of xn and for all i∈ [1,n], we have ki,n = 0,
then we use coefficient αn to study the detectability propriety. For this, we distinguish
three cases:

(a) if αn < 0, then the state xn is detectable,
(b) if αn > 0, then xn is unstable and consequently undetectable,
(c) if αn = 0, we can use the center manifold theory in order to analyze the stability or

instability of xn and consequently its detectability or undetectability.

Let Φ[2](x)= (0, . . . ,Φ[2]
n (x)) be the quadratic part of the diffeomorphism which gives

Theorem 3.5. In the proof in [4, pages 2943-2944], Φ[2]
2 (x) is well determined from

f [2]
1 (x) and for all 3≤ i≤ n− 1, Φ[2]

i (x) is determined from f [2]
i (x) and the derivatives of

Φ[2]
j (x) and f [2]

j (x) for 2 ≤ j ≤ i− 1. However, on the last dynamic of the normal form
(3.11), to compute resonant terms, we use Poincaré-Dulac theorem (see [9, 22]) (from
Poincaré-Dulac theorem, the condition for resonance is that there exists an eigenvalue λi
such that λi =

∑n
j=1 kjλj with kj ∈N and

∑n
j=1 kj ≥ 2). So, it is interesting to use Φ[2]

n (x)
to cancel the quadratic terms in the last ẋn dynamic; for this, we must check the following
equation:

αnΦ
[2]
n (x) +

n−1∑
i=1

αiΦ
[2]
i (x)= ∂Φ[2]

n

∂x
Aobsx− f [2]

n (x) +β[2]
n

(
x1
)
. (3.13)

Unfortunately, the above equation is not fulfilled for arbitrary αn and (ai)1≤i≤n. Neverthe-
less, the conditions are less restrictive than the usual ones thanks to the output injection

β[2]
n (x1).

4. Particular case: unknown input observer

In this section, we propose to find a new application for the unknown input observer de-
sign. More precisely, we propose a new type of secure data transmission based on chaotic
synchronization. For this, we have to recall and give some particular concepts of observer
for a system with unknown input. On the basis of a concrete example, we put in evi-
dence the ambivalence of certain differential models presenting discontinuity and un-
known perturbation. This ambivalence often causes some errors of interpretation and
this imposes specific tools simply evoked in this study. Nevertheless, it is possible with a
step-by-step procedure to design an observer for such a system. Obviously, there are some
restrictive conditions on the system to solve this problem (see [17, 23]).

We consider the nonlinear system

ξ̇ = f (ξ) + p(ξ)w, y = h(ξ), (4.1)

where w ∈R is a bounded perturbation and vector fields f , p : U ⊂Rn→Rn and h : U ⊂
Rn→R are assumed to be real-analytic. Now, we can give a particular constraint in order
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to solve this problem. The unknown input observer design is locally solvable around x = 0
for system (4.1) if the following two conditions are verified:

(i) span{dh,dL f h, . . . ,dLn−1
f h} is of rank n at ξ = 0,

(ii) ((dh)T (dL f h)T ··· (dLn−1
f h)T)T p(ξ)= (0 ··· 0 ∗)T ,

where p(ξ)= (0 ··· 0 pn(ξ))T and ∗means a nonnull function almost everywhere
in order to be able to identify the perturbation.

In order to reject the perturbation effect on the observer, conditions (i) and (ii) are
called the observability matching condition.

Then, considering system (3.11) without input but with perturbation,

ẋ1 = a1x1 + x2 +E1,

ẋ2 = a2x1 + x3 +E2,

...

ẋn−2 = an−2x1 + xn−1 +En−2,

ẋn−1 = an−1x1 +
n∑

j≥i=2

hi jxixj +h1nx1xn +En−1,

ẋn = αnxn +
n−1∑
i=1

αixi +
n∑
j=2

l1, jx1xj +
n∑

j≥i=2

li, jxix j + pn(x)w+En.

(4.2)

With Ei = β[2]
i (y) for all 1 ≤ i ≤ n, system (4.2) verifies the observability matching

condition and it is a first generalization of our normal form, where we consider a specific
perturbation.

Remark 4.1. For the sake of generality, hereafter Ei (1≤ i≤ n) is considered asC0 function
of the output. This less restrictive claim on Ei changes partially our equivalent relation but
allows us to consider the system as Chua circuit.

In fact, in Proposition 3.4, the nonquadratic term must be directly cancelled by the
output injection.

In Section 5, we have to consider the step-by-step observer because it is, according to
our knowledge, the only observer which works under observability matching condition,
with n� 2.

5. Transmission by inclusion method

Now, in order to increase the security of transmission, we propose to add at the transmis-
sion by synchronization of a chaotic system some observability bifurcations. Here, we just
give an illustrative example, so we consider again system (2.2) with x1 as output but with
x4 = 1/L as a new state. The variation of L is the information to pass on to the receiver.
Moreover, we assume that there exist K1 and K2 such that |x4| < K1 and |dx4/dt| < K2.
This means that the information signal and its variation are bounded. Thus, from these
assumptions, we obtain the following system:



L. Boutat-Baddas et al. 25

dx1

dt
= −1

C1R

(
x1− x2

)
+

f
(
x1
)

C1
,

dx2

dt
= 1

C2R

(
x1− x2

)
+

1
C2

x3,

dx3

dt
=−(x2 +R0x3

)
x4,

dx4

dt
= σ ,

y = x1,

(5.1)

with σ an unknown bounded function (i.e., |σ| < K2).
This system has one unobservable real mode. Using the linear change of coordinates

z1 = x1, z2 = x1/C2R+ x2/C1R, z3 = x3/C1C2R, and z4 = x4, we obtain

dz1

dt
= −

(
C1 +C2

)
C1C2R

z1 + z2 +
f
(
z1
)

C1
,

dz2

dt
= z3 +

f
(
z1
)

C1C2R
,

dz3

dt
= z1z4

C2
2R
− z2z4

C2
−R0z3z4,

dz4

dt
= σ ,

y = z1.

(5.2)

Equations (5.2) are on the observability normal form with αn = 0 and resonant terms
h22 = h23 = 0, h14 = 1/C2

2R, h24 = 1/C2, and h34 = −R0, but with σ as a perturbation
and a nonsmooth output injection ( f (z1)/C1, f (z1)/C1C2R,0,0)T . From Remark 3.6, we
conclude that the resonant terms hi4xix4 ensure the full-state local observability almost
everywhere. The observability singularity is given by z1/C

2
2R− z2/C2−R0z3 = 0, and tak-

ing into account this singularity, we can design an observer. Nevertheless, as system (5.1)
has also a particular structure with x4 = z4 and x3 = C2C1R0z3, we can design an observer
directly on the original state (the physical one). Obviously, the observability singularity
is the same, the equation −x2−R0x3 = 0 is equivalent to z1/C

2
2R− z2/C2−R0z3 = 0.

So, we will use the information contained in the terms −x4x2 − R0x4x3 in order to
design a full-state observer and recover information on x4 contained in the equation of
dx3/dt. For this, we use the following sliding mode observer:

dx̂1

dt
= 1

C1

(
x̂2− y

R
− f (y)

)
+ λ1 sign

(
y− x̂1

)
,

dx̂2

dt
= 1

C2

(
y− x̃2

R
+ x̂3

)
+E1λ2 sign

(
x̃2− x̂2

)
,

dx̂3

dt
= x̂4

(− x̃2−R0x̃3
)

+E2λ3 sign
(
x̃3− x̂3

)
,

dx̂4

dt
= E3λ4 sign

(
x̃4− x̂4

)
,

y = x1,

(5.3)
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with the following conditions: if x̂1 = x1, then E1 = 1, else E1 = 0; similarly if x̂2 = x̃2 and
E1 = 1, then E2 = 1, else E2 = 0; and finally if x̂3 = x̃3 and E2 = 1, then E3 = 1, else E3 = 0.
Moreover, in order to take into account the observability singularity (x̃2 +R0x̃3 = 0), we
set Es = 1 if x̃2 +R0x̃3 �= 0, else Es = 0. By definition, we take

x̃2 = x̂2 +E1C1Rλ1 sign
(
y− x̂1

)
,

x̃3 = x̂3 +E2C2λ2 sign
(
x̃2− x̂2

)
,

x̃4 = x̂4− E3Es(
x̃2 +R0x̃3− 1 +ES

)λ3 sign
(
x̃3− x̂3

)
.

(5.4)

Sketch of proof. In this sketch of proof, we implicitly assume that system (5.1) has a
bounded state (i.e., obvious due to energy consideration). Consequently, in the observer,
we add saturation on the integrator in order to have also a bounded state observer. From
these two boundless considerations, all λi may be easily chosen as constants (see [21]).

Step 1. Assuming that E1 = 0 (if E1 = 1, we directly move to the next step), the observa-
tion error dynamics (e = x− x̂) is

de1

dt
= e2

C1R
− λ1 sign

(
x1− x̂1

)
,

de2

dt
= e2

C2R
+

e3

C2
,

de3

dt
= [x4

(− x2−R0x3
)]− [x̂4

(− x̂2−R0x̂3
)]

,

de4

dt
= 0.

(5.5)

Due to the finite-time convergence of the sliding mode, there exists τ1 ≥ 0 such that for
all t ≥ τ1, x̂1 = x1 and we pass to the following step.

Step 2. As x̂1 = x1, then E1 = 1, and as e1 = 0 for all t ≥ τ1, then ė2 = 0, and consequently,
invoking the equivalent vector [21], x̃2 = x2 and we obtain

de1

dt
= e2

C1R
− λ1 sign

(
x1− x̂1

)= 0,

de2

dt
= e3

C2
− λ2 sign

(
x2− x̂2

)
,

de3

dt
= [x4

(− x2−R0x3
)]− [x̂4

(− x̂2−R0x̂3
)]

,

de4

dt
= 0.

(5.6)

Due to the finite-time convergence of the sliding mode, there exists τ2 ≥ τ1 ≥ 0 such that
for all t ≥ τ2, x̂2 = x̃2 = x2 and we pass to the following step.
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Step 3. As x̂2 = x2 and E1 = 1, then E2 = 1, and as e2 = 0 for all t ≥ τ2, then ė3 = 0, and
consequently, invoking the equivalent vector, x̃3 = x3 and we obtain

de1

dt
= e2

C1R
− λ1 sign

(
x1− x̂1

)= 0,

de2

dt
= e3

C2
− λ2 sign

(
x2− x̂2

)= 0,

de3

dt
=−(x2 +R0x3

)
e4− λ3 sign

(
x3− x̂3

)
,

de4

dt
= 0.

(5.7)

Due to the finite-time convergence of the sliding mode, there exists τ3 ≥ τ2 ≥ τ1 ≥ 0 such
that for all t ≥ τ3, x̂3 = x̃3 = x3 and we pass to the following step.

Step 4. As x̂3 = x3 and E3 = 3, then E3 = 1 and we obtain

de1

dt
= e2

C1R
− λ1 sign

(
x1− x̂1

)= 0,

de2

dt
= e3

C2
− λ2 sign

(
x2− x̂2

)= 0,

de3

dt
=−(x2 +R0x3

)
e4− λ3 sign

(
x3− x̂3

)= 0,

de4

dt
= Esλ4 sign

(
x̃4− x̂4

)
.

(5.8)

Therefore, if Es = 1, then e4 goes to zero in finite time, else Es = 0 and we freeze the e4

dynamic (the data acquisition). Nevertheless, the singularity (x2 +R0x3) is local, so as the
transmitter is chaotic, we never stay enough time on the singularity to alter substantially
the data acquisition. �

In order to illustrate the efficiency of the method, we chose to transmit the following
message:

L(t)= L+ 0.1sin(100t) with L= 18.8mH. (5.9)

Simulations results. In Figure 5.2, if we set Es = 0 on a big neighborhood of the singular-
ity manifold (x2 +R0x3), we lose for a long time the information on x4. We notice that
the convergence of the state x̂4 of the observer towards x4 of the system of origin (5.1)
depends on the choice of Es. In order to get back all the information on x4, it is necessary
to take Es = 0 on a very small neighborhood of the singularity manifold (x2 +R0x3), as
we notice it on Figure 5.4, contrary to the first two which were realized with a too broad
neighborhood. And we see the double scroll of the transmitter and the receiver which are
completely synchronized.
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Figure 5.1. Double scroll attractor for systems (5.1) and (5.3), with Es = 0 if (x2 +R0x3)∈
]− 0.01,0.01[.
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Figure 5.2. x4, x̂4, Es, and the singularity (x2 +R0x3), with Es = 0 if (x2 +R0x3)∈]− 0.01,0.01[.
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Figure 5.3. Double scroll attractor for systems (5.1) and (5.3), with Es = 0 if (x2 +R0x3)∈
]− 0.0001,0.0001[.

Es
Singularity

−1

−0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
×10−3

x4

x̂4

53.18

53.185

53.19

53.195

53.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
×10−3

Figure 5.4. x4, x̂4, Es, and the singularity (x2 +R0x3), with Es = 0 if (x2 +R0x3)∈]− 0.0001,0.0001[.
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Remark 5.1. In practice, we add some lowpass filter on the auxiliary state x̃i and we set
Ei = 1 for i∈ {1,2,3}, not exactly when we are on the sliding surface but when we are close
enough. Similarly, Es = 0 when we are close to the singularity, not only when we are on.
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