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An analytical solution is found for the maximum determinant of a block-partitioned class
of matrices with constant trace for each block. As an immediate application of this result,
the maximum determinant of a sum of Kronecker products is derived.

1. Introduction

The problem of maximizing the determinant of a matrix may arise in different areas,
including information and communication theory [4, 5]. The more recent reference [4]
presents an overview of the applications of the determinant maximization problem
along with an algorithm for determinant maximization with linear matrix inequality
constraints. In our particular case, this problem occurs in the context of sum capacity
maximization for a communication system with multiple transmitters and multiple re-
ceivers [3].

For an N ×N positive definite matrix X with constant trace, it is easily shown that |X|
is maximized when X is a scaled identity matrix (Lemma 2.2).

To extend this result, we introduce a block-structured subclass of positive definite ma-
trices (�+) with blocks of constant traces.

Definition 1.1. Define the class of matrices

�N ,J =
{

Q |Q∈�+, Q= {Qi j
}

,

i, j = 1, . . . , J , Qi j ∈R
N×N , Qi j =Q ji, tr

[
Qi j
]= Eij

}
.

(1.1)

For the class of matrices defined above, we state the following theorem, which is our
main result.

Theorem 1.2. Let

Q=




Q11 Q12 ··· Q1J

Q21 Q22 Q2J
...

...
. . .

...
QJ1 QJ2 ··· QJJ


 , (1.2)
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where Q∈ �N ,J . Let the trace of each subblock be fixed and equal to tr[Qi j]= Eij . Then the
determinant of Q is maximized when each block is a scaled identity matrix of the form

Qi j =
Eij
N

IN (1.3)

and the maximum value of the determinant is

max
Q∈�N ,J

|Q| = 1
NNJ

|E|N , (1.4)

where the elements of the square matrix E are {Eij}.

2. Proof of the main result

We prove Theorem 1.2 by induction. First we prove the result for J = 2 and then show
that the result holds for J + 1 assuming that it holds for J .

2.1. J = 2. Let A and C be N ×N positive definite matrices (∈�+
N ) with fixed traces EA

and EC, respectively. Let B be an N ×N matrix with trace EB. Finally, we define Q∈�+ as

Q=
[

A B�

B C

]
. (2.1)

The matrix Q may be factored as

Q=
[

A 0
B I

][
I A−1B�

0 C−BA−1B�

]
(2.2)

implying

|Q| = |A|∣∣C−BA−1B�
∣∣. (2.3)

The term Q/A ≡ C−BA−1B� is called Schur complement of A in Q [1] and it can be
easily shown that it is positive definite when Q is positive definite.

Lemma 2.1. If Q=
[

A B�
B C

]
∈�+, then (C−BA−1B�)∈�+.

Proof. The matrix Q is positive definite. Therefore,

[
x�1 x�2

][A B�

B C

][
x1

x2

]
> 0 (2.4)

for all xi ∈RN such that |x1|2 + |x2|2 > 0. Expanding, we have

x�1 Ax1 + x�2 Bx1 + x�1 B�x2 + x�2 Cx2 > 0. (2.5)
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If we let x1 =−A−1B�x2, we have

x�2 Cx2− x�2 BA−1B�x2 = x�2
(

C−BA−1B�
)

x2 > 0 (2.6)

for all x2 ∈RN , which implies (C−BA−1B�)∈�+ and completes the proof. �

Another important result is the following lemma.

Lemma 2.2. For any n× n positive definite matrix X with constant trace tr[X] = α, the
determinant is maximized when X= (α/n)In.

Proof. Applying Hadamard inequality [1], the determinant of an n×n matrix X is max-
imized when the matrix is diagonal, that is, eigenvalues of the matrix are the diagonal
elements. If a= (a1,a2, . . . ,an),

∑
i ai = α, is the vector of eigenvalues of X, from majoriza-

tion theory [2], the vector a∗ = (α/n,α/n, . . . ,α/n), with all elements equal, is majorized
by any other vector a. Also, a majorization result says that if g is a continuous nonnegative
function on I ⊂ R, a function φ(x) =∏n

i=1 g(xi) is Schur-concave (convex) on In if and
only if logg is concave (convex) on I . In our case, logx is a concave function on R+ and
det(X)=∏n

i=1 ai is a Schur-concave function and its maximum is attained for a∗. Having
all eigenvalues equal is equivalent to saying that X is a scaled identity matrix, under its
trace constraint. �

This lemma shows that the determinant of a matrix with constant trace is maximized
when the matrix is a scaled identity matrix. Maximizing the trace of the matrix im-
plies that the determinant is absolutely maximized when the matrix is a scaled identity
matrix with maximum trace. Further more, if a positive definite matrix can be written
as the difference of two other positive definite matrices, X = X1 −X2, it is obvious that
tr[X] is maximized when tr[X1] is maximized and tr[X2] is minimized. In our case, we
consider

X= C−BA−1B�. (2.7)

Then we can say

max
A,C,B

∣∣C−BA−1B�
∣∣=max

A,C

[
1
N

(
tr[C]−min

B
tr
[

BA−1B�
])]N

. (2.8)

We turn our attention to minimizing tr[BA−1B�] in B. Consider that

BA−1B� =UDV�ΨΩ−1Ψ�VDU�, (2.9)

where A =ΨΩΨ� is an eigendecomposition and B = UDV� is the usual singular value
decomposition. We then have

tr
[

BA−1B�
]= tr

[
DV�ΨΩ−1Ψ�VD

]= tr
[

D2P�Ω−1P
]

(2.10)

after defining V�Ψ= P�. This expression reduces to

tr
[

D2P�Ω−1P
]=∑

i j

p2
i jd

2
j

ωi
, (2.11)
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where pi j are the elements of matrix P. Since P is the product of two unitary matrices, it
is a unitary matrix itself so that

∑
i

p2
i j =
∑
j

p2
i j = 1. (2.12)

So, the problem of minimizing tr[BA−1B�] over all B becomes

min
B

tr
[

D2P�Ω−1P
]= min

{pi j},{di}

∑
i j

p2
i jd

2
j

ωi
. (2.13)

From (2.12), p2
i j , j = 1,2, . . . ,N , as well as p2

i j , i= 1,2, . . . ,N , can be considered as proba-
bility mass functions. Therefore, we can rewrite the optimization problem as

min
{pi j},{di}

∑
i

Ei
[
d2
]

ωi
, (2.14)

where

Ei
[
d2]=∑

j

p2
i jd

2
j . (2.15)

Assume for now that the d2
j and the ωi are fixed and ordered from the smallest to the

largest. We first note that
∑
i

Ei
[
d2]=∑

j

d2
j (2.16)

and

d2
1 ≤ Ei[·]≤ d2

N . (2.17)

For the moment, imagine that one could choose any Ei[·] subject to the constraints of
(2.16) and (2.17). That is, the underlying structure of the Ei[·] as generated from squared
entries of a unitary matrix is ignored for the time being. We then note that if EN [·] �= d2

N ,
we can always reduce tr[D2P�Ω−1P] by reducing one of the other Ei[·] which multi-
plies another 1/ωi > 1/ωN by some amount and adding this amount to EN [·]. If no such
greater 1/ωi exists, then we can still increase EN [·] to its maximum with no penalty to
the objective. For completeness, please note that if EN [·] < d2

N , then the sum, constraint
on Ei[·] in (2.16) guarantees the existence of at least one Ei[·] from which mass can be
“borrowed.”

Thus, at the minimum, we will require EN [·] = d2
N . However, to do so implies that

pNN = 1 which implies that pN j = 0, j �= N , and that piN = 0, i �= N—further implying
that Ei[·]≤d2

N−1, i<N . Proceeding recursively, we see that to minimize tr[D2P�Ω−1P],
we will have

pi j =

1, i= j, j = 1,2, . . . ,N ,

0, otherwise,
(2.18)
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so that

min
B

tr
[

D2P�Ω−1P
]=min

{dj}

∑
i

d2
i

ωi
. (2.19)

Equation (2.18) implies that the right singular basis set of B and the eigenvector matrix
of A should be identical, V = Ψ in (2.9), and that the singular values of B should be
ordered from the smallest to the largest magnitude if the eigenvalues of A are ordered
from the smallest to the largest. If B is symmetric, this condition is strengthened to B and
A sharing the same eigenvector matrix with the eigenvalues of B being identical to the
singular values.

Now, consider the optimization over the set {dj} of (2.19). To obtain constraints for
the optimization, consider that

tr[B]= tr
[

UDV�]= tr
[

DV�U
]= tr[DP]= EB, (2.20)

where P is a unitary matrix obtained from the multiplication of two unitary matrices U
and V�. For such a matrix, we must have

∑
j

pi j pk j = δik (2.21)

and we note for later use that no entry pi j can have magnitude larger than 1. Proceeding,
we have

tr[DP]=
∑
i

di pii = EB. (2.22)

Forming the auxiliary function for the optimization problem, we have

L(D)=
∑
i

d2
i

ωi
+α

(∑
i

piidi−EB

)
. (2.23)

The cross partials are zero and the second partials are positive since all ωi > 0. So the
problem is convex with a unique minimum. At the extremal, we must have

di
ωi
=−α

2
pii, (2.24)

which implies

∑
i

piidi = EB =−α

2

∑
i

ωi p
2
ii =−

α

2
ρ2, (2.25)

where we define ρ2 =∑i ωi p
2
ii. We then have

−α

2
= EB

ρ2
, (2.26)
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which further results in

di
ωi
= EB

ρ2
pii. (2.27)

Using this result, we reevaluate the objective

∑
i

d2
i

ωi
= EB

ρ2

∑
i

di pii = E2
B

ρ2
(2.28)

and we next seek to maximize ρ2.
Now, consider that since |pi j| ≤ 1, we must have

∑
i

ωi p
2
ii ≤
∑
i

ωi = EA (2.29)

with equality if and only if |pii| = 1. Furthermore, since pi j are obtained from the product
of two unitary matrices, setting all |pii|=1 implies that all pii=1 and thence that V�U= I.
Therefore, the optimum B should be a symmetric matrix and the singular values di are
therefore the eigenvalues of B. The set of di should satisfy

di = EB

EA
ωi, (2.30)

which implies that B is a scaled version of A,

B= EB

EA
A, (2.31)

since we have already determined that V=Ψ. The minimum trace is then

min
B

tr
[

BA−1B�
]= tr

[
E2

B

E2
A

A

]
= E2

B

EA
. (2.32)

We summarize the result as a theorem.

Theorem 2.3. Given two square N ×N matrices, A ∈�+ with tr[A] = EA, and B with
tr[B] = EB, the minimum of tr[BA−1B�] in B is achieved when B is a scaled version of A,
B= (EB/EA)A, and

min
B

tr
[

BA−1B�
]= E2

B

EA
. (2.33)

Returning to the original determinant maximization problem, we now have

max
Q∈�N ,2

|Q| = max
A,C∈�+

N

{
|A|
∣∣∣∣∣C− E2

B

E2
A

A

∣∣∣∣∣
}

(2.34)

or

max
Q∈�N ,2

|Q| = max
A∈�+

N

{
|A| max

C∈�+
N

∣∣∣∣∣C− E2
B

E2
A

A

∣∣∣∣∣
}
. (2.35)
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We note that C− (E2
B/E

2
A)A∈�+, which implies that C= (E2

B/E
2
A)A + X where X ∈�+.

Therefore, we can always choose the optimum C such that X = C− (E2
B/E

2
A)A is a scaled

identity matrix. This implies that the inner maximization does not depend on the shape
of A and that we can choose A as a scaled identity matrix to maximize |A| in the outer
maximization. This in turn makes B and the optimal C scaled identity matrices as well.

So,

max
Q∈�N ,2

|Q| = 1
N2N

(
EAEC−E2

B

)N
(2.36)

and this maximum can be achieved when A, B, and C are all scaled identity matrices. We
summarize this result as a theorem.

Theorem 2.4. Let [
A B�

B C

]
(2.37)

be a positive definite matrix and let B be anN ×N matrix. Under the constraints tr[A]= EA,
tr[C]= EC, and tr[B]= EB,

∣∣∣∣∣A B�

B C

∣∣∣∣∣≤
∣∣∣∣∣∣∣∣
EA

N
IN

EB

N
IN

EB

N
IN

EC

N
IN

∣∣∣∣∣∣∣∣=
1

N2N

(
EAEC−E2

B

)N
(2.38)

with equality when the matrices A, C, and B are all scaled identity matrices. If

E=
[
EA EB

EB EC

]
, (2.39)

then

max

∣∣∣∣∣A B�

B C

∣∣∣∣∣= 1
N2N

|E|N . (2.40)

2.2. The recursive extension for J > 2. Let Q be as defined in Theorem 1.2. Let the trace
constraints of the subblocks be tr[Qi j]= Eij and let E be the J × J matrix containing these
traces. Following an inductive line of reasoning, we assume that

max |Q| = 1
NNJ

|E|N (2.41)

when all the submatrices of Q are scaled identity matrices. Now we seek to prove the
result for J + 1.

So, define X∈�N ,(J+1) as

X=




A B�1 ··· B�J
B1
... Q

BJ


 . (2.42)
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We then have

|X| = |A|


Q−




B1
...

BJ


A−1

[
B�1 ··· B�J

]

 , (2.43)

which we rewrite as

|X| = |A||Q−Z|, (2.44)

where

Z=




B1
...

BJ


A−1

[
B�1 ··· B�J

]
. (2.45)

Now, we know that Z∈�0+ by Lemma 2.1, and we also know that it has rank at most
N . We may therefore rewrite it as

Z=
[

u ū
]


Ω 0 ··· 0
0
... 0
0



[

u�

ū�

]
, (2.46)

where u is an orthonormal basis which spans the column space of


B1
...

BJ


 (2.47)

and ū is its complement such that [
u�

ū�

][
u ū
]
= I (2.48)

and Ω∈�0+ is an N ×N diagonal matrix with tr[Z]= tr[Ω].
Now, consider that

|Q−Z| =
∣∣∣∣∣
[

u�

ū�

]
(Q−Z)

[
u ū
]∣∣∣∣∣=
∣∣∣∣∣u

�Qu−Ω u�Qū

ū�Qu ū�Qū

∣∣∣∣∣ , (2.49)

which we can reduce to

|Q−Z| = ∣∣ū�Qū
∣∣|H−Ω|, (2.50)

where

H= u�Qu−u�Qū
(

ū�Qū
)−1

ū�Qu (2.51)

and H∈�+.
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We can write Ω= αΘ, where α≥ 0 and Θ∈�0+ has unit trace. Then we have

|H−Ω| = |H|∣∣I−αH−1/2ΘH−1/2
∣∣= |H||I−αΛ|, (2.52)

where

H−1/2ΘH−1/2 =ΨΛΨ�. (2.53)

Now, for any given Λ (and therefore any given H and Θ), reducing α will strictly
increase the determinant in (2.52) since (I− αΛ) ∈ �+. Thus, for |X| in (2.42) to be
maximized, we must have α minimized.

Proceeding, we have α= tr[Ω]= tr[Z]. Expanding tr[Z], we have

tr[Z]=
∑
i

tr
[

BiA−1B�i
]
, (2.54)

and from Theorem 2.3, we know that tr[Z] may be minimized when each Bi is a scaled
version of A. Defining tr[Bi]= βi, at this minimum, we have

Z=



β1I

...
βJI


A
[
β1I ··· βJI

]
(2.55)

so that

Ω=
(∑

i β
2
i

tr[A]

)(
A

tr[A]

)
= α∗Θ, (2.56)

where

α∗ =
∑

i β
2
i

tr[A]
(2.57)

is the minimum possible trace of Z and

Θ= A
tr[A]

. (2.58)

If Θ ∈ �+ and α > α∗, then we can choose A = tr[A]Θ and increase |H− αΘ| by
replacing α with α∗. Thus, for all Θ ∈�+, we must have minimum trace Z if |Q−Z|
is maximized. However, if Θ ∈�0+ and α > α∗, then we cannot choose A directly since
A∈�+. In this case, we can form

(∑
i β

2
i

tr[A]

)(
A

tr[A]

)
= α∗Θ+ εF, (2.59)

where F is a symmetric matrix with tr[F]= 0 which makes αΘ+ εF∈�+ for 0 < ε < ε′.
We now show that replacement of αΘ by α∗Θ + εF can always increase |H− αΘ| for
suitably small ε.
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First we expand

|H−αΘ− εF| = |H−αΘ|∣∣I− ε(H−αΘ)−1/2F(H−αΘ)−1/2
∣∣

= |H−αΘ|
N∏
i=1

(
1− ενi

)
,

(2.60)

where the {νi} are the eigenvalues of ε(H−αΘ)−1/2F(H−αΘ)−1/2. Since
∏N

i=1(1− ενi) is
a continuous function in ε and

N∏
i=1

(
1− ενi

)|ε=0 = 1, (2.61)

∏N
i=1(1− ενi) can be made arbitrarily close to 1. That is,

|H−αΘ|− δ ≤ |H−αΘ− εF| ≤ |H−αΘ|+ δ (2.62)

for any δ > 0 through suitable choice of ε.
Now, since reduction of α strictly increases |H−αΘ|, we have

|H−αΘ| < ∣∣H−α∗Θ
∣∣, (2.63)

and for suitably small δ > 0, we also have

∣∣H−α∗Θ
∣∣− δ ≤ ∣∣H−α∗Θ− εF

∣∣≤ ∣∣H−α∗Θ
∣∣+ δ. (2.64)

So |H−αΘ| can always be strictly increased if α > α∗.
Therefore, if there exist some Θ∗ and Q∗ which ostensibly minimize |Q− Z|, then

unless tr[Z] is minimized, this “maximum” could be further increased—a contradiction.
Therefore, for |Q−Z| to be maximized, α= tr[Z] must be minimized.

With tr[Z] minimized, we have

Zi j =
βiβj(

tr[A]
)2 A, tr

[
Zi j
]= βiβj

tr[A]
. (2.65)

Since (Q−Z)∈�N ,J , we obtain by the assumption for J that

|Q−Z| ≤ 1
NNJ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E11− β2
1

tr[A]
E12− β1β2

tr[A]
··· E1J − β1βJ

tr[A]

E21− β1β2

tr[A]
E22− β2

2

tr[A]

...

...
. . .

...

EJ1− β1βJ
tr[A]

··· ··· EJJ −
β2
J

tr[A]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.66)
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From Theorem 2.3, we note that at the minimum trace point, tr[Zi j] does not depend
on the spectral shape of A, but on its trace only. Therefore, once we have chosen Bi to
minimize tr[Z] and thereby allow the maximum value of |Q−Z|, we are free to choose
the shape of A. Since choosing A= (tr[A]/N)I maximizes |A|, we then have

max |X| ≤ tr[A]N

NN

1
NNJ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E11− β2
1

tr[A]
E12− β1β2

tr[A]
··· E1J − β1βJ

tr[A]

E21− β1β2

tr[A]
E22− β2

2

tr[A]

...

...
. . .

...

EJ1− β1βJ
tr[A]

··· ··· EJJ −
β2
J

tr[A]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N

(2.67)

with equality when all the submatrices of X are scaled identity matrices.
If we note that∣∣∣∣∣∣∣∣∣∣∣∣∣∣

tr[A] β1 β2 ··· βJ
β1 E11 E12 ··· E1J

β2 E21
...

...
. . .

...
βJ EJ1 ··· ··· EJJ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= tr[A]

∣∣∣∣∣∣∣∣∣∣∣




E11 E12 ··· E1J

E21 E22 E2J
...

. . .
...

EJ1 EJ2 ··· EJJ


−


β1

β2
...
βJ




1
tr[A]

[
β1 β2 ··· βJ

]
∣∣∣∣∣∣∣∣∣∣∣

= tr[A]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E11− β2
1

tr[A]
E12− β1β2

tr[A]
··· E1J − β1βJ

tr[A]

E21− β1β2

tr[A]
E22− β2

2

tr[A]

...

...
. . .

...

EJ1− β1βJ
tr[A]

··· ··· EJJ −
β2
J

tr[A]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(2.68)

then, when all blocks in X are scaled identity matrices, we have

|X| = 1
NN(J+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

tr[A] β1 ··· ··· βJ
β1 E11 E12 ··· E1J

β2 E21
...

...
. . .

...
βJ EJ1 ··· ··· EJJ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N

, (2.69)

which proves the (J + 1) case, and through induction completes the proof.
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3. Application to maximum determinant of a sum of Kronecker products

Given two matrices A ∈ RB×B fixed and X ∈ RN×N with constant trace tr[X] = α, the
determinant of their Kronecker product R= A⊗X is given by

|R| = |A|N |X|B. (3.1)

Since |A| is assumed constant, in order to maximize |R|, we need to maximize |X|, and
under the trace constraint, this is done when X= (α/N)IN (Lemma 2.2).

Considering now a sum of Kronecker products,

R=
L∑

k=1

Ak ⊗Xk =
[

Ri j
]
, Ri j =

L∑
k=1

ak(i, j)Xk, i, j = 1, . . . ,L, (3.2)

where we assume that Ak = [ak(i, j)] are B×B symmetric constant matrices and Xk are
N ×N symmetric matrix with constant trace, tr[Xk] = αk. To satisfy the conditions of
Theorem 1.2, we require that R be a positive definite matrix and that all blocks on the
main diagonal, Rii, be also positive definite matrices. Such matrices appear in the context
of capacity maximization for multibase communication systems [3]. Thus, the matrix R
belongs to the class �N ,B and the associated matrix of traces E has elements

Eij =
L∑

k=1

ak(i, j)αk. (3.3)

As a direct application of Theorem 1.2 to matrix R, we have the following corollary.

Corollary 3.1. The determinant of a sum of Kronecker products, as described above, is
maximized when the whole sum is equal to a single Kronecker product between the trace
matrix and an identity matrix. Thus, maximum det(R) is achieved when

R=
L∑

k=1

Ak ⊗Xk = E⊗ IN . (3.4)

If we are interested in finding the set of matrices {Xk} that maximize det(R), we note
that (3.4) is equivalent (because of its symmetry) to a linear system with B(B+ 1)/2 equa-
tions and L unknowns:

L∑
k=1

ak(i, j)Xk = Eij , i= 1, . . . ,B, j ≥ i. (3.5)

Depending on the relative magnitudes of B and L, this system might have one or more
solutions, but one of these solutions is always Xk = (αk/N)IN .
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