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Detailed studies of anomalous conductors in otherwise homogeneous media have been
modelled. Vertical contacts form common geometries in galvanic studies when describ-
ing geological formations with different electrical conductivities on either side. However,
previous studies of vertical discontinuities have been mainly concerned with isotropic
environments. In this paper, we deal with the effect on the electric potentials, such as
mise-à-la-masse anomalies, due to a conductor near a vertical contact between two aniso-
tropic regions. We also demonstrate the interactive effects when the conductive body is
placed across the vertical contact. This problem is normally very difficult to solve by the
traditional numerical methods. The integral equations for the electric potential in aniso-
tropic half-spaces are established. Green’s function is obtained using the reflection and
transmission image method in which five images are needed to fit the boundary condi-
tions on the vertical interface and the air-earth surface. The effects of the anisotropy of
the environments and the conductive body on the electric potential are illustrated with
the aid of several numerical examples.

1. Introduction

In spite of the fact that real media are strongly influenced by the directional and spatial
variabilities of conductivity or resistivity, the attention of researchers has mainly been di-
rected to problems in which purely isotropic, inhomogeneous isotropic, or homogeneous
anisotropic media contain conductive bodies. The more general problems of inhomoge-
neous anisotropic media containing conductive bodies have not yet been addressed.

Asten [1] obtained an analytical solution for the potential due to a point source in a
homogeneous anisotropic half-space, where one of the principal axes of the conductivity
tensor is parallel to the ground surface. Pal and Dasgupta [16] also studied a special case of
the electrical potential in an inhomogeneous anisotropic half-space. An extension of this
was made by Pal and Mukherjee [17] who considered a two-layered conducting earth with
dipping anisotropy. Negi and Saraf [15] discussed layer anisotropy problems in detail, and
they gave the potential due to a point source in a variety of cases. All of these studies do
not address the problem of anomalous perturbing bodies within the anisotropic medium.
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Figure 2.1. A point source embedded in an anisotropic half-space with vertical contact.

Tabarovskii [18, 19] presented a pair of integral equations for calculating direct current
anomalies in an anisotropic medium. However, Tabarovskii [18, 19] did not present any
numerical applications and the solution was only suitable for the simple case where the
conductivity tensor had nonzero terms on the diagonal only. Eloranta [2] dealt with the
mise-à-la-masse method, applied to study the effect on apparent resistivity due to perfect
conductors in an anisotropic half-space. But the limitations of this study are that the half-
space is a homogeneous medium and one of the principal axes of the conductivity tensor
is parallel to the earth’s surface.

Eskola and Hongisto [6] attempted to take into account anisotropic electrical con-
ductivity in an integral equation formulation. Their formulation however proved to be
erroneous due to an incorrect Green’s function in the integral equation (Eskola [3]).
Eloranta [2] studied the modelling of mise-à-la-masse anomalies for geophysical sur-
veying based on an integral equation. Eskola et al. [8] used an integral equation for the
modelling of the electrical potential in and around a thin conductor. Eskola and Hongisto
[7], based on the works of Eskola [4], Xiong et al. [20], and Tabarovskii [18, 19], pre-
sented mathematical modelling of the resistivity and IP effects of an anisotropic body in
an isotropic environment using the boundary integral equation method.

Flykt et al. [9] gave an integral equation for an anisotropic spherical body in a ho-
mogeneous anisotropic environment and calculated the responses when the body was
embedded in a uniaxially anisotropic environment.

Li and Uren [13], using the Green’s function given by Li and Uren [14] and the integral
equation given by Eskola [5], simulated the electrical potential in arbitrarily homoge-
neous anisotropic half-space containing a conductive body.

The purpose of this paper is to show the behavior of the direct current electric poten-
tial arising from a point source in a 3D perfect conductor in an anisotropic half-space
with a vertical contact. The integral equation method is employed.

2. The definition of the problem

2.1. The physical model of the problem. The physical model is illustrated in Figure 2.1.
The point source and conductive body may be located anywhere in the half-space. How-
ever, for convenience, the vertical contact is located in the plane x = 0 which extends
to infinity in the positive and negative y-directions and the positive z-direction. The
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conductivities of the media on either side of the contact are σai, j and σbi, j , where i and j
are from 1 to 3 which indicate the three coordinate directions.

2.2. Mathematical formulation of the problem. First consider a point source located in
the half-space. The problem can be formulated mathematically by the following boundary
value problems:

∇· σai, j ·∇ua(R)= Iδ
(

R−Rp
)
,

∇· σbi, j ·∇ub(R)= Iδ
(

R−Rp
)
,

(2.1)

where R(x, y,z) is the position of any point in the medium, RP(xp, yp,zp) is the position
of the direct current source, ua(R) and ub(R) are the potentials due to the source at any
point R in media a and b, respectively, δ is the Dirac delta function, and I is the electrode
current.

The governing partial differential equation is subject to the following boundary con-
ditions:

(a) on the air-earth interface, the normal component of the current density must be
zero. For x ≥ 0,

nz · σai, j ·∇ua(R)= 0, (2.2)

and for x < 0,

nz · σbi, j ·∇ub(R)= 0; (2.3)

(b) on the interface between the two media, the potential densities must be equal:

ua(R)= ub(R); (2.4)

(c) on the interface between the two media, the current densities must be equal too:

nx · σai, j ·∇ua(R)= nx · σbi, j ·∇ub(R), (2.5)

the boundary conditions (b) and (c) are called the continuous conditions;
(d) when any one of±x,±y, or z→∞, the direct current point source potential must

reduce to zero:

ua(R−→∞)−→ 0, ub(R−→∞)−→ 0. (2.6)

Now consider a conductive body in the half-space with a point source as depicted in
Figure 2.2. The potential governing equations for an anisotropic medium in the Cartesian
coordinate system are

∇· σai, j ·∇ua(R)=−σ
(

R0
)

ε0
δ
(

R−R0
)

+ Iδ
(

R−Rp
)
,

∇· σbi, j ·∇ub(R)=−σ
(

R0
)

ε0
δ
(

R−R0
)

+ Iδ
(

R−Rp
)
,

(2.7)
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Figure 2.2. A conductive body and a point source embedded in an anisotropic half-space with vertical
contact. The body can be of any shape.

where σ(R0) is the induced charge density on the surface of the body, ua(R) and ub(R) are
the potentials in the host media due to the induced surface charge density on the body
and primary point source function Iδ(R−Rp), and R0(x0, y0,z0) is the source position
on the surface of the body of the induced charge density.

As the potential in this system results from a point source, the expressions of the po-
tentials are different when the source location is in different media a and b. In other
words, the potentials ua and ub have different expressions in media a and b. Therefore,
for mathematical convenience, a new variable U is introduced to express the potentials
when the point source is located in different media. That is

U(R)=




uaa(R), if x > 0, x0 > 0,

uab(R), if x > 0, x0 ≤ 0,

ubb(R), if x ≤ 0, x0 ≤ 0,

uba(R), if x ≤ 0, x0 > 0.

(2.8)

Using theories of Green’s function and integral equation methods, we can in this case
transform the boundary value problem into an integral equation given by

U(R)= a
(∫

S
G
(

R,R0
)
fn
(

R0
)
dS0 +G

(
R,Rp

)
I
(

Rp
))

, (2.9)

where G(R,R0) is the appropriate Green’s function of the half-space presented in detail
in Section 3 and fn(R0) is the unknown normal component of current density on the
surface of the conductive body.

Equation (2.9) is a Fredholm integral equation of the first kind. In the perfectly con-
ductive anomalous body, the total potential is a constant (Uc). Its value can be determined
from the following equations:

Uc(R)=
∫
S
G
(

R,R0
)
fn
(

R0
)
dS0 +G

(
R,Rp

)
I
(

Rp
)
, (2.10)

∫
fndS= I , (2.11)
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for surface S enclosing a source-emitting current I , and
∫
fndS= 0, (2.12)

for surface S which does not enclose current sources. The R0 lies on the surface of the
body. From (2.9), (2.10), (2.11), and (2.12), if the appropriate Green’s function is known,
there the current density fn(R0) and the constant potential Uc can be obtained.

3. Green’s function

Based on the theory of the reflection and transmission image (Li and Uren [11]), five
images of the primary source were determined for fitting the boundary conditions pre-
sented in Section 2. The concept model of the image positions is illustrated in Figure 3.1.
The correspondent Green’s functions are as follows.

Case 1. When the point source is located in medium a,

Uaa = I0

4π

4∑
i=1

Ai

ηai
(3.1)

when the observation point is in medium a, where

ηai =
√
σa1,1X

2
i + σa2,2Y

2
i + σa3,3Z

2
i + 2σa1,2XiYi + 2σa1,3XiZi + 2σa2,3YiZi (3.2)

is called the weighted distance from the source point or the images point of the source to
the observation point in the half-space, and

Uab = I0

4π

6∑
i=5

Ai

ηbi
(3.3)

when the observation point is in medium b, where

ηbi =
√
σb1,1X

2
i + σb2,2Y

2
i + σb3,3Z

2
i + 2σb1,2XiYi + 2σb1,3XiZi + 2σb2,3YiZi (3.4)

and where Xi = x− xi, Yi = y− yi, and Zi = z− zi.

Case 2. When the point source is located in medium b,

Uba = I0

4π

6∑
i=5

Bi

ηai
(3.5)

when the observation point is in medium a, and

Ubb = I0

4π

4∑
i=1

Bi

ηbi
(3.6)

when the observation point is in medium b.
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Figure 3.1. Image positions of a point source that is located in an anisotropic half-space with vertical
contact.

Table 3.1 summarizes the image-source positions and their potential coefficients when
the anisotropic method of images is applied for each of the planar interfaces in the model
(Li and Uren [10, 11, 12]): P1(x1, y1,z1) is the point source position and P2(x2, y2,z2) is its
vertical contact interface reflection image position; P3(x3, y3,z3) and P4(x4, y4,z4) are the
air-earth surface reflection image locations of P1 and P2; P5(x5, y5,z5) is the transmission
image position of point source P1(x1, y1,z1); P6(x6, y6,z6) is the air-earth surface reflec-
tion image position of P5; and Ai and Bi (i= 1,2, . . . ,6) are the corresponding reflection
and transmission coefficients. They depend on the vertical interface and air-earth surface
boundary conditions as stated above. See columns 2 and 4 of Table 3.1.

In the table,

A2 = I[a]− I[b]s[b]

I[a] + I[b]s[b]
, (3.7)

B2 = I[b]− I[a]s[a]

I[b] + I[a]s[a]
, (3.8)

A5 = 2
(
I[a]
)2

I[b]I[a] +
(
I[b]
)2
s[b]

, (3.9)

B5 = 2
(
I[b]
)2

I[a]I[b] +
(
I[a]
)2
s[a]

. (3.10)

4. The numerical solution to the integral equation

By dividing the surface S (containing the conductive body) into so small subareas ∆sk
that the normal component of the current density can be taken as a constant within each
subarea, and requiring that (2.10) holds at the centre of each subarea, the following set of
linear algebraic equations is obtained:

A ·F= B, (4.1)
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Table 3.1. Image source positions and their potential coefficients.

Case 1 Case 2
Source name

Image point Coefficients Image point Coefficients

x1 = xp

A1 = 1

x1 = xp

B1 = 1
P1: initial
point
source

y1 = yp y1 = yp

z1 = z
p
0 z1 = z

p
0

x2 =−x1

A2 (see (3.7))

x2 =−x1

B2 (see (3.8))
P2: vertical
reflection
image of P1

y2 = 2r[a]
y x1 + y1 y2 = 2r[b]

y x1 + y1

z2 = 2r[a]
z x1 + z1 z2 = 2r[b]

z x1 + z1

x3 = 2r[a]
x z1 + x1

A3 = A1

x3 = 2r[b]
x z1 + x1

B3 = B1

P3: surface
reflection
image of P1

y3 = 2r[a]
y z1 + y1 y3 = 2r[a]

y z1 + y1

z3 =−z1 z3 =−z1

x4 = 2r[b]
x z2 + x2

A4 = A2

x4 = 2r[a]
x z2 + x2

B4 = B2

P4: surface
reflection
image of P2

y4 = 2r[b]
y z2 + y2 y4 = 2r[a]

y z2 + y2

z4 =−z2 z4 =−z2

x5 =−sx1

A5 (see (3.9))

x5 =−sx1

B5 (see (3.10))
P5: vertical
transmission
image of P1

y5 = r[a]
y z1− r[b]

y x5 y5 = r[b]
y z1− r[a]

y x5

z5 = r[a]
z z1− r[b]

z x5 z5 = r[b]
z z1− r[a]

z x5

x6 = 2r[b]
x z5 + x2

A6 = A5

x6 = 2r[b]
x z5 + x2

B6 = B5

P6: surface
reflection
image of P5

y6 = 2r[b]
y z5 + y2 y6 = 2r[a]

y z5 + y2

z6 =−z5 z6 =−z5

where A is an (M + 1)× (M + 1) matrix:

A=




Ḡ1,1 Ḡ1,2 ··· Ḡ1,M −1.0

Ḡ2,1 Ḡ2,2 ··· Ḡ2,M −1.0
...

...
...

...
...

ḠM,1 ḠM,2 ··· ḠM,M −1.0

∆s1 ∆s2 ··· ∆sM 0.0




, (4.2)

and B is the (M + 1) matrix (Gp1,Gp2, . . . ,Gpn,I). When the point source is located outside
of the body, the matrix becomes (Gp1,Gp2, . . . ,Gpn,0.0). However, for the mise-à-la-masse
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case, the matrix B is (0,0.1, . . . ,1.0). The unknown matrix is F = ( fn(R01), fn(R02), . . . ,
fn(R0M),Uc), where Uc is the constant potential on the surface of the conductive body
and

Ḡi,k =
∫
∆sk

G
(

Ri,R0
)
dS, (4.3)

where i,k = 1,2, . . . ,M. In (4.3), i refers to the calculation subarea, Ri is the position of the
centre of each ∆si, and k refers to the source subarea ∆sk; Ri and R0 both run on the body
surface. When the body contains the current source,

M∑
i=1

fn
(

Ri
)= I , (4.4)

and when the source is located outside of the body,

M∑
i=1

fn
(

Ri
)= 0. (4.5)

The M unknown current densities fn(Ri) and the constant potential on the body can be
calculated by solving the (M + 1) linear algebraic equations. Substitution of fn(Ri) into
the equation

U(R)= a
M∑
i=1

fn
(

Ri
)
Ḡi,k + aG

(
R,Rp

)
I
(

Ri
)
, (4.6)

which is obtained by discretization of the first term of (2.9), allows the calculation of
the potential in the host medium due to the induced surface charge density on the body
and the primary point source. When the point source is located outside of the body, the
second term of this equation is zero.

The integrated Green’s function defined by (4.3) converges when i= k because of the
1/η nature of G. This can be calculated using a one-dimensional analytical method fol-
lowed by another multidimensional numerical approach when the body is represented by
the cube-cell accumulation method, in which the cell surfaces are parallel to the Cartesian
coordinate system (Li and Uren [13]).

5. Numerical example

Two examples are introduced in this paper for the demonstration of anisotropic effects
in a vertical contrast half-space. The resistivity tensors in media a and b of the half-space
for example 1 are

σ1a
i, j =




0.120 0.100 0.000

0.100 0.420 0.000

0.000 0.000 0.300


 , σ1b

i, j =




0.520 0.410 0.000

0.410 0.420 0.000

0.000 0.000 0.300


 , (5.1)
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and for example 2 are

σ2a
i, j =




0.3060 0.050 0.000

0.050 0.210 0.000

0.000 0.000 0.150


 , σ2b

i, j =




0.150 0.105 0.000

0.105 0.210 0.000

0.000 0.000 0.150


 . (5.2)

Their vertical contacts are at x = 0. For mathematical convenience, a conductive rect-
angular prism (6m× 6m× 8m) is located in various positions in this space. Using the
linear equations (4.1) and (4.6), the equipotentials on either side of the contact can be
determined. The cell surfaces are always parallel to the coordinate system as shown in
Figure 2.2. For various positions of the body, the equipotential contours are given in Fig-
ures 5.1, 5.2, 5.3, and 5.4.

For example 1, Figure 5.1 shows the behavior of the potential arising from a point
source and a perfectly conductive body when the source is located outside of the body.
In Figure 5.1(a), we can clearly see the body profile when the observation plane is across
the body. This is because the body is a perfect conductor and the body surface is as an
equipotential surface. Figures 5.1(a), 5.1(b), and 5.1(c) illustrate equipotential contours
when the observation plane is away from the body centre and Figures 5.1(d), 5.1(e), and
5.1(f) represent equipotential contours when the observation plane commences from the
air-earth surface and closer to the body.

Figure 5.2 gives the equipotential contours for example 1 when the point source is
located in the body (i.e., mise-à-la-masse). Figures 5.2(a), 5.2(b), and 5.2(c) show the
equipotential contours when the observation plane from the body is away from the air-
earth surface. Figures 5.2(d), 5.2(e), and 5.2(f) show equipotential contours starting from
the air-earth surface and away in z-direction.

Figures 5.3 and 5.4 represent equipotential contours for example 2 given by resistivity
tensors defined by (5.2).

In Figure 5.3, the point source is located beside the conductive body. The interaction
of the conductive body, the point source, and the vertical contact to the potentials are
clearly shown in the equipotential contours of vertical and horizontal observation planes.
Figure 5.4 shows the correspondent mise-à-la-masse case. The effects of the conductive
body and the vertical contact are clearly demonstrated.

The figures also show the behavior of the potential arising from the perfectly conduc-
tive body and point source. We see that the equipotential contours are very much changed
when the source is located closer to the body and vertical contact. This is because of the
interaction between the charge densities on the vertical contact and the surface of the
conductive body. At the interface between the two media, the equipotential contours are
distorted. This indicates the existence of the charge which is reduced by the conductive
body and the inhomogeneity of the media. When the conductive body is located on the
left-hand side of the vertical contact, the potential in the right medium is dependent on
the charge density on the contact, and the potential in the right-hand side is dependent on
both surface charge densities of the conductive body and the vertical contact. However,
when the conductive body is placed across the vertical contact, both media potentials are
due to both charge densities. The implications for field work are clearly shown in our
computational results.
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Figure 5.1. Tensors σ1b and σ1a equipotential contours arising from a point source in an anisotropic
medium in the presence of a conductive body. Figures 5.1(a), 5.1(b), and 5.1(c) show the equipo-
tentials when the observation plane is y = 2.5,5.0, and 10.0, respectively. Figures 5.1(d), 5.1(e), and
5.1(f) show the equipotentials when the observation plane is z = 0.0,25.0, and 30.0, respectively.
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Figure 5.2. Tensors σ1a and σ1b vertical and horizontal observation plane equipotential contours for
the mise-à-la-masse potential arising from a conductive body.
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Figure 5.3. Tensors σ2a and σ2b equipotential contours arising from a point source in an anisotropic
medium with conductive body. Figures 5.3(a), 5.3(b), and 5.3(c) show the equipotentials when the
observation plane is y = 2.5,5.0, and 10.0, respectively. Figures 5.3(d), 5.3(e), and 5.3(f) show the
equipotentials when the observation plane is z = 0.0,25.0, and 30.0, respectively.
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Figure 5.4. Tensors σ2a and σ2b vertical and horizontal observation plane equipotential contours for
the mise-à-la-masse potential arising from a conductive body.
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6. Discussion and conclusions

An integral equation is presented for the potential arising from a direct current point
source in an anisotropic half-space with a vertical contact, containing a 3D conductive
body. To solve this integral equation efficiently, the method of subsections, which is based
on the numerical solution of this integral equation, has been used. If we choose the sur-
face elements of the body (cell surfaces) to be parallel to the coordinate planes, the sub-
area integral can be calculated using a one-dimensional analytical method followed by
another multidimensional numerical technique (Li and Uren, 1997).

Using this approach, highly accurate results can be obtained as shown in the numeri-
cal examples. The cube-cell accumulation method can handle the problem of calculating
anomalies due to arbitrarily shaped bodies. We have shown, using the concept of induced
surface charge density, how body and current locations as well as the nature of the verti-
cal contact and anisotropic conductivity tensors affect the equipotential contours arising
from a current source in a conductive body.

The results show that a vertical contact in an anisotropic space seriously affects the
potential field. This indicates that field data is frequently disturbed by vertical disconti-
nuities. The distance between the body and vertical contact is a major controlling factor
of the effect.
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