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We present a novel approach to the problem of impulsive noise reduction for color
images. The new image-filtering technique is based on the maximization of the simi-
larities between pixels in the filtering window. The method is able to remove the noise
component, while adapting itself to the local image structure. In this way, the proposed
algorithm eliminates impulsive noise while preserving edges and fine image details. Since
the algorithm can be considered as a modification of the vector median filter driven by
fuzzy membership functions, it is fast, computationally efficient, and easy to implement.
Experimental results indicate that the new method is superior, in terms of performance,
to algorithms commonly used for impulsive noise reduction.

1. Standard color noise reduction filters

A number of nonlinear, multichannel filters, which utilize correlation among multivariate
vectors using various distance measures, have been proposed to date, [4, 5, 6, 7, 8, 9, 10,
11]. The most popular nonlinear, multichannel filters are based on the ordering of vectors
in a predefined moving window. The output of these filters is defined as the lowest ranked
vector according to a specific vector-ordering technique.

Let F(x) represent a multichannel image and let W be a window of finite size n (filter
length). The noisy image vectors inside the filtering window W are denoted by F j , j =
0,1, . . . ,n− 1. If the distance between two vectors Fi, F j is denoted by ρ{Fi,F j}, then the

scalar quantity Ri =
∑n−1

j=0 ρ{Fi,F j} is the total distance associated with the noisy vector Fi.
The ordering of the Ri’s: R(0) ≤ R(1) ≤ ··· ≤ R(n−1), implies the same ordering of the

corresponding vectors Fi: F(0) ≤ F(1) ≤ ··· ≤ F(n−1). Nonlinear ranked-type multichan-
nel estimators define the vector F(0) as the filter output. However, the concept of input
ordering, initially applied to scalar quantities, is not easily extended to multichannel data
since there is no universal way to define ordering in vector spaces.

To overcome this problem, distance functions are often utilized to order vectors. As an
example, the vector median filter (VMF) uses the L1, L2 norms to order vectors according
to their relative magnitude differences, [1, 7, 8].
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The orientation difference between two vectors can also be used as their distance mea-
sure. This so-called vector angle criterion is used by the vector directional filters (VDF) to
remove vectors with atypical directions, [3, 14].

The basic vector directional filter (BVDF) is a ranked-order, nonlinear filter which par-
allelizes the VMF operation. However, a distance criterion, different from the L1, L2

norms used in VMF, is utilized to rank the input vectors. The output of the BVDF is that
vector from the input set, which minimizes the sum of the angles with the other vectors.
In other words, the BVDF chooses the vector most centrally located without considering
the magnitudes of the input vectors.

To improve the efficiency of the directional filters, another method called directional
distance filter (DDF) was proposed, [3]. This filter retains the structure of the BVDF but
utilizes a generalized distance criterion to order the vectors inside the processing window.

Another efficient rank-ordered technique called hybrid directional filter (HDF) was
presented in [2]. This filter operates in the direction and magnitude of the color vectors
independently and then combines them to produce a unique final output.

All standard filters detect and replace well noisy pixels, but their property of preserving
pixels which were not corrupted by the noise process is far from ideal. In this paper, we
show the construction of a simple, efficient, and fast filter which removes noisy pixels,
but has the ability of preserving original image-pixel values.

2. New filtering technique

We start from a gray scale image in order to better explain how the new algorithm is
constructed. Let the gray scale image be represented by a matrix F of size N1 ×N2, F =
{F(i, j)∈ {0, . . . ,255}, i= 1,2, . . . ,N1, j = 1,2, . . . ,N2}.

Our construction starts with the introduction of the similarity function µ : [0;∞)→R.
We will need the following assumptions for µ:

(1) µ is decreasing in [0;∞),
(2) µ is convex in [0;∞),
(3) µ(0)= 1, µ(∞)= 0.

In the construction of our filter, the central pixel in the window W is replaced by
that one, which maximizes the sum of similarities between all its neighbors. Our basic
assumption is that a new pixel must be taken from the window W (introducing pixels
which do not occur in the image is prohibited like in the VMF and BVDF).

For this purpose, µ must be convex, which can be easily shown. For the gray scale
images, we define the following fuzzy measure of similarity between two pixels Fk and Fl
(see [12, 13]):

µ
{
Fk,Fl

}= µ
(∣∣Fk −Fl

∣∣). (2.1)

We now assume that F0 is the center pixel in the window W and the pixels F1,F2, . . . ,Fn−1
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Figure 2.1. Illustration of the construction of the new filtering technique for the 4-neighborhood
case. If the center pixel F0 is replaced by its neighbor F2, then the similarity measure M2 = µ{F2,F1}+
µ{F2,F3}+ µ{F2,F4} between F2 (new center pixel) and its neighbors in W is calculated. If the total
similarity M2 is greater than M0 = µ{F0,F1}+µ{F0,F2}+µ{F0,F3}+µ{F0,F4}, then the center pixel is
replaced, otherwise it is retained.

are surrounding F0 (Figure 2.1). In the first step of the algorithm, the total sum M0 of the
similarities between the central pixel F0, which is suspected to be noisy, and its neighbors
Fi, i = 1, . . . ,n− 1, is calculated. In the second step, each of the neighbors of the central
pixel is moved to the center of the filtering window and the central pixel F0 is rejected
from W . For each pixel Fi of the neighborhood, which is being placed in the center of
W , the total sum of similarities Mi is calculated and then compared with M0. It has to be
stressed that in the second step the total sum of similarities is calculated without taking
into account the original central pixel F0, which is rejected from the filter window.

In this way, the central pixel F0 is replaced by that Fi from the neighborhood, for which
the total similarity function Mi, which is a sum of all values of similarities between the
central pixel and its neighbors, reaches its maximum. In other words, if

Mi =
n−1∑
j=1

(
1− δi, j

)
µ
{
Fi,Fj

}
, i= 1,2, . . . ,n− 1, (2.2)

where δi, j is defined as

δi, j =

1 if i= j,

0 if i �= j,
(2.3)

is larger than

M0 =
n−1∑
j=1

µ
{
F0,Fj

}
, (2.4)
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then the center pixel is replaced by Fi. Generally, the pixel F0 is given by the value Fi∗ ,
where i∗ = argmaxiMi,

Mi = δi,0

n−1∑
j=1

µ
{
Fi,Fj

}
+
(
1− δi,0

)n−1∑
j=1

(
1− δi, j

)
µ
{
Fi,Fj

}
. (2.5)

This approach can be easily extended to color images. In this case, we use the similar-
ity function defined by µ{Fk,Fl} = µ(‖Fk −Fl‖), where ‖ · ‖ denotes the specific vector
norm. Now, in exactly the same way, we can maximize the total similarity function M for
the vector case.

In finding the maximum in (2.5), we obtain (n− 1) nonzero components in M0. If
we replace the central pixel by one of its neighborhoods (by F2 in Figure 2.1(a)), then we
obtain only (n− 2) nonzero components in M, as the pixel which has been put into the
center disappears from the filter window (Figure 2.1(b)). In this way the filter tends to
replace the original pixel only when it is really noisy and preserves in this way the image
structures.

The BASIC code which can be used for the fast computer implementation is presented
in Algorithm 2.1.

3. Results

The performance of the new algorithm was compared with the standard procedures of
noise reduction used in color image processing.

The color image Lena has been contaminated by impulsive salt and pepper noise
(pixel channel values are randomly replaced by 0 or 255 with equal probability), and
the root of the mean square error (RMSE), peak signal-to-noise ratio (PSNR), and nor-
malized mean square error (NMSE) have been used as quantitative measures of quality
for evaluation purposes:

MSE=
∑N1

i=1

∑N2
j=1

∥∥F(i, j)− F̂(i, j)
∥∥2

3 ·N1 ·N2
,

RMSE=
√

MSE, PSNR= 20log
{

255
RMSE

}
,

NMSE=
∑N1

i=1

∑N2
j=1

∥∥F(i, j)− F̂(i, j)
∥∥2

∑N1
i=1

∑N2
j=1

∥∥F(i, j)
∥∥2 ,

(3.1)

where N1, N2 are the image dimensions and F(i, j) and F̂(i, j) denote the original pixel
vector and the restored vector, respectively.
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BASIC CODE OF THE NEW ALGORITHM

cr(N1,N2), cg(N1,N2), cb(N1,N2) - input color image,

wr(N1,N2), wg(N1,N2), wb(N1,N2) - output color image

beta - similarity function coefficient

sim - total similarity between pixels in 3 × 3 window

For i=0 To 255

For j=0 To 255

expo(i,j)=Exp(-beta*Abs(i-j))

Next

Next

For i=2 To N1-1

For j=2 To N2-1

max=-1

For g=-1 To 1

For h=-1 To 1

w=i+g

z=j+h

sim=0

For r=-1 To 1

For s=-1 To 1

x=i+r

y=j+s

If Not w=x Or Not z=y Then

If Not r=0 Or Not s=0 Then

simr=expo(cr(x,y),cr(w,z))

simg=expo(cg(x,y),cg(w,z))

simb=expo(cb(x,y),cb(w,z))

sim=sim+simr+simg+simb

End If

End If

Next

Next

If sim>max Then

max=sim

pixr=cr(w,z)

pixg=cg(w,z)

pixb=cb(w,z)

End If

Next

Next

wr(i,j)=pixr

wg(i,j)=pixg

wb(i,j)=pixb

Next

Next

Algorithm 2.1
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Table 3.1 Compared filters.

Notation Filter Reference

AMF Arithmetic mean filter [1]

VMF Vector median filter [6]

ANNF Adaptive nearest neighbor filter [10]

BVDF Basic vector directional filter [8]

HDF Hybrid directional filter [7]

AHDF Adaptive hybrid directional filter [7]

DDF Directional distance filter [4]

FVDF Fuzzy vector directional filter [9]

We investigated the behavior of the proposed filter using various convex functions.
The new filter is then compared, in terms of performance, with various filters listed in
Table 3.1. The following set of membership functions is considered in this work (Figure
3.1):

µ1(x)= e−β1x, β1 ∈ (0;∞),

µ2(x)= 1
1 +β2x

, β2 ∈ (0;∞),

µ3(x)= 1
(1 + x)β3

, β3 ∈ (0;∞),

µ4(x)= 1− 2
π

arctan
(
β4x
)
, β4 ∈ (0;∞),

µ5(x)= 2
1 + eβ5x

, β5 ∈ (0;∞),

µ6(x)= 1
1 + xβ6

, β6 ∈ (0;1),

µ7(x)=




1−β7x if x <
1
β7

,

0 if x ≥ 1
β7

,
β7 ∈ (0;∞).

(3.2)

Experimental analysis revealed that all these similarity functions can be used effectively
in the new filtering structure. Table 3.2 summarizes the values of the parameter βi used
in the various functions µi when a test image Lena distorted by impulsive salt and pepper
noise up to 10% is considered.

Table 3.3 summarizes the results obtained for the test image Lena distorted by 4% im-
pulsive noise. In order to obtain the results reported in Table 3.3, the L2 norm was used
to calculate the differences between the color vectors while the parameter βi values are
those reported in Table 3.2. All proposed functions µ give very good results, although the
best results are those obtained using the µ1, µ5, and µ7 functions. In a second set of experi-
ments, we tested the effect of the distance measure (norm) on the performance of the new
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Figure 3.1 Plots of the similarity functions µ1(x), . . . ,µ7(x).

filtering algorithm. In these second experiments, only three filters implemented using the
“best” similarity functions, namely µ1, µ5, and µ7, are considered. Resulting RMSE values
presented in Table 3.4 reveal that the best performance is obtained, as expected, when the
Euclidean distance (L2 norm) is used.

The efficiency of the new filtering technique is shown in Figures 3.2, 3.3, and 3.4.
Figure 3.2 depicts the result of noise reduction using the new method applied to a gray
scale image Lena in comparison with the standard median filter. The test image was con-
taminated by 4% salt and pepper noise and a 3×3 filtering mask was used. Figure 3.3
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Table 3.2 Optimal values of constants βi [10−3].

β1 β2 β3 β4 β5 β6 β7

5.04 6.62 192 6.97 7.90 266 3.72

Table 3.3 Comparison of the new filter with the standard techniques from Table 3.1. For the evalua-
tion, the color image Lena is contaminated with 4% salt and pepper noise.

Method NMSE [10−4] RMSE PSNR [dB]

None 514.95 32.165 17.983

AMF 82.863 12.903 25.917

VMF 23.304 6.842 31.427

ANNF 31.271 7.926 30.149

BVDF 29.074 7.643 30.466

HDF 22.845 6.775 31.513

AHDF 22.603 6.739 31.559

DDF 24.003 6.944 31.288

FVDF 26.755 7.331 30.827

Proposed

µ1(x) 4.959 3.157 38.145

µ2(x) 5.398 3.294 37.776

µ3(x) 9.574 4.387 35.288

µ4(x) 5.064 3.190 38.054

µ5(x) 4.777 3.099 38.307

µ6(x) 11.024 4.707 34.675

µ7(x) 4.693 3.072 38.384

Table 3.4 Comparison of the new filter results (RMSE) using different vector norms (Lena contam-
inated with 4% salt and pepper noise).

Filters L1 L2 L3 L∞

β1(x) 3.615 3.157 3.172 3.462

β5(x) 3.579 3.099 3.167 3.694

β7(x) 3.838 3.072 3.138 3.752

shows the results of image filtering using the new method in comparison with the VMF.
For the comparison color test image Lena was used and the image pixels were distorted
by 4% salt and pepper impulsive noise. Figure 3.4 depicts the efficiency of the new filter in
comparison with the VMF, BVDF, and DDF for different percentages of impulsive noise.
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Figure 3.2 Noise-reduction effect of the proposed filter as compared with the standard median filter:
(a) gray-scale test image Lena, (b) image distorted by 4% salt and pepper noise, (c) image filtered with
the new method β1 = 5.04×10−3 (PSNR = 42.02), (d) median filter (PSNR = 34.08). To the right are
the zoomed image portions.

(a) (b)

(c) (d)

Figure 3.3 Noise-reduction effect of the proposed filter as compared with the vector median filter:
(a) color test image Lena, (b) image distorted by 4% impulsive noise, (c) new method β1 = 5.04×10−3

(PSNR= 38.15), (d) VMF (PSNR= 31.43). To the right are the zoomed image portions.
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Figure 3.4 Dependence of the noise reduction efficiency on the percentage of impulsive noise for the
new method, VMF, BVDF, and DDF (Lena color image, β1 = 5.04×10−3).

As can be seen, the new class of filters eliminates efficiently impulsive noise, while
preserving important image structures like edges, corners, lines, and fine texture (Figures
3.2 and 3.3). Another interesting property of the presented method of noise attenuation
is shown in Figures 3.5 and 3.6. After a relatively small number of iterations, the filter
converges to the root signal, meaning that in further iterations no changes are introduced
to the image.

According to the results presented in this section, the best performance is achieved
when a similarity function is inversely proportional to the distance between the vector
signals (µ7). Although someone can argue that the shape and the parameters of the “opti-
mal” similarity function are application-dependent, determined mainly by the nature of
the image and the type of noise corruption, we claim that the functions introduced here
are easy to build and implement, require minimum user intervention in terms of param-
eter tuning, provide acceptable results for a wide range of input images, and are robust to
suboptimal βi parameters.

4. Conclusions

In this paper, a new class of filters has been presented. Experimental results indicate that
the new method of noise reduction significantly outperforms standard procedures used
to restore gray scale and color images contaminated with impulsive noise.The new tech-
nique is fast and very easy to implement. The BASIC code is given in Algorithm 2.1 so
that the filter can be easily evaluated by the image processing community.
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Figure 3.5 Dependence of the noise reduction efficiency of the proposed filter and VMF on the
number of iterations for color test images distorted by (a) 1% impulsive noise, (b) 5% impulsive
noise, (c) 10% impulsive noise. (Lena color image, β1 = 5.04×10−3).
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Figure 3.6 Dependence of the noise reduction efficiency of the new filter on the number of iterations
for different percentages of impulsive noise (Lena color image, β1 = 5.04×10−3).
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