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This paper presents an integral solution of the generalized one-dimensional equation of
energy transport with the convective term. The solution of the problem has been achieved
by the use of a novel technique that involves generalized derivatives (in particular, deriva-
tives of noninteger orders). Confluent hypergeometric functions, known as Whittaker’s
functions, appear in the course of the solution procedure upon applying the Laplace
transform to the original transport equation. The analytical solution of the problem is
written in the integral form and provides a relationship between the local values of the
transported property (e.g., temperature, mass, momentum, etc.) and its flux. The solu-
tion is valid everywhere within the domain, including the domain boundary.

1. Introduction

This paper presents a further development of the method that was first discussed by Old-
ham and Spanier [12]. The same method was successfully used in numerous applications
[4, 5, 6]. In recent works, the method was extended and applied to problems involving
combustion [7], hyperbolic heat transfer [10, 11], turbulent flows [2], and such problems
in biomedical engineering as modeling of the neural response to an external stimulus [9]
and the alveolar gas exchange [3].

This work is an attempt to generalize the above-mentioned method.

2. Generalized equation of energy transport

A generalized energy transport equation with the convective term can be obtained from
the conservation equation written in the differential form

0F (r,t)
ot
where F represents the transported property (such as, temperature, mass concentration,

momentum, etc.), ¢ denotes the flux of F, S(r, ) is the source function, whereas r and ¢
are the spatial and time-independent variables, respectively.

+V - o(r,t) = S(r,1), (2.1)
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The conservation equation involves two unknown variables, F and ¢, and hence must
be coupled with a constitutive equation that would relate these unknown quantities.

In general, constitutive equations are but assumptions and, unlike the conservation
equation, cannot be derived from fundamental principles. Therefore, the final form of
the equation of energy transport depends on the form of the constitutive equation used.

In the present model, the following constitutive equation is used:

@(r,t+7) = —=D(r,t) VF(r,t) + u(r,t)F(r,1), (2.2)

where D is the diffusion coefficient always measured in m?/s (it can be, e.g., mass diffu-
sivity, kinematic viscosity, or the coefficient i/m that appears in the Schrédinger equa-
tion, where h is Planck’s constant and m is the particle’s mass) and u(r,t) denotes the
velocity vector—therefore, quantity F is transported by both diffusion (the first term in
the right-hand side of the constitutive equation) and convection (the second term in the
right-hand side). The parameter 7 represents the time lag between the onset of the gra-
dient of the transported quantity and the occurrence of the flux of that quantity. Hence,
unlike Fick’s or Fourier’s constitutive equations, (2.2) accounts for a finite speed of the
transport process and is more general than those equations.

The left- and right-hand sides of the constitutive relation are written for two different
time moments. In order to overcome this difficulty, the left-hand side of (2.2) is expanded
into the Taylor series. The constitutive equation becomes

> " 0"g(r, 1)

onl ot

where 0°¢(r,t)/0t° = @(r, t).
Upon applying the divergence operator to both parts of (2.3), the latter becomes

= —D(r,t)VF(r,t) +u(r,t)F(r,t), (2.3)

A )

= n! ot"

=-V - [D@t)VE(t,t)] +V - [u(x,t)E(r,1)]. (2.4)

Now it follows from (2.1) that V - @(r,t) = —0dF(r,t)/0t + S(r,t). Upon substituting this
into (2.4) and rearranging the terms, the equation becomes

i T_ ”“F(l‘, )
n!

e L CDICD)

n=0 25
S(r,t) (25)

=V - [D(r,t)VF(r,t)] +S(r,t) + Z :1 o o

Equation (2.5) is the generalized equation of energy transport. It reduces to the classical
diffusion (heat) equation if 7 = 0 and u(r,t) = 0. If u(r,#) = 0 and 7 < 1 (all the terms
whose order is larger than one can be neglected in the series), the generalized equation of
energy transport reduces to the classical wave equation, whereas ¢ = /D/7 is the propa-
gation speed of waves (e.g., speed of light or sound). Note the presence of the apparent
energy source >, (1"/n!)(9"S(r,t)/9t") in (2.5); it appears due to the finite time lag be-
tween the excitation and the response to it.
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If the diffusion coefficient and velocity are both constant, that is, D(r,f) = D and
u(r,t) = u, (2.5) becomes
®  _n n+l
TOMEWY R t) = DY2E( )+ S(rt) +
n=0 n! ot n=1

o 1" 0"S(r, 1)
n! ot (2.6)

3. Problem formulation

Consider an energy transport process that occurs in a homogeneous (no preferred direc-
tion), semi-infinite domain whose boundary moves with a constant speed u and whose
diffusion coefficient depends neither on spatial variable nor on time. In this case, the
generalized equation of energy transport becomes

o " " 'F(r,t)  OF(r,t)
s T

[ oot YT o
n=0

2
B D[a F(r,t) , 2y 9F(r,1)

© o anS(rt) (3.1)
" 0"S(7, t
]+S(r,t)+n_1n! pm

B or? r or

The parameter y characterizes the domain geometry. Thus, y = 0 corresponds to the do-
main with the flat boundary (no curvature); y = +1 represents the spherical case with the
convex and the concave boundary, respectively; whereas y = £1/2 describes the cylinder
whose boundary is either convex (y = 1/2) or concave (y = —1/2).

The spatial variable r = x + R, where x is the actual distance from the origin and R is
the initial radius of curvature. Note that the sign of R must be the same as the sign of y.

Initially, at ¢ = 0, the domain is in equilibrium with a constant value of the transported
quantity, Fy, throughout the domain, 0 < r < +o0.

As the energy transport process goes on, the condition lim,_. F(r,t) = Fy must be
imposed in order to comply with the principle of energy conservation.

At this point, the second boundary condition is deliberately not imposed. This issue
will be clarified in the following section.

4. Solution procedure

Upon introducing the new variable p = r/+/D and the excess of the transported quantity
F'=F —F,, the transport equation becomes

S 1" 9" F(p,t)  9*F(p,t) (y >aﬁ(p,t) < 1 9"S(p, t)
“nl o ottl gp? T2, op +n§)n! o’ (4.1)

where w = u/2+/D and 9°S(p, 1)/9t° = S(p, ).
The initial condition becomes F(p,0) = 0 and the boundary condition is now
limp_.oo ﬁ(P, t) = 0.
Upon taking the Laplace transform of (4.1), the latter becomes
a*®(p;s) dd(p;s)

T)z + 2(% — w) T —s5eTO(p;s) = —eQ(p,s), (4.2)
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where @ is the Laplace transform of the excess of the transported quantity F, s is the
Laplace transform variable, and Q(p,s) represents the Laplace transform of the source
function S, provided that this Laplace transform exists.

The general solution of (4.2) is

D(p;s) = {C1(s)Myul2pf ()] + Co(s) Wi u[2pf (5)]} epiyp +P(p,s), (4.3)

where f(s) = Vses™ + w?, P(p,s) is a particular solution of (4.2), C;(s) and C,(s) are two
arbitrary functions of the Laplace transform variable s, My ,(z) and W, ,(z) are Whit-
taker’s functions defined as

1
Myu(z) = e‘Z/Zz/‘”/ZM(E tu-—x1+ 2y,z),

] (4.4)
Wieu(2) = e*Z/zz‘“mU(E tu—x1+ Zy,z),

where z = 2pf(s), k = yw/f(s), and y = y — 1/2. Note that the value of z increases as p
increases. Functions M and U in (4.4) are Kummer’s confluent hypergeometric functions
defined as

o M(a,b,z) B M +a—-b,2-b,2)
Ulab2) = 56y [F(l fa b0 © T@I2-b) ] s
(@22 (a)a2" .

M(a,b,z)=1+%z+ o

®20 T ()l

where (a)y = a(a+1)(@+2)---(@+n—1), (b)y = b(b+ 1)(b+2)---(b+n—1), and
(a)o = (b)o = 1 (see [1, page 504]).
Written in terms of Kummer’s functions, (4.3) becomes

D(z;5) = [C1(s)M(a,b,z) + Co(s)U(a, b,2) | [2f (s)] e 1@/ TOV2 4 P(z,5), (4.6)

where a = y(1 — w/f(s)) and b = 2y.

Now, since lim |~ M(a,b,z) = (I'(b)/T(a))e?z°"? (see [1, page 504]), the first term in
(4.6) becomes unbounded for large values of z. This, however, contradicts the bound-
ary condition lim,_..®(z;s) = 0. Hence, for the solution to be bounded, the arbitrary
function C; (s) must be identically zero. On the other hand, lim|;|. U(a,b,z) = 279 (see
[1, page 504]). Therefore, provided that s > 0 (this is really the case because the Laplace
transform variable corresponds to time and is always positive), the second term in (4.6)
decreases as z increases and vanishes as z becomes infinitely large. Consequently, the so-
lution becomes

D(p;s) = C(s)Ula,b,2pf ()] [2f(s)] eSO+ P(p,s). (4.7)
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Upon differentiating (4.7) with respect to p, the equation becomes

Z—E =Cs)[2f(s)]"{ - 2af(s)Ula+1,b+1,2pf(s)]
o (4.8)
+Ula,b,2pf ()] [w = f(s)]}erte /O,
where E(p;s) = ®(p;s) — P(p;s). Note that
dU[a,l;l,;pf(s)] ==2af(s)Ula+1,b+1,2pf(s)]. (4.9)
Furthermore, it follows from (4.7) that
_ 1 = Y g=plo—f(s)]
C(s) = Ula b, 2pf (5 ]u(p, s)[2f(s)] Te? . (4.10)
Upon substituting this into (4.8), the latter reduces to
dg B B [a+1b+12pf(s)]}:
dp-{[w O e e A R E L) (4.11)
Dividing (4.11) by f(s)
1 as
) dp
J© (4.12)

[1]

3 @ Uly(1—w/f(s)) +1,2y+1,2pf(s)]
_{1 f()+2y[ f(s)] Uly(1=w/f(5)),2y,2pf(s)] }

Note the minus sign in the left-hand side.
Now, upon noticing that U(a+1,b+1,2)/U(a,b,z) = 1/z = 1/[2pf (s)], (4.12) simpli-
fies to

(p39).

__ 1 dg _ yo ) Lo _ve 1|
f(s) dp [1+<p w) fls) p fz(s)]“(:o)S)- (4.13)

In most practical applications, the values of the time lag 7 are very small. In fact, 7 =
D/c?, where c is the speed of the energy-transporting waves (it is usually very large, while
the diffusion coefficient D is small). Hence, in this case, f(s) = v/ses™ + w? can be written
as f(s) = v/s(st + 1) + w?. The inverse Laplace transform of 1/ (s) is [1, page 1025]

. 1 N 1
g [s(sr+1)+w2] ﬁL [\/(s+1/21)2—(1/472—602/7)]

e—t/(ZT) t
= 7 IO(EVI—M(M),

(4.14)
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where Iy is the modified Bessel function. The inverse Laplace transform of 1/f2%(s) is [1,
page 1022]

S A [P S —
s(st+1) + w? T (s+1/27)2 — (1/472 — w?/7)

4.1
Ze—t/(ZT) t ( 5)
= \/ﬁsinh (; V1 — 4T0)2).

Upon taking the inverse Laplace transform of (4.13) and restoring the original vari-
ables, the solution becomes

F(r,t) = Fo—cjoe =0/ ( - -¢ 1__) [F(r( (] i

+<2TC Yr)j ~(t-0/2n)] ( 2T¢F> [E(r,{) — Fo — p(r,{)]d¢

-

yu et
+rmjoe( ()/(2>51nh< 5 5 )[ (r,{) = Fo — p(r,)]d¢

+ p(r,t),
(4.16)

where p(r,t) is the inverse Laplace transform of the particular solution P(r;s).

Finally, upon substituting the constitutive equation relating the transported quantity
F with its flux ¢, namely, —dF(r,t)/0r = (1/D)[¢(r,t) + (¢ (r,t)/0t) — uF(r,t)], the so-
lution becomes

F(x,t) = F0+2Jo (=0 (21( 1—)[¢(x,t)+ra¢gi’()—uF(x,C)+ﬁ(x,()]d(

+ <1 L)J —(t= ()/(27 ( ( 1- C_> [F(x( FO_p(-x)C)]d(

2¢ x=R
t _ 2
+ p(x,t),
(4.17)

where (x,t) = —Ddp(x,t)/0x denotes the effective flux due to the presence of the source
function in the original equation, and R represents the radius of curvature of the surface.
The sign of R must be the same as the sign of the parameter y. The parameter € = c7 is
the “space quantum.”

Equation (4.17) is an integral solution of the generalized problem of energy transport
modeled by (3.1) in the case of small values of the phase lag 7. It provides a relation-
ship between the local values of the transported quantity F and its flux ¢ and is valid
everywhere within the domain, including the domain boundary.
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5. Some special cases of the solution

In some special cases, the solution given by (4.17) must reduce to some known solutions
of the transport problem. In this section, it is shown that this is really the case.

Note that lim,_« Io(z) = €?/+/2nz [1, page 377].

Hence, in the case of 7 = 0 and u = 0, (4.17) reduces to

871/2 [¢(X, t) - ﬁ(x) t)]

F(X,t) =F0+ 312 (5 1)
y 0~ 2[p(x,t) — F(x,t) + Fy | ’
+p(x,t)+xiR\/5 = ,
where the derivatives of a negative fractional order « are defined as
o t
afit) 1 f(r)dr (5.2)

dte  T(-a) o Vi—1

for any f(t) for which the above integral exists.

The solution given by (5.1) has been reported in the case of no source function in [12].

Furthermore, if y = 0 in (5.1)—which corresponds to the planar geometry—the solu-
tion becomes identical to the solution reported in [6]. If the source function is absent in
the original equation, then (5.1) with y = 0 becomes the case reported in [4, 5].

On the other hand, if y = 0, u # 0, and no source function is present in (4.17), the
solution coincides with the integral equation reported in [7].

Finally, in the case of u = 0, the solution given by (4.17) becomes

Flx,t) = Fo+ % Lte‘("()/m)lo (%) [gb(x,t) N T%?O +B(x, ()]d(

- te-“-wf)lo(ﬂ) [F(x,0) ~ Fo— p(x,0)]d{ + p(x, 1),

x+tR Jo 2T

(5.3)

Note that, in the case of y = 0 and no source function, the solution is identical to the
integral equation reported in [8].

6. Model validation

To validate the model, (4.17) has been numerically solved for various sets of parameters.
The physical properties of the domain were set as follows: ¢ = 103> m/sand D = 107> m?/s.
Such a choice was made in order to be consistent with the results obtained in [8].

Figure 6.1 shows the normalized value of the transported quantity, F/Fp.x, on the
moving planar boundary for different values of the boundary speed, when the flux is
constant (¢ = 100 units/m?). The solution for the latter case is well known, F/Fpay ~ /2.
One can see from Figure 6.1 that the stronger the convective effect is the slower the solu-
tion grows.

Figure 6.2 presents the case of an expanding sphere (R = 4 X 1078 m). The evolution of
the normalized transported property is shown on the boundary of the sphere, provided
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Figure 6.1. Normalized value of the transported quantity in the case of a semi-infinite domain with
the moving boundary (constant flux).
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Figure 6.2. Normalized value of the transported quantity in the case of an expanding sphere (constant
flux).

that the surface flux is constant (¢) = 100 units/m?). The parameters ¢ and D in the trans-
port equation were set the same as in the previous case. The solution is further compared
with the case of a stationary sphere (1 = 0).

Figure 6.3 shows the evolution of the normalized transported quantity on the moving
boundary (1 = 0.5¢) in the case of a Gaussian flux. The flux was modeled as the surface
flux @sure(£) = exp[—((t — b)/0)?], with b = 10 picoseconds and ¢ = 5 picoseconds, that
mimics an almost instantaneous source of energy. Such a choice was made in order to
provide a comparison with the results obtained previously for the laser pulse heating [8].
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F/Fmax

— g =0(planar)
.......... g = 0.5 (cylinder)
— — — g = 1(sphere)

Figure 6.3. Normalized value of the transported quantity in the case of a Gaussian flux.

Figure 6.4. Normalized value of the transported quantity in the case of an expanding sphere (Gauss-
ian flux).

It is evident from Figure 6.3 that for the given set of conditions, the fastest energy
transport takes place in the case of the spherical geometry. Yet all the solutions converge
to each other as time increases. This is easily explained from the fact that the radius of
the surface curvature increases as time goes on, lim;_.. R = co, which corresponds to the
planar geometry.

Finally, Figure 6.4 shows the results obtained in the case of an expanding sphere (R =
4% 1078 m) with the Gaussian surface flux (the same as in the preceding case). The effect
of convection is clearly seen in the figure.
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7. Conclusions

The paper presents a further development and generalization of the method that allows
obtaining analytical solutions of various energy transport problems. The method is based
on a technique that involves the use of generalized derivatives (sometimes reducible to
derivatives of noninteger orders, known as fractional differ-integrals).

In this paper, the generalized equation of energy transport has been derived by cou-
pling the conservation equation with the constitutive equation that represented the flux
as the superposition of the classical Fick’s (Fourier’s) term and convective term. The con-
stitutive equation also accounted for a possible finite time lag between the onset of the
gradient of the transported quantity and its flux. The equation of energy transport thus
obtained was then solved in its one-dimensional form within a semi-infinite domain
whose geometry was governed by one of the parameters in the equation. The solution
has been written in the form of convolution (memory) integrals that relate the local val-
ues of the transported quantity and its flux. Such solutions are valid everywhere within
the domain, including the domain boundary.

Furthermore, it has been shown that, in many special cases, the solution reduces to
less general solutions that have been reported previously.

To validate the model, various solutions of the resulting integral equation have been
numerically obtained. In the case of the planar geometry, all these solutions coincide
with the solutions obtained in previous works. Furthermore, it has been shown that the
solutions obtained in the case of the spherical geometry converge to the corresponding
planar solutions as the radius of the surface curvature increases.

In addition, the solution given by (4.17) provides some important clues of how en-
ergy transport processes take place in general. Thus, for instance, it follows that a certain
maximal speed of energy transport should exist such that no process of energy transport
may occur with a speed larger than that maximum speed (the parameter ¢ and the term
V1 —u?/c? in the solution). Furthermore, although allowed being very small, the time
lag 7 in the solution is finite. This time lag may be viewed as the “time quantum” of the
process in question. Moreover, the solution contains the “space quantum” ¢ defined as
L=cr.

Curiously enough, in the case of a nonzero value of the velocity u, the solution given
by (4.17) becomes a mapping of the form F,.; = J(F,), where J denotes the integral
operator in (4.17). Therefore, the solution of the generalized equation of energy transport
allows chaotic or even biotic (self-organized) solutions [13]. This may become the topic
of future studies.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs,
and Mathematical Tables, Dover Publications, New York, 1965.

[2] V. V.Kulish, Fractional solutions for near-wall turbulence production, Fractional Differentiation
and Its Applications, Bordeaux, 2004.

, Modeling of gas exchange in a single alveolus: mass transfer in an expanding sphere, 15th

International Symposium on Transport Phenomena, Bangkok, 2004.

(3]




Vladimir V. Kulish 195

V. V. Kulish and J. L. Lage, Fractional-diffusion solutions for transient temperature and heat trans-
fer, ASME J. Heat Transfer 122 (2000), no. 2, 372-376.

, Application of fractional calculus to fluid mechanics, ASME J. Fluid Engineering 124
(2002), no. 3, 803-806.

V. V. Kulish, J. L. Lage, P. L. Komarov, and P. E. Raad, A Fractional-diffusion theory for calculating
thermal properties of thin films from surface transient thermoreflectance measurements, ASME
J. Heat Transfer 123 (2001), no. 6, 1133-1138.

V. V. Kulish and V. B. Novozhilov, Relationship between the local temperature and local heat flux
in a one-dimensional semi-infinite domain with the moving boundary, AIAA J. of Thermo-
physics & Heat Transfer 17 (2003), no. 4, 538-540.

, The relationship between the local temperature and the local heat flux within a one-

dimensional semi-infinite domain of heat wave propagation, Math. Probl. Eng. 2003 (2003),

no. 4, 173-179.

, On the integral equation for the neural response to an external stimulus, 5th Inter-
national Conference on Mathematical Problems in Engineering & Aerospace Sciences,
Timisoara, 2004.

V. V. Kulish and A. I. Sourin, Simulation and visualization of thermal wave propagation in pico-
scales, 10th International Symposium on Flow Visualization, Kyoto, 2002.

, Simulation and visualization of thermal wave propagation in sub-nano-scales: ultra-fast
laser heating of solid materials, 7th Asian Symposium on Visualization, Singapore, 2003.

K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

H. Sabelli and A. Abouzeid, Definition and empirical characterization of creative processes, Non-
linear Dynamics Psychol. Life Sci. 7 (2003), no. 1, 35-47.

Vladimir V. Kulish: School of Mechanical and Production Engineering, Nanyang Technological
University, Singapore 639798
E-mail address: mvvkulish@ntu.edu.sg


mailto:mvvkulish@ntu.edu.sg

