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The effects of an Oldroyd-B fluid on the peristaltic mechanism are examined under the
long wavelength assumption. Analytical expressions for the stream function, the axial
velocity, and the pressure rise per wavelength are obtained up to the second order in the
dimensionless wave number. The effects of the various parameters of interest on the flow
are shown and discussed.

1. Introduction

The word peristalsis derives from the Greek word περισταλτικos which means clasping
and compressing. It is used to describe a progressive wave of contraction along a channel
or tube whose cross-sectional area consequently varies. Peristalsis is regarded as having
considerable relevance in biomechanics and especially as a major mechanism for fluid
transport in many biological systems (as it is in the human). It appears in the ureter, in
the intestines, and in the oviducts, to name just a few instances.

Great strives have been undertaken, both experimentally and theoretically, to study
the propagation of waves in peristaltic motion [3, 12, 14, 18, 26, 52, 53]. Arbitrary shapes
of these waves [27, 29, 31, 32, 33] as well as sinusoidal waves [1, 10, 12, 15, 23, 49] have
been analyzed and measuring techniques [9, 24] were designed to test and verify early
hydrodynamic models [15, 40, 41].

The governing equations are nonlinear, so assumptions are made about the amplitude
ratio, the wavenumber, and the Reynolds number. The amplitude ratio is the ratio of the
amplitude of the wave to the half-width of the channel and is usually taken to be small.
The case of vanishingly small Reynolds number has also received considerable attention
[3, 12, 41]. To include nonlinear effects due to nonvanishing Reynolds number, solutions
are usually presented as expansions in terms of a small parameter. They are generally of
two types:

(1) expansion parameter is the amplitude of the wave that disturbs the wall; such an
expansion was pursued in [15] for the channel and in [13, 55] for the pipe, up to
second order. Only zero-mean flow was considered for the second-order terms,
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a restriction that was removed in [35]. This approach, while valid for all Reynolds
numbers and wavelengths of the disturbing wall, is restricted to small amplitudes
and has been applied only to a sinusoidal wave;

(2) expansion in terms of the wavenumber and the Reynolds number for all wave
amplitudes. This has been done only for sinusoidal waves, and up to first order in
the square of the wavenumber (the natural parameter) and second order in the
Reynolds number [22, 28, 56]. The nonsinusoidal wave was studied in [27] for
small intestine and for zero Reynolds number only.

To obtain information about flows at moderate Reynolds number it has been neces-
sary to use numerical methods. Several investigators [2, 10, 21, 49] used numerical meth-
ods for the solution of the Newtonian hydrodynamical equations. The results, in general,
agree with the analytical perturbation solutions in their range of validity with the excep-
tion of the calculations of the pressure field by Takabatake and Ayukawa [49]. It is noted
that the higher-order terms of Reynolds and wavenumbers do not significantly extend the
range of validity of the results.

The application of the theory of particle-fluid mixture is also very useful in under-
standing a number of diverse physical problems concerning peristalsis. An interesting ex-
ample is the particulate suspension theory of blood [5, 20, 34, 36, 46, 47, 50]. Peristaltic
transport of solid particles with fluid has first been attempted in [21]. Various geometric
and dynamic effects on the particle transport in a channel with flexible walls were exam-
ined. The peristaltic motion for the case of two-phase flow was studied in [48] where a
perturbation solution for a small amplitude ratio is given.

Most studies on the peristaltic motion assume the physiological fluids to behave like
Newtonian fluids with constant viscosity. However, this approach fails to give an ade-
quate understanding of the peristaltic mechanism involved in small blood vessels, lym-
phatic vessels, intestine, and ductus efferentes of the male reproductive tracts. In these
body organs, the viscosity of the fluid varies across the thickness of the duct [11, 16, 19].
Also, the assumption that the chyme in small intestine is a Newtonian material of vari-
able viscosity is not adequate in reality. Chyme is undoubtedly a non-Newtonian fluid.
Some authors (see, e.g., [51]) feel that the main factor responsible for moving the chyme
along the intestine is a gradient in the frequency of segmentation (a process of oscillating
contraction and relaxation of smooth muscles in the intestine wall) along the length of
intestine. Moreover, peristaltic waves die out after travelling a very short distance; peri-
staltic waves which travel the entire length of small intestine do not occur in humans ex-
cept under abnormal conditions. Also, in transport of spermatozoa in the cervical canal,
there are some other important factors, responsible for the transport of semen in ductus
efferentes. One of the major factors is cilia, which keep semen moving towards the epi-
didymis [7, 17, 25, 30, 54]. The phenomenon of peristalsis has also been proposed as a
mechanism for the transport of spermatic fluid (semen) in vas deferens [39]. Movement
through vas deferens is accomplished by means of peristaltic action of contractile cells in
the duct wall [39, 51]. However, there is no doubt that peristalsis aids in moving semen
in ductus efferentes, the chyme in the intestine, and flow of semen in vas deferens.

The above review of physiological flows indicates that non-Newtonian viscoelastic rhe-
ology is the correct way of properly describing the peristaltic flow through channels and
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tubes. Only a few studies [4, 8, 42, 43, 44, 45, 47] have considered this aspect of the
problem. Although the second, and third-order models in [43, 44, 45] take into account
normal stress differences and shear-thinning/thickening effects, they lack other features
such as stress relaxation. The Oldroyd-B fluid, which includes elastic and memory ef-
fects exhibited by dilute solutions, has been extensively used in many applications, and
also results of simulations fit experimental data quite well [6, 37, 38]. However, so far,
no attempt has been made to understand the peristaltic motion for an Oldroyd-B fluid.
We propose to study the effects of an Oldroyd-B fluid on the mechanism of peristaltic
transport in a planar channel. Of course the natural coordinate system is axisymmet-
ric; however, the planar case has been predominantly studied. Qualitatively the transport
phenomenon of the fluid is similar for both configurations [23]. Also, experimental data
are available for channel flows [26, 53]. Therefore, the present mathematical model con-
siders an Oldroyd-B fluid between parallel walls on which a sinusoidal travelling wave
is imposed. The assumption for the present analysis is that the length of the peristaltic
wave is large compared with the half-width of the channel. This assumption is similar
to those used in [22, 43] for the peristaltic motion of Newtonian and second-order flu-
ids, respectively. A regular perturbation technique is adopted to solve the present prob-
lem and solutions are expanded in a power series of the small dimensionless wavenum-
ber. The Reynolds number and material time constants are left arbitrary. The analysis is
completely analytical but lengthy, and closed-form solutions up to second order of the
wavenumber are presented. The effects of the nonlinear terms of the governing equations
on the fluid transport are constructed. Comparison is made between the results for the
Newtonian and Oldroyd-B fluids. The explicit non-Newtonian terms are obtained and
their effect on peristaltic motion is examined. The results for Maxwell and Newtonian
fluids are obtained as special cases of the presented analysis.

2. Basic equations

Consider an incompressible fluid whose balance laws of mass and linear momentum are
given by

div V̄= 0, (2.1)

ρV̇= div T̄ + ρf̄ , (2.2)

where ρ, V̄, T̄, and f̄ are mass density, velocity, Cauchy stress tensor, and specific body
force and the dot (·) denotes material time derivative. In the ensuing analysis, body forces
will be ignored and isothermal conditions will be implied. The above system of equations
will be closed by a constitutive equation for the stress tensor. The constitutive equation
for the Cauchy stress T̄ in an Oldroyd-B fluid is given by [37]

T̄=− p̄I + S̄, (2.3)

where the extra stress tensor S̄ is given by

S̄ +Λ1

(
dS̄
dt̄
− L̄S̄− S̄L̄T

)
= µ
{

Ā1 +Λ2

(
dĀ1

dt̄
− L̄Ā1− Ā1L̄T

)}
, (2.4)
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in which − p̄I is the spherical part of the stress due to the constraint of incompressibility,
d/dt̄ denotes material time derivative, µ is the viscosity, and Λ1 and Λ2 are material time
constants referred to as relaxation and retardation time, respectively. It is assumed that
Λ1 ≥Λ2 ≥ 0. The tensors L̄ and Ā1 are defined as follows:

L̄= gradV̄, Ā1 = L̄ + L̄T , (2.5)

where V̄ is the velocity vector. It should be noted that this model includes the classi-
cal linear case for Λ1 = Λ2 = 0, and when Λ2 = 0, the model reduces to the Maxwell
model.

3. Formulation of the problem and flow equations

Consider a two-dimensional flow of an Oldroyd-B fluid in an infinite channel having
width 2a. Assume an infinite wave train travelling with velocity c along the walls. Choose
a rectangular coordinate system for the channel with X̄ along the central line in the di-
rection of wave propagation, and Ȳ transverse to it. Let the geometry of the wall surface
be defined as

h̄(X̄ , t̄)= a+ b sin
[

2π
λ

(X̄ − ct̄)
]

, (3.1)

where b is the wave amplitude and λ the wavelength. Assume, moreover, that there is no
motion of the wall in the longitudinal direction (this assumption constrains the deforma-
tion of the wall; it does not necessarily imply that the channel is rigid against longitudinal
motions, but is a convenient simplification that can be justified by a more complete anal-
ysis. The assumption implies that for the no-slip condition Ū = 0 at the wall).

For unsteady two-dimensional flows,

V̄= [Ū(X̄ , Ȳ , t̄),V̄(X̄ , Ȳ , t̄),0
]
, (3.2)

and we find that (2.1)–(2.5), in the absence of body forces, take the following form:

∂Ū

∂X̄
+
∂V̄

∂Ȳ
= 0,

ρ
(
∂

∂t̄
+ Ū

∂

∂X̄
+ V̄

∂

∂Ȳ

)
Ū =−∂p̄(X̄ , Ȳ , t̄)

∂X̄
+
∂S̄X̄X̄
∂X̄

+
∂S̄X̄Ȳ
∂Ȳ

,

ρ
(
∂

∂t̄
+ Ū

∂

∂X̄
+ V̄

∂

∂Ȳ

)
V̄ =−∂p̄(X̄ , Ȳ , t̄)

∂Ȳ
+
∂S̄X̄Ȳ
∂X̄

+
∂S̄ȲȲ
∂Ȳ

,
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S̄X̄X̄ +Λ1

[(
∂

∂t̄
+ Ū

∂

∂X̄
+ V̄

∂

∂Ȳ

)
S̄X̄X̄ − 2

∂Ū

∂X̄
S̄X̄X̄ − 2

∂Ū

∂Ȳ
S̄X̄Ȳ

]

= 2µ
∂Ū

∂X̄
+ 2µΛ2

[(
∂

∂t̄
+ Ū

∂

∂X̄
+ V̄

∂

∂Ȳ

)
∂Ū

∂X̄
− 2
(
∂Ū

∂X̄

)2

− ∂Ū

∂Ȳ

(
∂Ū

∂Ȳ
+
∂V̄

∂X̄

)]
,

S̄X̄Ȳ +Λ1

[(
∂

∂t̄
+ Ū

∂

∂X̄
+ V̄

∂

∂Ȳ

)
S̄X̄Ȳ − ∂Ū

∂Ȳ
S̄Ȳ Ȳ − ∂V̄

∂X̄
S̄X̄X̄

]

= µ
(
∂Ū

∂Ȳ
+
∂V̄

∂X̄

)
+µΛ2

[(
∂

∂t̄
+ Ū

∂

∂X̄
+ V̄

∂

∂Ȳ

)(
∂Ū

∂Ȳ
+
∂V̄

∂X̄

)

− 2
(
∂Ū

∂X̄

∂V̄

∂X̄
+
∂Ū

∂Ȳ

∂V̄

∂Ȳ

)]
,

S̄Ȳ Ȳ +Λ1

[(
∂

∂t̄
+ Ū

∂

∂X̄
+ V̄

∂

∂Ȳ

)
S̄Ȳ Ȳ − 2

∂V̄

∂X̄
S̄X̄Ȳ − 2

∂V̄

∂Ȳ
S̄Ȳ Ȳ

]

= 2µ
∂V̄

∂Ȳ
+ 2µΛ2

[(
∂

∂t̄
+ Ū

∂

∂X̄
+ V̄

∂

∂Ȳ

)
∂V̄

∂Ȳ
− 2
(
∂V̄

∂Ȳ

)2

− ∂V̄

∂X̄

(
∂Ū

∂Ȳ
+
∂V̄

∂X̄

)]
,

(3.3)

where Ū and V̄ are the longitudinal and transverse velocity components.
In the laboratory frame (X̄ , Ȳ), the flow in the channel is unsteady, but if we choose

moving coordinates (x̄, ȳ) which travel in the positive X̄-direction with the same speed as
the wave, then the flow can be treated as steady. This coordinate system is known as the
wave frame. The coordinate frames are related through

x̄ = X̄ − ct̄, ȳ = Ȳ , (3.4)

and the velocity components in the laboratory and wave frames are related by

ū= Ū − c, v̄ = V̄ , (3.5)

where ū and v̄ are dimensional velocity components in the directions of x̄ and ȳ, respec-
tively. Employing these transformations in (3), we obtain

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0,

ρ
(
ū
∂

∂x̄
+ v̄

∂

∂ȳ

)
ū=−∂p̄

∂x̄
+
∂S̄x̄x̄
∂x̄

+
∂S̄x̄ ȳ
∂ȳ

,

ρ
(
ū
∂

∂x̄
+ v̄

∂

∂ȳ

)
v̄ =−∂p̄

∂ȳ
+
∂S̄x̄ ȳ
∂x̄

+
∂S̄ȳ ȳ
∂ȳ

,
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S̄x̄x̄ +Λ1

[(
ū
∂

∂x̄
+ v̄

∂

∂ȳ

)
S̄x̄x̄ − 2

∂ū

∂x̄
S̄x̄x̄ − 2

∂ū

∂ȳ
S̄x̄ ȳ

]

= 2µ
∂Ū

∂x̄
+ 2µΛ2

[(
ū
∂

∂x̄
+ v̄

∂

∂ȳ

)
∂ū

∂x̄
− 2
(
∂ū

∂x̄

)2

− ∂ū

∂ȳ

(
∂ū

∂ȳ
+
∂v̄

∂x̄

)]
,

S̄x̄ ȳ +Λ1

[(
ū
∂

∂x̄
+ v̄

∂

∂ȳ

)
S̄x̄ ȳ − ∂ū

∂ȳ
S̄ȳ ȳ − ∂v̄

∂x̄
S̄x̄x̄

]

= µ
(
∂ū

∂ȳ
+
∂v̄

∂x̄

)
+µΛ2

[(
ū
∂

∂x̄
+ v̄

∂

∂ȳ

)(
∂ū

∂ȳ
+
∂v̄

∂x̄

)
− 2
(
∂ū

∂x̄

∂v̄

∂x̄
+
∂ū

∂ȳ

∂v̄

∂ȳ

)]
,

S̄ȳ ȳ +Λ1

[(
ū
∂

∂x̄
+ v̄

∂

∂ȳ

)
S̄ȳ ȳ − 2

∂v̄

∂x̄
S̄x̄ ȳ − 2

∂v̄

∂ȳ
S̄ȳ ȳ

]

= 2µ
∂v̄

∂ȳ
+ 2µΛ2

[(
ū
∂

∂x̄
+ v̄

∂

∂ȳ

)
∂v̄

∂ȳ
− 2
(
∂v̄

∂ȳ

)2

− ∂v̄

∂x̄

(
∂ū

∂ȳ
+
∂v̄

∂x̄

)]
.

(3.6)

The formulation of the boundary conditions is postponed until Section 5.

4. Dimensionless formulation

To set the important parameters of the outlined problem in evidence, a scale analysis is
performed and the equations are nondimensionalized. Using the dimensionless variables

x̄ = λx

2π
, ȳ = ay, ū= cu, v̄ = cv,

S̄= µc

a
S, p̄ = λµc

2πa2
p, h̄= ah

(4.1)

in (3), we arrive at

δ
∂u

∂x
+
∂v

∂y
= 0, (4.2)

�e
[(

δu
∂

∂x
+ v

∂

∂y

)
u
]
=−∂p

∂x
+ δ

∂Sxx
∂x

+
∂Sxy
∂y

, (4.3)

δ�e
[(

δu
∂

∂x
+ v

∂

∂y

)
v
]
=−∂p

∂y
+ δ2 ∂Sxy

∂x
+ δ

∂Syy
∂y

, (4.4)

Sxx + λ1

[(
δu

∂

∂x
+ v

∂

∂y

)
Sxx − 2δ

∂u

∂x
Sxx − 2

∂u

∂y
Sxy

]

= 2δ
∂u

∂x
+ 2λ2

[
δ
(
δu

∂

∂x
+ v

∂

∂y

)
∂u

∂x
− 2δ2

(
∂u

∂x

)2

− ∂u

∂y

(
∂u

∂y
+ δ

∂v

∂x

)]
,

(4.5)



T. Hayat et al. 353

Sxy + λ1

[(
δu

∂

∂x
+ v

∂

∂y

)
Sxy − δ

∂v

∂x
Sxx − ∂u

∂y
Syy

]

=
(
∂u

∂y
+ δ

∂v

∂x

)
+ λ2

[(
δu

∂

∂x
+ v

∂

∂y

)(
∂u

∂y
+ δ

∂v

∂x

)
− 2
(
δ2 ∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)]
,

(4.6)

Syy + λ1

[(
δu

∂

∂x
+ v

∂

∂y

)
Syy − 2δ

∂v

∂x
Sxy − 2

∂v

∂y
Syy

]

= 2
∂v

∂y
+ 2λ2

[(
δu

∂

∂x
+ v

∂

∂y

)
∂v

∂y
− 2
(
∂v

∂y

)2

− δ
∂v

∂x

(
∂u

∂y
+ δ

∂v

∂x

)]
,

(4.7)

where the dimensionless wavenumber δ, the Reynolds number �e, and the Weissenberg
numbers λ1 and λ2 are defined, respectively, as

δ = 2πa
λ

, �e= ca

µ/ρ
, λ1 = Λ1c

a
, λ2 = Λ2c

a
. (4.8)

These have easy physical interpretations: δ is a measure of how large the semidepth of
the peristaltic motion is, as compared to its wavelength. It is an aspect ratio and thus an
expression of shallowness. The Reynolds number �e is formed with the wave speed, the
amplitude, and the kinematic viscosity of the Newtonian part of the constitutive behav-
ior; λ1 and λ2 measure the elastic contributions of the stress behavior.

The continuity equation (4.2), after defining the dimensionless stream function Ψ(x,
y) by the relations

u= ∂Ψ

∂y
, v =−δ ∂Ψ

∂x
, (4.9)

is identically satisfied and, from (4.3)–(4.7) we deduce

δ�e
[(

∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

)
∂Ψ

∂y

]
=−∂p

∂x
+ δ

∂Sxx
∂x

+
∂Sxy
∂y

, (4.10)

−δ3�e
[(

∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

)
∂Ψ

∂x

]
=−∂p

∂y
+ δ2 ∂Sxy

∂x
+ δ

∂Syy
∂y

, (4.11)

δ�e
[(

∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

)(
∂2Ψ

∂y2
+ δ2 ∂

2Ψ

∂x2

)]

= δ
∂2
(
Sxx − Syy

)
∂x∂y

+
(
∂2

∂y2
− δ2 ∂2

∂x2

)
Sxy ,

(4.12)
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Sxx + λ1

[
δ
(
∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

)
Sxx − 2δ

∂2Ψ

∂x∂y
Sxx − 2

∂2Ψ

∂y2
Sxy

]

= 2δ
∂2Ψ

∂x∂y
+ 2λ2

[
δ2
(
∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

)
∂2Ψ

∂x∂y
− 2δ2

(
∂2Ψ

∂x∂y

)2

− ∂2Ψ

∂y2

(
∂2Ψ

∂y2
− δ2 ∂

2Ψ

∂x2

)]
,

(4.13)

Sxy + λ1

[
δ
(
∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

)
Sxy + δ2 ∂

2Ψ

∂x2
Sxx − ∂2Ψ

∂y2
Syy

]

=
(
∂2Ψ

∂y2
− δ2 ∂

2Ψ

∂x2

)
+ λ2

[
δ
(
∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

)(
∂2Ψ

∂y2
− δ2 ∂

2Ψ

∂x2

)

+ 2δ
∂2Ψ

∂x∂y

(
∂2Ψ

∂y2
+ δ2 ∂

2Ψ

∂x2

)]
,

(4.14)

Syy + λ1

[
δ
(
∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

)
Syy + 2δ

∂2Ψ

∂x∂y
Syy + 2δ2 ∂

2Ψ

∂x2
Sxy

]

=−2δ
∂2Ψ

∂x∂y
+ 2λ2

[
δ2
(
∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

)(
− ∂2Ψ

∂x∂y

)
− 2δ2

(
∂2Ψ

∂x∂y

)2

+ δ2 ∂
2Ψ

∂x2

(
∂2Ψ

∂y2
− δ2 ∂

2Ψ

∂x2

)]
,

(4.15)

where the compatibility equation (4.12) is obtained by eliminating p between (4.10) and
(4.11); it represents the vorticity transport equation. Notice that (4.10) and (4.11) are
formally decoupled from (4.12)–(4.15). So, the latter are used to determine Ψ and Sxx,
Sxy , Syy , while the former is then employed to determine the pressure field.

5. Rate of volume flow and boundary conditions

The dimensional rate of fluid flow in the laboratory frame is given by

Q =
∫ h̄

0
Ū(X̄ , Ȳ , t̄)dȲ , (5.1)

where h̄, the position of the channel wall, is a function of X̄ and t̄. The rate of fluid flow
in the wave frame is given by

q =
∫ h̄

0
ū(x̄, ȳ)dȳ, (5.2)

where h̄ is now a function of x̄ alone. With the help of (3.4) and (3.5), one can show that
these two rates are related through

Q= q+ ch̄. (5.3)
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The time-averaged flow over a period T at a fixed position X̄ is given by

Q̄ = 1
T

∫ T

0
Qdt. (5.4)

On using (5.3) in (5.4), we find that

Q̄= q+ ac. (5.5)

If we define the dimensionless mean flows Θ, in the laboratory frame, and F, in the
wave frame, according to

Θ= Q̄

ac
, F = q

ac
, (5.6)

one finds that (5.5) reduces to

Θ= F + 1, (5.7)

where, according to the first equation of (4.9),

F =
∫ h

0

∂Ψ

∂y
dy =Ψ(h)−Ψ(0). (5.8)

If we choose the zero value of the streamline along the central line (y = 0)

Ψ(0)= 0, (5.9)

then the shape of the wave at the wall boundary is the streamline with value

Ψ(h)= F. (5.10)

The boundary conditions for the dimensionless stream function in the wave frame are
therefore

Ψ= 0 (by convention)
∂2Ψ

∂y2
= 0 (by symmetry)

on the central line y = 0, (5.11)

∂Ψ

∂y
=−1 (no-slip condition)

Ψ= F
at the wall y = h. (5.12)

We also note that h represents the dimensionless form of the surface of the peristaltic wall
which will be chosen as a sinusoidal function, namely,

h(x)= 1 +Φsinx, (5.13)

where

Φ= b

a
(5.14)

is the amplitude ratio or the occlusion and 0 <Φ < 1.
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6. Perturbation solution

We note that (4.10)–(4.15) are higher-order nonlinear partial differential equations.
Therefore, it seems to be impossible to find the solution in closed form for arbitrary
values of all parameters. Even for Newtonian fluids [22, 41], all solutions obtained so far
are based on the assumption that one or several parameters are zero or small. Following
Jaffrin [22], we expand the flow quantities in a power series of the small parameter δ as
follows:

Ψ=Ψ0 + δΨ1 + δ2Ψ2 + ··· ,

p = p0 + δp1 + δ2p2 + ··· ,

S= S0 + δS1 + δ2S2 + ··· ,

F = F0 + δF1 + δ2F2 + ··· .

(6.1)

On substituting (6.1) into (4.10)–(4.15) and then collecting terms of equal powers of δ,
one obtains the following sets of perturbed equations.

(i) Zeroth-order equations

∂2S0xy

∂y2
= 0, (6.2)

−∂p0

∂x
+
∂S0xy

∂y
= 0, (6.3)

−∂p0

∂y
= 0, (6.4)

S0xx − 2λ1
∂2Ψ0

∂y2
S0xy =−2λ2

(
∂2Ψ0

∂y2

)2

, (6.5)

S0xy − λ1
∂2Ψ0

∂y2
S0yy = ∂2Ψ0

∂y2
, (6.6)

S0yy = 0. (6.7)

(ii) First-order equations

�e
[(

∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂2Ψ0

∂y2

]
= ∂2

(
S0xx − S0yy

)
∂x∂y

+
∂2

∂y2
S1xy ,

�e
[(

∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂Ψ0

∂y

]
=−∂p1

∂x
+
∂S0xx

∂x
+
∂S1xy

∂y
,

−∂p1

∂y
+
∂S0yy

∂y
= 0,
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S1xx + λ1

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
S0xx − 2

∂2Ψ0

∂x∂y
S0xx − 2

∂2Ψ0

∂y2
S1xy − 2

∂2Ψ1

∂y2
S0xy

]

= 2
∂2Ψ0

∂x∂y
− 4λ2

∂2Ψ0

∂y2

∂2Ψ1

∂y2
,

S1xy + λ1

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
S0xy − ∂2Ψ0

∂y2
S1yy − ∂2Ψ1

∂y2
S0yy

]

= ∂2Ψ1

∂y2
+ λ2

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂2Ψ0

∂y2
+ 2

∂2Ψ0

∂x∂y

∂2Ψ0

∂y2

]
,

S1yy + λ1

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
S0yy + 2

∂2Ψ0

∂x∂y
S0yy

]
=−2

∂2Ψ0

∂x∂y
.

(6.8)

(iii) Second-order equations

�e
[(

∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂2Ψ1

∂y2
+
(
∂Ψ1

∂y

∂

∂x
− ∂Ψ1

∂x

∂

∂y

)
∂2Ψ0

∂y2

]

= ∂2
(
S1xx − S1yy

)
∂x∂y

+
∂2S2xy

∂y2
− ∂2S0xy

∂x2
,

(6.9)

�e
[(

∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂Ψ1

∂y
+
(
∂Ψ1

∂y

∂

∂x
− ∂Ψ1

∂x

∂

∂y

)
∂Ψ0

∂y

]

=−∂p2

∂x
+
∂S1xx

∂x
+
∂S2xy

∂y
,

(6.10)

−∂p2

∂y
+
∂S0xy

∂x
+
∂S1yy

∂y
= 0, (6.11)

S2xx + λ1

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
S1xx +

(
∂Ψ1

∂y

∂

∂x
− ∂Ψ1

∂x

∂

∂y

)
S0xx

− 2
∂2Ψ0

∂x∂y
S1xx − 2

∂2Ψ1

∂x∂y
S0xx − 2

∂2Ψ0

∂y2
S2xy − 2

∂2Ψ1

∂y2
S1xy − 2

∂2Ψ2

∂y2
S0xy

]

= 2
∂2Ψ1

∂x∂y
+ 2λ2

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂2Ψ0

∂x∂y
− 2
(
∂2Ψ0

∂x∂y

)2

− 2
∂2Ψ0

∂y2

∂2Ψ2

∂y2

+
∂2Ψ0

∂x2

∂2Ψ0

∂y2
−
(
∂2Ψ1

∂y2

)2]
,

(6.12)
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S2xy + λ1

[(
∂Ψ1

∂y

∂

∂x
− ∂Ψ1

∂x

∂

∂y

)
S0xy +

(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
S1xy

− ∂2Ψ0

∂y2
S2yy − ∂2Ψ1

∂y2
S1yy − ∂2Ψ2

∂y2
S0yy +

∂2Ψ0

∂x2
S0xx

]

= ∂2Ψ2

∂y2
− ∂2Ψ0

∂x2
+ λ2

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂2Ψ1

∂y2
+
(
∂Ψ1

∂y

∂

∂x
− ∂Ψ1

∂x

∂

∂y

)
∂2Ψ0

∂y2

+ 2
∂2Ψ0

∂x∂y

∂2Ψ1

∂y2
+2

∂2Ψ1

∂x∂y

∂2Ψ0

∂y2

]
,

(6.13)

S2yy + λ1

[(
∂Ψ1

∂y

∂

∂x
− ∂Ψ1

∂x

∂

∂y

)
S0yy +

(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
S1yy

+ 2
∂2Ψ0

∂x2
S0xy + 2

∂2Ψ0

∂x∂y
S1yy + 2

∂2Ψ1

∂x∂y
S0yy

]

=−2
∂2Ψ1

∂x∂y
− 2λ2

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂2Ψ0

∂x∂y
+ 2
(
∂2Ψ0

∂x∂y

)2

− ∂2Ψ0

∂x2

∂2Ψ0

∂y2

]
.

(6.14)

Because the boundary conditions (5.11), (5.12) are linear, identical conditions fall on
every order system of equations; this is why they are not repeated above.

After lengthy calculations (the interested reader may consult the principal author)
with (6.2)–(6.14) and the boundary conditions (5.11), (5.12) at each order, the following
boundary value problems for the stream function, pressure and stress components are
deduced.

(i) Zeroth-order system

∂4Ψ0

∂y4
= 0, (6.15)

∂p0

∂x
= ∂3Ψ0

∂y3
, (6.16)

∂p0

∂y
= 0, (6.17)

S0xx = 2
(
λ1− λ2

)(∂2Ψ0

∂y2

)2

, (6.18)

S0xy = ∂2Ψ0

∂y2
, (6.19)

S0yy = 0 (6.20)

with boundary conditions

Ψ0 = 0,
∂2Ψ0

∂y2
= 0 at y = 0,

Ψ0 = F0,
∂Ψ0

∂y
=−1 at y = h.

(6.21)
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(ii) First-order system

�e
[(

∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂2Ψ0

∂y2

]
− 2
(
λ1− λ2

) ∂2

∂x∂y

[(
∂2Ψ0

∂y2

)2
]

= ∂4Ψ1

∂y4
− (λ1− λ2

) ∂2

∂y2

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂2Ψ0

∂y2

]

− 2
(
λ1− λ2

) ∂2

∂y2

[
∂2Ψ0

∂y2

∂2Ψ0

∂x∂y

]
,

(6.22)

∂p1

∂x
=−�e

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂Ψ0

∂y

]
+ 2
(
λ1− λ2

) ∂
∂x

[(
∂2Ψ0

∂y2

)2
]

+
∂3Ψ1

∂y3
− (λ1− λ2

) ∂

∂y

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂2Ψ0

∂y2

]

− 2
(
λ1− λ2

) ∂

∂y

[
∂2Ψ0

∂y2

∂2Ψ0

∂x∂y

]
,

(6.23)

∂p1

∂y
= 0, (6.24)

S1xx =−2λ1
(
λ1− λ2

)[(∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)(
∂2Ψ0

∂y2

)2
]

+ 4
(
λ1− λ2

)∂2Ψ0

∂y2

∂2Ψ1

∂y2

− 2λ1
(
λ1− λ2

)∂2Ψ0

∂y2

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂2Ψ0

∂y2

]
+ 2

∂2Ψ0

∂x∂y
,

(6.25)

S1xy = ∂2Ψ1

∂y2
− (λ1− λ2

)[(∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂2Ψ0

∂y2

]
− 2
(
λ1− λ2

)∂2Ψ0

∂y2

∂2Ψ0

∂x∂y
, (6.26)

S1yy =−2
∂2Ψ0

∂x∂y
(6.27)

with boundary conditions

Ψ1 = 0,
∂2Ψ1

∂y2
= 0 at y = 0,

Ψ1 = F1,
∂Ψ1

∂y
= 0 at y = h.

(6.28)
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(iii) Second-order system

�e
[(

∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂2Ψ1

∂y2
+
(
∂Ψ1

∂y

∂

∂x
− ∂Ψ1

∂x

∂

∂y

)
∂2Ψ0

∂y2

]

+ 2λ1
(
λ1− λ2

) ∂2

∂x∂y

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)(
∂2Ψ0

∂y2

)2
]
− 3

∂2

∂x∂y

[
∂2Ψ0

∂x∂y

]

+ 2λ1
(
λ1− λ2

) ∂2

∂x∂y

[
∂2Ψ0

∂y2

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂2Ψ0

∂y2

]]

− 4
(
λ1− λ2

) ∂2

∂x∂y

[
∂2Ψ0

∂y2

∂2Ψ1

∂y2

]

= ∂2S2xy

∂y2
,

(6.29)

∂p2

∂x
=−�e

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂Ψ1

∂y
+
(
∂Ψ1

∂y

∂

∂x
− ∂Ψ1

∂x

∂

∂y

)
∂Ψ0

∂y

]

− 2λ1
(
λ1− λ2

) ∂
∂x

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)(
∂2Ψ0

∂y2

)2
]

+ 2
∂

∂x

[
∂2Ψ0

∂x∂y

]

− 2λ1
(
λ1− λ2

) ∂
∂x

[
∂2Ψ0

∂y2

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂2Ψ0

∂y2

]]

+ 4
(
λ1− λ2

) ∂
∂x

[
∂2Ψ0

∂y2

∂2Ψ1

∂y2

]
+
∂S2xy

∂y
,

(6.30)

∂p2

∂y
=− ∂

∂y

[
∂2Ψ0

∂x∂y

]
, (6.31)

S2xx + λ1

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
S1xx + 2

(
λ1− λ2

)(∂Ψ1

∂y

∂

∂x
− ∂Ψ1

∂x

∂

∂y

)(
∂2Ψ0

∂y2

)2

− 2
∂2Ψ0

∂x∂y
S1xx − 4

(
λ1− λ2

)∂2Ψ1

∂x∂y

(
∂2Ψ0

∂y2

)2

− 2
∂2Ψ0

∂y2
S2xy

− 2
∂2Ψ1

∂y2
S1xy − 2

∂2Ψ0

∂y2

∂2Ψ2

∂y2

]

= 2
∂2Ψ1

∂x∂y
+ 2λ2

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂2Ψ0

∂x∂y
− 2
(
∂2Ψ0

∂x∂y

)2

− 2
∂2Ψ0

∂y2

∂2Ψ2

∂y2
+
∂2Ψ0

∂x2

∂2Ψ0

∂y2
−
(
∂2Ψ1

∂y2

)2
]

,

(6.32)
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S2xy = λ1

[
∂2Ψ0

∂y2
S2yy +

∂2Ψ1

∂y2
S1yy − 2

(
λ1− λ2

)∂2Ψ0

∂x2

(
∂2Ψ0

∂y2

)2

−
(
∂Ψ1

∂y

∂

∂x
− ∂Ψ1

∂x

∂

∂y

)
∂2Ψ0

∂y2
−
(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
S1xy

]

+
∂2Ψ2

∂y2
− ∂2Ψ0

∂x2
+ λ2

[(
∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂2Ψ1

∂y2
+
(
∂Ψ1

∂y

∂

∂x
− ∂Ψ1

∂x

∂

∂y

)
∂2Ψ0

∂y2

+ 2
∂2Ψ0

∂x∂y

∂2Ψ1

∂y2
+ 2

∂2Ψ1

∂x∂y

∂2Ψ0

∂y2

]
,

(6.33)

S2yy = 2
(
λ1− λ2

)[(∂Ψ0

∂y

∂

∂x
− ∂Ψ0

∂x

∂

∂y

)
∂2Ψ0

∂x∂y
− ∂2Ψ0

∂x2

∂2Ψ0

∂y2
+ 2
(
∂2Ψ0

∂x∂y

)2
]
− 2

∂2Ψ1

∂x∂y
(6.34)

with boundary conditions

Ψ2 = 0,
∂2Ψ2

∂y2
= 0 at y = 0,

Ψ2 = F2,
∂Ψ2

∂y
= 0 at y = h.

(6.35)

We will now solve each system, subject to the boundary conditions, and thereby gen-
erate the series solution.

Zeroth-order solution. Mere inspection of the governing equations (6.15)–(6.21) shows
that with the exception of (6.18) this zeroth-order problem is described by the properties
of a linear viscous fluid flowing such that the long wavelength approximation is satisfied.
Only S0xx depends on the difference of the Weissenberg numbers and therefore exhibits
non-Newtonian properties. Effects of this contribution are not visible except possibly on
the walls if tractions are measurable. The reader may check that the solution of (6.15)–
(6.21) in terms of stream function Ψ0, the axial velocity u0, and the longitudinal pressure
gradient dp0/dx is given by

Ψ0 =−3
2

(
F0 +h

)(L3

3
−L
)
− y, (6.36)

u0 =− 3
2h

(
F0 +h

)(
L2− 1

)− 1, (6.37)

dp0

dx
=−3

(
F0

h3
+

1
h2

)
, (6.38)

where L= y/h, and from (6.17) it is clear that the transverse pressure gradient is zero.
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It is also of some interest to calculate the pressure rise over a wavelength (�Pλ) in the
longitudinal direction on the axis (y = 0). At this order, we have

�Pλ0 =
∫ 2π

0

dp0

dx
dx =−3

[
F0I3 + I2

]
, (6.39)

where

I2 = 2π(
1−Φ2

)3/2 , I3 = π
(
2 +Φ2

)(
1−Φ2

)5/2 ,

In =
∫ 2π

0

dx

hn
= 1

1−Φ2

[(
2n− 3
n− 1

)
In−1−

(
n− 2
n− 1

)
In−2

]
, n≥ 4.

(6.40)

As already pointed out, expressions (6.36)–(6.39) are the same as for Newtonian flu-
ids [41]. We also remark that the solution for an Oldroyd-B fluid in case of infinite
wavelength (δ = 0) is identical to the zeroth-order solution.

First-order solution. Inspection of (6.22)–(6.28) would lead us to assume that non-
Newtonian effects will now enter the first-order solution; however, on substituting
the zeroth-order solution (6.36) into (6.22) and (6.23), we find that

∂4Ψ1

∂y4
= 120b1y3

h7
+

24b2y

h5
, (6.41)

dp1

dx
= ∂3Ψ1

∂y3
+ �e

dp̃1

dx
+ 2
(
λ1− λ2

)dp̂1

dx
, (6.42)

where

dp̃1

dx
=−

[
3hx
(
3F0 + 2h

)(
F0 +h

)
2h4

{
y4

h3
− 3y2

2

(
y3

h3
− 1
h

)}

− 9hxF0
(
F0 +h

)
2h2

{
y2

h3
− 1

2

(
y3

h3
− 1
h

)}
− 3y2hx

(
3F0 + 2h

)
2h4

+
3hxF0

2h2

]
,

(6.43)

dp̂1

dx
=−

[
32b2

01y
2hx

h9
+

3b01
(
b01x − a01

)
y2

h8
+

(
b02b01x − a02b01

)
h6

− 12b2
01y

2hx
h9

− 4b01b02hx
h7

− 27y2hx
(
3F0 + 2h

)(
F0 +h

)
2h7

+
9hxF0

(
F0 +h

)
2h5

]
,

(6.44)

b1 =−�e
hx
40

[
3F2

0 + 5F0h+ 2h2],
b2 =�e

hx
8

[
3F2

0 + 3F0h+h2],
a01 = hx

(
3F0 + 2h

)
2

, a02 =−3hxF0

2
,

b01 =−3h
(
F0 +h

)
2

, b02 = h
(
3F0 +h

)
2

,

(6.45)
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and the subscript x denotes differentiation with respect to x. Obviously, Ψ1 cannot de-
pend on non-Newtonian behavior, but p1 may through the last term on the right-hand
side of (6.42).

The solution of (6.41) subject to the boundary conditions (6.28) is given by

Ψ1 = b1

(
L7

7
−L
)

+ b2

(
L5

5
−L
)

+ b3

(
L3

3
−L
)

, (6.46)

where b1 and b2 are defined in (6.45), while b3 is given by

b3 =−
[

9
7
b1 +

6
5
b2 +

3
2
F1

]
=−�e

3hx
280

[
33F2

0 + 27F0h+ 8h2]− 3
2
F1. (6.47)

The axial velocity and the longitudinal pressure gradient at this order take the form

u1 = 1
h

[
b1
(
L6− 1

)
+ b2

(
L4− 1

)
+ b3

(
L2− 1

)]
, (6.48)

dp1

dx
= 30b1y4

h7
+

12b2y2

h5
+

2b3

h3
+ �e

dp̃1

dx
+ 2
(
λ1− λ2

)dp̂1

dx
. (6.49)

These formulas demonstrate that u1 shows no non-Newtonian response but dp1/dx does.
The pressure rise over a wavelength for this order turns out to be

�Pλ1 =
2�e
35

∫ 2π

0

[
27F2

0

h3
+

3F0

h2
− 3
h

]
hxdx︸ ︷︷ ︸

=0

− 3F1

∫ 2π

0

dx

h3
− 6
(
λ1− λ2

)∫ 2π

0

[
3F2

0

h5
− 3F0

h4
+

1
2h3

]
hxdx︸ ︷︷ ︸

=0

=−3F1I3.

(6.50)

We note that this expression is independent of the non-Newtonian effects; this comes
somewhat as a surprise.

Second-order solution. We have solved the second-order system. Computations are very
massive and mere inspection of the equations no longer suffices to deduce qualitative
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behavior. We must restrict ourselves to presenting only the key steps and results, respec-
tively. Inserting the zeroth-order and first-order solutions in (6.29), we obtain

∂4Ψ2

∂y4
=�eb̃1 + 2λ1

(
λ1− λ2

)∂b̃2

∂y
− 4
(
λ1− λ2

)∂b̃3

∂y
+ 2λ1

(
λ1− λ2

)∂b̃4

∂y
− ∂b̃5

∂y

− 2λ1
(
λ1− λ2

)∂2b̃6

∂y2
+ 2
(
λ1− λ2

)∂2b̃7

∂y2
+ 2
(
λ1− λ2

)∂2b̃8

∂y2
+ 2λ1

(
λ1− λ2

)∂2b̃9

∂y2

+
(
λ1− λ2

)∂2b̃1

∂y2
− λ1

(
λ1− λ2

)∂2b̃10

∂y2
− 2λ1

(
λ1− λ2

)∂2b̃11

∂y2
+ b̃12,

(6.51)

∂p2

∂x
= ∂3Ψ2

∂y3
+ �e

∂p̃2

∂x
+ �e

∂p̂2

∂x
+ �e

∂p∗2
∂x

− 2λ1
(
λ1− λ2

) ∂
∂x

(
d11y4

h12
+
d12y2

h10

)
+ 4
(
λ1− λ2

) ∂
∂x

(
e11y6

h6
+
e12y4

h4
+
e13y2

h2

)
+

∂

∂x

[
hx

{
3
(
3F0 + 2h

)
y2

h4
− 3F0

h2

}]
− 2λ1

(
λ1− λ2

) ∂
∂x

[
4b2

01

(
b01x − a01

) y4

h12
+ 4b01

(
b02b01x − a02b01

) y2

h10

− 16b3
01y

4hx
h13

− 16b2
01b02y2hx
h11

]
+ 2λ1

(
λ1− λ2

)∂b̃6

∂y
− 2
(
λ1− λ2

)∂b̃7

∂y
− 2
(
λ1− λ2

)∂b̃8

∂y
− 2λ1

(
λ1− λ2

)∂b̃9

∂y

− (λ1− λ2
)∂b̃1

∂y
+ λ1

(
λ1− λ2

)∂b̃10

∂y
+ 2λ1

(
λ1− λ2

)∂b̃11

∂y

− ∂

∂y

{
y3
[
a01x

h4
− 4a01hx

h5

]
+ y
[
a02x

h2
− 2a02hx

h3

]}
,

(6.52)

∂p2

∂y
=−3yhx

(
3F0 + 2h

)
h4

, (6.53)

where

b̃1 = c11L
7 + c12L

5 + c13L
3 + c14L,

b̃2 = y4
[
d11x

h12
− 12d11hx

h13

]
+ y2

[
d12x

h10
− 10d12hx

h11

]
,

b̃3 = e14L
6 + e15L

4 + e16L
2,

b̃4 = y4
[
d13x

h12
− 12d13hx

h13

]
+ y2

[
d14x

h10
− 10d14hx

h11

]
,

b̃5 = 12y2
[
a01x

h4
− 4a01hx

h5

]
+ 4
[
a02x

h2
− 2a02hx

h3

]
,

b̃6 = 2b01g14y5

h12
+

2b01g15y3

h8
+

2b01g16y

h4
,
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b̃7 = 14b01a11y7

h11
+

10b01a12y5

h9
+

6b01a13y3

h7
+

2b01a14y

h5
,

b̃8 = 18a01b1y7

h11
+

6
(
a02b1 + 2a01b2

)
y5

h9
+

2
(
2a02b2 + 3a01b3

)
y3

h7
+

2a02b3y

h5
,

b̃9 = 4b2
01y

5

h8

[
a01x

h4
− 4a01hx

h5

]
+

4b2
01y

3

h8

[
a02x

h2
− 2a02hx

h3

]
,

b̃10 = g11y5

h12
+
g12y3

h10
+
g13y

h8
, b̃11 = J11L

5 + J12L
3 + J13L,

b̃12 = 12y
[
a01x

h4
− 4a01hx

h5

]
,

∂p̃2

∂x
=
[{

3
(
F0 +h

)
2

(
y2

h3
− 1
h

)
+ 1
}

×
{
b1x

(
y6

h7
− 1
h

)
+ b2x

(
y4

h5
− 1
h

)
+ b3x

(
y2

h3
− 1
h

)
+ b1

(
− 7

y6

h8
+

1
h2

)
hx

+ b2

(
− 5

y4

h6
+

1
h2

)
hx+b3

(
− 3

y2

h4
+

1
h2

)
hx

}]
,

∂p̂2

∂x
= hx

[{(
3F0 + 2h

)
y3

2h4
− 3yF0

2h2

}{
6b1y5

h7
+

4b2y3

h5
+

2b3y

h3

}]

−hx

[{
3
(
3F0 + 2h

)
y2

2h4
− 3F0

2h2

}{
b1

(
y6

h7
− 1
h

)
+ b2

(
y4

h5
− 1
h

)
+ b3

(
y2

h3
− 1
h

)}]
,

∂p∗2
∂x

=−
{
b1x

(
y7

7h7
− y

h

)
+ b2x

(
y5

5h5
− y

h

)
+ b3x

(
y3

3h3
− y

h

)

− b1

(
y7

h8
− y

h2

)
hx − b2

(
y5

h6
− y

h2

)
hx − b3

(
y3

h4
− y

h2

)
hx

}{
3y
(
F0 +h

)
h3

}
,

a11 =−hxb1

h
+
b1x

7
=�e

(
hx
)2
[

3F2
0

40h
+

3F0

28
+

h

28

]
− �ehxx

280

[
3F2

0 + 5F0h+ 2h2],
a12 =−hxb2

h
+
b2x

5
=−�e

(
hx
)2
[

3F2
0

8h
+

3F0

10
+

3h
40

]
+

�ehxx
40

[
3F2

0 + 3F0h+h2],
a13 =−hxb3

h
+
b3x

3
= �e

(
hx
)2

280

[
99F2

0

h
+ 54F0 + 8h

]
+

3F1hx
2h

− �ehxx
280

[
33F2

0 + 27F0h+ 8h2],
a14 = hx

(
b1 + b2 + b3

)
h

− (b1x + b2x + b3x
)

=−�e
(
hx
)2

280

[
15F2

0

h
− 3h

]
− 3F1hx

2h
+

�ehxx
280

[
15F2

0 + 11F0h+ 3h2],
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c11 = 1
h4

[
40a11b01− 24a01b1

]
,

c12 = 1
h4

[
42a11b02 + 18b01a12− 30a02b1− 6a01b2

]
,

c13 = 1
h4

[
20a12b02 + 4b01a13− 12a02b2 + 4a01b3

]
,

c14 = 1
h4

[
6b02a13− 2a02b3− 6a01

(
b1 + b2 + b3

)− 2b01a14
]
,

d11 = 8
[
b2

01b01x − a01b
2
01

]− 4b3
01hx
h

, d12 = 8
[
b01b02b01x − a02b

2
01

]− 4b2
01b02hx
h

,

d13 = 4
[
b2

01b01x − a01b
2
01

]− 16b3
01hx
h

, d14 = 4
[
b01b02b01x − a02b

2
01

]− 16b2
01b02hx
h

,

e11 = 12b1b01

h5
, e12 = 8b2b01

h5
, e13 = 4b3b01

h5
,

e14 = e11x − 6e11hx
h

, e15 = e12x − 4e12hx
h

, e16 = e13x − 2e13hx
h

,

f11 = 2b01

[
b01x − a01− 4b01hx

h

]
, f12 = 2

[
b02b01x − a02b01− 4b02b01hx

h

]
,

g11 = b01 f11x − 8b01 f11hx
h

− 3a01 f11,

g12 = b02 f11x − 8b02 f11hx
h

+ b01 f12x − 6b01 f12hx
h

− 3a02 f11− a01 f12,

g13 = b02 f12x − 6b02 f12hx
h

− a02 f12, g14 = b01

[
a01x − 4a01hx

h

]
+ 18a2

01,

g15 = 3b02

[
a01x

h2
− 4a01hx

h3

]
− b01

[
a02x

h2
− 2a02hx

h3

]
+

12a01a02

h2
,

g16 = b02

h2

[
a02x

h2
− 2a02hx

h3

]
+

2a2
02

h4
,

J11 = 6
h7

[
a01xb

2
01 + a01b01b01x − 3b01a

2
01−

8a01b
2
01hx

h

]
,

J12 = 2
h7

[
a02xb

2
01 + a02b01b01x − 6a02b

2
01hx

h
+ 3a01xb01b02 + 3a01b01xb02

− 24a01b01b02hx
h

− 10a01b01a02

]
,

J13 = 2
h7

[
a02xb01b02 + a02b02b01x − 2b01a

2
02−

6a02b01b02hx
h

]
.

(6.54)
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Inspection of the inhomogeneous part of (6.51) shows that it is a polynomial of y. Thus,
there is hope to integrate (6.51) analytically. Indeed, after lengthy calculations, the solu-
tion of (6.48) subject to the boundary conditions (6.35) turns out to be given by

Ψ2 =�e

[
c11y11

7920h7
+

c12y9

3024h5
+

c13y7

840h3
+
c14y5

120h

]
+ 2λ1

(
λ1− λ2

)[m1y7

42
+
m2y5

20
+
m3y3

6

]

+ 2
(
λ1− λ2

)[m4y10

90
+
m5y9

72
+
m6y8

56
+
m7y7

42
+
m8y6

30
+
m9y5

20
+
m10y3

6

]

+
m11y5

20
+
m12y3

6
+ C̃1

y3

6
+ C̃2y,

(6.55)

where

m1 = 1
5

[
d11x

h12
− 12d11hx

h13
+
d13x

h12
− 12d13hx

h13

]
− 2b01g14

h12

+
4b2

01

h8

[
a01x

h4
− 4a01hx

h5

]
− g11

2h12
− J11

h5
,

m2 = 1
3

[
d12x

h10
− 10d12hx

h11
+
d14x

h10
− 10d14hx

h11

]
− 2b01g15

h8

+
4b2

01

h8

[
a02x

h2
− 2a02hx

h3

]
− g12

2h10
− J12

h3
,

m3 =−
[

2b01g16

h4
+

g13

2h8
+
J13

h

]
, m4 =− e14

28h6
,

m5 = 14b01a11

h11
+

18a01b1

h11
+

c11

2h7
, m6 =− e15

15h4
,

m7 = 10b01a12

h9
+

6
(
a02b1 + 2a01b2

)
h9

+
c12

2h5
, m8 =− e16

6h2
,

m9 = 6b01a13

h7
+

2
(
2a02b2 + 3a01b3

)
h7

+
c13

2h3
,

m10 = 2b01a14

h5
+

2a02b3

h5
+
c14

2h
,

m11 =−2
[
a01x

h4
− 4a01hx

h5

]
, m12 =−4

[
a02x

h2
− 2a02hx

h3

]
,

C̃1 =− 3
h3

[
F2 + �eh4m13 + 2λ1

(
λ1− λ2

)
m14h

3

+ 2
(
λ1− λ2

)
m15h

3 +m16h
5 +m17h

3],
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C̃2 = 3
2h

F2 + �eh3m18 + 2λ1
(
λ1− λ2

)
m19h

2

+ 2
(
λ1− λ2

)
m20h

2 +m21h
4 +m22h

2,

m13 = 9c11

7003
+

21c12

7938
+

3c13

420
+
c14

30
, m14 = m1h4

7
+
m2h2

5
+
m3h

3
,

m15 = m4h7

10
+
m5h6

9
+
m6h5

8
+
m7h4

7
+
m8h3

6
+
m9h2

5
+
m10

3
,

m16 = m11

5
, m17 = m12

3
,

m18 = 3m13

2
− c11

720
− c12

336
− c13

120
− c14

24
,

m19 = 3m14

2
− m1h4

6
− m2h2

4
− m3

2
,

m20 = 3m15

2
− m4h7

9
− m5h6

8
− m6h5

7
− m7h4

6
− m8h3

5
− m9h2

4
− m10

2
,

m21 = 3m16

2
− m11

4
, m22 = 3m17

2
− m12

2
.

(6.56)

The axial velocity at this order is given by

u2 =�e
[
c11y10

720h7
+

c12y8

336h5
+

c13y6

120h3
+
c14y4

24h

]

+ 2λ1
(
λ1− λ2

)[m1y6

6
+
m2y4

4
+
m3y2

2

]

+ 2
(
λ1− λ2

)[m4y9

9
+
m5y8

8
+
m6y7

7
+
m7y6

6
+
m8y5

5
+
m9y4

4
+
m10y2

2

]

+
m11y4

4
+
m12y2

2
+ C̃1

y2

2
+ C̃2.

(6.57)

It obviously depends on non-Newtonian (elastic) material behavior as it depends on the
difference of the Weissenberg numbers.

Such a dependence does now also arise in the pressure rise per wavelength along the
central line of the channel (y = 0). It can be obtained by integrating the second-order
pressure gradient dp2/dx from (6.52):

�Pλ2 =
∫ 2π

0

dp2

dx

∣∣∣∣
y=0

dx. (6.58)
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After lengthy calculations, the pressure rise per wavelength along the central line of the
channel (y = 0) at this order is given by

�Pλ2 =
∫ 2π

0
Φ̃dx+ 6λ1

(
λ1− λ2

)∫ 2π

0
Φ̂dx+ 6

(
λ1− λ2

)∫ 2π

0
Φ∗dx, (6.59)

where

Φ̃= �e2

560

[
hxx

(
− 45F3

0

h2
− 48F2

0

h
− 20F0− 3h

)
+
(
hx
)2
(

90F3
0

h3
+

48F2
0

h2
− 3
)]
− 3F2

h3

+
3
2

�eF1

[
3F0

h3
+

1
2h2

]
hx + 3F0

[(
hx
)2

h3
− hxx

h2

]

+
6
5

[
a01x

h4
− 4a01hx

h5

]
−
[
a02x

h2
− 2a02hx

h3

]

− 3�e
h3

[
9

7003

(
40a11b01− 24a01b1

)
+

21
7938

(
42a11b02 + 18b01a12− 30a02b1− 6a01b2

)
+

17
420

(
6b02a13− 2a02b3− 6a01

(
b1 + b2 + b3

)− 2b01a14
)]

,

Φ̂=
(

12d11hx
35h9

− d11x

35h8

)
+
(

2d12hx
3h9

− d12x

15h8

)
+
(

12d13hx
35h9

− d13x

35h8

)
+
(

2d14hx
3h9

− d14x

15h8

)

+
4b2

01a01x

7h8
− 40b2

01a01hx
7h9

+
18a2

01b01

7h8
+
(
b01

14
+
b02

10

)
f11x

h8
− 4
(
b01

7
+
b02

5

)
f11hx
h9

− 3
(
a01

14
+
a02

10

)
f11

h8
+
(
b01

10h
+
b02

6

)
f12x

h7
−
(

3b01

5h5
+ b02

)
f12hx
h8

−
(
a01

10h
+
a02

6

)
f12

h7

+
6a01b01b01x

7h8
+

12a01xb01b02

5h8
− 72a01b01b02hx

5h9
− 4a02xb

2
01

5h8
+

4a01b01a02

5h8

+
2a02b01b01x

5h8
+

6a01b02b01x

5h8
+

4a02xb01b02

3h7
− 16a02b01b02hx

3h8
+

2b01xa02b02

3h7
,

Φ∗ = h

280

(
e11x − 6e11hx

h

)
+

h

120

(
e12x − 4e12hx

h

)
+

h

36

(
e13x − 2e13hx

h

)

− 34a11b01

9h5
− a01b1

15h5
− 17a12b01

7h5
+

9a02b1

7h5
− 24a01b2

35h5
− 3a11b02

h5
− 6a13b01

5h5

− 4a02b2

5h5
− 3a01b3

5h5
− 7a14b01

15h5
− 3a13b02

5h5
+
a02b3

5h5
.

(6.60)
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Summary. We summarize our results of the perturbation series through order 2. Recall-
ing (6.36)–(6.39), (6.46)–(6.50), and (6.52)–(6.59), we have shown that

Ψ=
{
− 3

2

(
F0 +h

)(L3

3
−L
)
− y
}

+ δ
{
b1

(
L7

7
−L
)

+ b2

(
L5

5
−L
)

+ b3

(
L3

3
−L
)}

+ δ2Ψ2,

(6.61)

u=
{
− 3

2h

(
F0 +h

)(
L2− 1

)− 1
}

+
δ

h

[
b1
(
L6− 1

)
+ b2

(
L4− 1

)
+ b3

(
L2− 1

)]
+ δ2u2,

(6.62)

∂p

∂x
=−3

(
F0

h3
+

1
h2

)
+ δ
[

30b1y4

h7
+

12b2y2

h5
+

2b3

h3
+ �e

dp̃1

dx
+ 2
(
λ1− λ2

)dp̂1

dx

]
+ δ2 ∂p2

∂x
,

(6.63)

∂p

∂y
=−3yhx

(
3F0 + 2h

)
h4

, (6.64)

�Pλ =−3
[
F0I3 + I2

]− 3δF1I3 + δ2�Pλ2 . (6.65)

7. Discussion of some results

The above equations have been programmed to construct explicit results. In this section,
some results of the perturbation solutions (6.61) are graphically displayed.

In Figure 7.1, the pressure drops per wavelength along the flow direction (or the pres-
sure rises against the flow direction) ∆Pλ are illustrated in terms of the wave amplitude Φ
of the wall disturbance with various values of the Weissenberg numbers λ1 (Figure 7.1(a)),
λ2 (Figure 7.1(b)), the dimensionless wavenumber δ (Figure 7.1(c)), and the total flux F
(Figure 7.1(d)), respectively. Firstly, it is obvious that for Φ= 0 the pressure drop is inde-
pendent of the Weissenberg numbers λ1 and λ2; in such a case, the flow behaves just as a
Newtonian fluid. Secondly, with increasing occlusion Φ the pressure drop increases, that
is, an increasing pressure gradient is needed to push the same flux to pass the channel.
Thirdly, increasing the Weissenberg number λ1 causes a decrease of the pressure drop to
maintain the same flux (Figure 7.1(a)), whereas with an increase of the Weissenberg num-
ber λ2 the pressure drop ∆Pλ increases (Figure 7.1(b)). Fourthly, the larger the wavenum-
ber δ is, the less pressure drop is required (Figure 7.1(c)). Furthermore, as expected, the
larger the flow flux is, the larger the pressure drop needed to press it to pass the channel
will be (Figure 7.1(d)).

The transverse distributions of the longitudinal velocity at the most narrow position
of the channel, which is at x = 3π/2 with a channel half-width of h= 0.7 for Φ= 0.3, are
shown in Figure 7.2 for different values of the Weissenberg numbers λ1 (Figure 7.2(a)),
λ2 (Figure 7.2(b)), dimensionless wavenumber δ (Figure 7.2(c)), and total flux F (Figure
7.2(d)). Owing to the limit of the no-slip boundary condition in (5.12), the velocity at the
wall has the same value u(y = h)=−1 in the wave frame for all values of the parameters.
The largest difference occurs near the central line y = 0. With increasing Weissenberg
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Figure 7.1. Pressure drop per wavelength at the central axis along the flow direction plotted against
the occlusion Φ for �e = 1 with different values of (a) the Weissenberg number λ1, (b) the Weis-
senberg number λ2, (c) the dimensionless wavenumber δ, and (d) the total flux F.

number λ1 (Figure 7.2(a)) and increasing wavenumber δ (Figure 7.2(c)), the velocity in-
creases, especially near the center of the channel, while an increase of the Weissenberg
number λ2 produces a decrease of the velocity (Figure 7.2(b)). Besides, as a matter of
course, a large flux possesses a large velocity, as shown in Figure 7.2(d).

In Figure 7.3, the distributions of the velocity along the central line of the channel (y =
0) within a wavelength x ∈ (0,2π) are displayed for various values of λ1 and δ. Obviously,
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Figure 7.2. Transverse distribution of the longitudinal (axial) velocity at the most narrow position
(h = 0.7 when Φ = 0.3) for �e = 1 with different values of (a) the Weissenberg number λ1, (b) the
Weissenberg number λ2, (c) the dimensionless wavenumber δ, and (d) total flux F.

in the narrow part of the channel, x ∈ [π,2π], especially near the most narrow position
x = 3π/2, the velocity depends more conspicuously on these parameters than in the wide
part of the channel, x ∈ [0,π]. As shown in Figure 7.3(a), in the narrow part, the behavior
of an Oldroyd-B fluid is obviously different from that of a Newtonian fluid (λ1 = λ2 = 0),
while in the wide part, their difference may be negligible if the Weissenberg number λ1 is
not extremely large. Similarly, the strong dependence of the velocity on the wavenumber
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Figure 7.3. Longitudinal distribution of the axial velocity along the central line of the channel (y = 0)
with different values of (a) the Weissenberg number λ1 and (b) the dimensionless wavenumber δ. The
other parameters are chosen as follows: λ2 = 0, F =−3, Φ= 0.3, and �e = 1.

of the wall disturbance occurs also mainly near the narrow part of the channel, as is seen
in Figure 7.3(b).

8. Summary and conclusions

Peristaltic motion has been studied for two-dimensional geometry in the limit of long
wavelength and low frequency. Asymptotic expansions in terms of a dimensionless
wavenumber δ have been constructed, and solutions to �(δ2) have been obtained in
closed form.

The limiting solution (i.e., the zeroth-order solution) has been found to be identical to
that for an infinite wavelength or Newtonian behavior. At this order, it is found that the
Weissenberg numbers only contribute to S0xx. Higher-order solutions have been studied
to reveal the effects of non-Newtonian behavior on peristaltic waves with long but fi-
nite wavelengths. The results indicate that, for the first-order solution, the Weissenberg
numbers do not include any contribution to the stream function, the axial velocity, and
pressure rise per wavelength; however, these do give rise to contributions to the longi-
tudinal pressure gradient. The solution for terms of �(δ2) depends strongly upon the
Weissenberg numbers.

It is hoped that the present analysis may be used with confidence to describe physio-
logical flows in humans with proper geometric modifications.

The following results are found.
(i) The perturbation analysis is valid for large values of wavelength.
(ii) The solution determined here holds for all values of the Reynolds number and the

Weissenberg numbers.
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(iii) The terms of orders�(δ2), �(δ2�e2), �(δ2�e), �[λ1(λ1− λ2)�eδ2], and �[(λ1−
λ2)�eδ2] represent, respectively, the curvature, inertia, and the non-Newtonian character
of the fluid.

(iv) With increasing occlusion Φ, the pressure drop per wavelength along the flow
direction increases, that is, an increase of the pressure gradient is needed to push the
same flux to pass the channel.

(v) With a decrease of the Weissenberg number λ1 or an increase of the Weissenberg
number λ2, the pressure drop per wavelength required to maintain the same flux in-
creases.

(vi) In the narrow part of the channel, the behavior of an Oldroyd-B fluid is much
more different from that of a Newtonian fluid than in the wide part of the channel.

(vii) The results for a Maxwell fluid can be obtained as a special case of the presented
analysis by taking λ2 = 0. To the best of our knowledge, the peristaltic motion of Maxwell
fluid has not been discussed so far.
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