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Compactly supported linear semiorthogonal B-spline wavelets together with their dual
wavelets are developed to approximate the solutions of nonlinear Fredholm-Hammer-
stein integral equations. Properties of these wavelets are first presented; these proper-
ties are then utilized to reduce the computation of integral equations to some algebraic
equations. The method is computationally attractive, and applications are demonstrated
through an illustrative example.

1. Introduction

Wavelets theory is a relatively new and emerging area in mathematical research. It has
been applied in a wide range of engineering disciplines; particularly, wavelets are very suc-
cessfully used in signal analysis for waveform representations and segmentations, time-
frequency analysis, and fast algorithms for easy implementation [6]. Wavelets permit the
accurate representation of a variety of functions and operators. Moreover, wavelets estab-
lish a connection with fast numerical algorithms [2, 3]. Wavelets can be separated into
two distinct types, orthogonal and semiorthogonal [5]. Publications on integral equation
methods have shown a marked preference for orthogonal wavelets [11]. This is prob-
ably because the original wavelets, which were widely used for signal processing, were
primarily orthogonal. In signal processing applications, unlike integral equation meth-
ods, the wavelet itself is never constructed since only its scaling function and coefficients
are needed. However, orthogonal wavelets either have infinite support or a nonsymmet-
ric, and in some cases fractal, nature. These properties can make them a poor choice for
characterization of a function. In contrast, the semiorthogonal wavelets have finite sup-
port, both even and odd symmetry, and simple analytical expressions, ideal attributes of
a basis function [11].

Several numerical methods for approximating the solution of Hammerstein integral
equations are known. For Fredholm-Hammerstein integral equations, the classical
method of successive approximations was introduced in [12]. A variation of the Nyström
method was presented in [10]. A collocation-type method was developed in [9]. In [4],
Brunner applied a collocation-type method to nonlinear Volterra-Hammerstein integral
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equations and integrodifferential equations, and discussed its connection with the iter-
ated collocation method. Guoqiang [8] introduced and discussed the asymptotic error
expansion of a collocation-type method for Volterra-Hammerstein integral equations.
The methods in [8, 9] transform a given integral equation into a system of nonlinear
equations, which has to be solved with some kind of an iterative method. In [9] the def-
inite integrals involved in the solution may be evaluated analytically only in favorable
cases, while in [8] the integrals involved in the solution have to be evaluated at each time
step of the iteration.

In the present paper, we apply compactly supported linear semiorthogonal B-spline
wavelets, specially constructed for the bounded interval to solve the nonlinear Fredholm-
Hammerstein integral equations of the form

y(x)= f (x) +
∫ 1

0
K(x, t)g

[
t, y(t)

]
dt, 0≤ x ≤ 1, (1.1)

where f , g, and K are given continuous functions, with g(t, y) nonlinear in y. The use of
semiorthogonal compactly supported spline wavelets is justified by their interesting prop-
erties. Among them, the following can be explicitly cited [1]: they satisfy all the proper-
ties on a bounded interval that are verified by the usual wavelets on the real line, but they
do not present the difficulties related to the boundary conditions, when applying such
wavelets to problems in finite bounded domains, unlike most of the continuous orthogo-
nal wavelets. Also, the semiorthogonal compactly supported spline wavelets have closed-
form expressions. In [11], the two categories of wavelets, orthogonal and semiorthogonal,
are compared, and it is shown that semiorthogonal wavelets are best suited for integral
equation applications.

Our method consists of reducing (1.1) to a set of algebraic equations by expanding
the unknown function as linear B-spline wavelets with unknown coefficients. The prop-
erties of these wavelets are then utilized to evaluate the unknown coefficients. The paper
is organized as follows. In Section 2, we describe the formulation of the B-spline scaling
functions and wavelets on [0,1] required for our subsequent development. In Section 3,
the proposed method is used to approximate the solution of nonlinear Fredholm-
Hammerstein integral equation. In Section 4, we report our numerical finding and
demonstrate the accuracy of the proposed numerical scheme by considering a numer-
ical example.

2. B-spline scaling functions and wavelets on [0,1]

When semiorthogonal wavelets are constructed from B-splines of order m, the lowest
octave level j = j0 is determined in [7] by

2 j0 ≥ 2m− 1 (2.1)

so as to give a minimum of one complete wavelet on the interval [0,1]. In this paper, we
will use a wavelet generated by a linear spline—the second-order cardinal B-spline basis
function. From (2.1), the second-order B-spline of lowest level, which must be an integer,
is determined to be j0 = 2. This constrains all octave levels to j ≥ 2.
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As is the case with all semiorthogonal wavelets, the second-order B-splines also serve
as scaling functions. The second-order B-splines/scaling functions are given by

φj,k(x)=



xj − k, k ≤ xj ≤ k+ 1,

2− (xj − k), k+ 1≤ xj ≤ k+ 2, k = 0, . . . ,2 j − 2,

0, otherwise,

(2.2)

with the respective left- and right-hand side boundary scaling functions

φj,k(x)=

2− (xj − k), 0≤ xj ≤ 1, k =−1,

0, otherwise,
(2.3)

φj,k(x)=

xj − k, k ≤ xj ≤ k+ 1, k = 2 j − 1,

0, otherwise.
(2.4)

The actual coordinate position x is related to xj according to xj = 2 jx. The second-order
B-spline wavelets are given by

ψj,k(x)= 1
6




xj − k, k ≤ xj ≤ k+
1
2

,

4− 7
(
xj − k

)
, k+

1
2
≤ xj ≤ k+ 1,

−19 + 16
(
xj − k

)
, k+ 1≤ xj ≤ k+

3
2

,

29− 16
(
xj − k

)
, k+

3
2
≤ xj ≤ k+ 2, k = 0, . . . ,2 j − 3,

−17 + 7
(
xj − k

)
, k+ 2≤ xj ≤ k+

5
2

,

3− (xj − k), k+
5
2
≤ xj ≤ k+ 3,

0, otherwise,

(2.5)

with the respective left- and right-hand side boundary wavelets

ψj,k(x)= 1
6




−6 + 23xj , 0≤ xj ≤ 1
2

,

14− 17xj ,
1
2
≤ xj ≤ 1,

−10 + 7xj , 1≤ xj ≤ 3
2

, k =−1,

2− xj , 3
2
≤ xj ≤ 2,

0, otherwise,

(2.6)
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ψj,k(x)= 1
6




2− (k+ 2− xj
)
, k ≤ xj ≤ k+

1
2

,

−10 + 7
(
k+ 2− xj

)
, k+

1
2
≤ xj ≤ k+ 1,

14− 17
(
k+ 2− xj

)
, k+ 1≤ xj ≤ k+

3
2

, k = 2 j − 2,

−6 + 23
(
k+ 2− xj

)
, k+

3
2
≤ xj ≤ k+ 2,

0, otherwise.

(2.7)

For example, for j = 2, the inner scaling functions are obtained by putting k = 0,1,2 in
(2.2) as

φ2,0(x)=




4x, 0≤ x < 1
4

,

2− 4x,
1
4
≤ x < 1

2
,

0, otherwise,

(2.8)

φ2,1(x)=




4x− 1,
1
4
≤ x ≤ 1

2
,

1− 4x,
1
2
≤ x ≤ 3

4
,

0, otherwise,

(2.9)

φ2,2(x)=




4x− 2,
1
2
≤ x ≤ 3

4
,

−4x,
3
4
≤ x ≤ 1,

0, otherwise.

(2.10)

Also, for j = 2, the left- and right-hand side boundary scaling functions are obtained by
putting j = 2, k =−1, and k = 3 in (2.3) and (2.4), respectively, as

φ2,−1(x)=



1− 4x, 0≤ x ≤ 1
4

,

0, otherwise,
(2.11)

φ2,3(x)=



4x− 3,
3
4
≤ x ≤ 1,

0, otherwise.
(2.12)

Similarly, for j = 2, the inner wavelet functions are obtained by putting j = 2, k = 0, and
k = 1 in (2.5) and the left- and right-hand side boundary wavelets are obtained by putting
j = 2, k =−1, and k = 2 in (2.6) and (2.7), respectively.
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2.1. Function approximation. A function f (x) defined over [0,1] may be represented
by B-spline wavelets as

f (x)=
3∑

k=−1

ckφ2,k +
∞∑
i=2

2(i−1)∑
j=−1

di, jψi, j , (2.13)

where φ2,k and ψi, j are scaling and wavelets functions, respectively. If the infinite series in
(2.13) is truncated, then (2.13) can be written as

f (x)=
3∑

k=−1

ckφ2,k +
M∑
i=2

2(i−1)∑
j=−1

di, jψi, j = CTΨ, (2.14)

where C and Ψ are (2(M+1) + 1)× 1 vectors given by

C = [c−1,c0, . . . ,c3,d2,−1, . . . ,d2,2,d3,−1, . . . ,d3,6, . . . ,dM,−1, . . . ,dM,2(M−1)

]T
, (2.15)

Ψ= [φ2,−1,φ2,0, . . . ,φ2,3,ψ2,−1, . . . ,ψ2,2,ψ3,−1, . . . ,ψ3,6, . . . ,ψM,−1, . . . ,ψM,2(M−1)

]T
, (2.16)

with

ck =
∫ 1

0
f (x)φ̃2,k(x)dx, k =−1,0, . . . ,3, (2.17)

di, j =
∫ 1

0
f (x)ψ̃i, j(x)dx, i= 2,3,4, . . . ,M, j =−1,0,1, . . . ,2(i−1), (2.18)

where φ̃2,k(x) and ψ̃i, j(x) are dual functions of φ2,k, and ψi, j , respectively. These can be
obtained by linear combinations of φ2,k, k = −1, . . . ,3, and ψi, j , i = 2, . . . ,M, j = −1, . . . ,
2(M−1), as follows. Let

Φ= [φ2,−1(x),φ2,0(x),φ2,1(x),φ2,2(x),φ2,3(x)
]T

, (2.19)

Ψ̄= [ψ2,−1(x),ψ2,0(x), . . . ,ψM,2(M−1) (x)
]T
. (2.20)

Using (2.8)–(2.12) and (2.19) we get

∫ 1

0
ΦΦTdx = P1 =




1
12

1
24

0 0 0

1
24

1
6

1
24

0 0

0
1

24
1
6

1
24

0

0 0
1

24
1
6

1
24

0 0 0
1

24
1

12




, (2.21)
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and from (2.5)–(2.7) and (2.20) we have

∫ 1

0
Ψ̄Ψ̄Tdx = P2 =




N4×4
1
2
N8×8

. . .
1

2M−2
N2M×2M




, (2.22)

where P1 and P2 are 5× 5 and (2M+1− 4)× (2M+1− 4) matrices, respectively, and N is a
five-diagonal matrix given by

N =




2
27

1
96

− −1
864

0 0 ··· 0

1
96

1
16

5
432

− 1
864

0 ··· 0

− 1
864

5
432

1
16

5
432

− 1
864

··· 0

...
. . .

. . .
. . .

. . .
. . .

...

0 ··· − 1
864

5
432

1
16

5
432

− 1
864

0 ··· 0 − 1
864

5
432

1
16

1
96

0 ··· 0 0 − 1
864

1
96

2
27




. (2.23)

Suppose Φ̃ and ˜̄Ψ are the dual functions of Φ and Ψ̄, respectively, given by

Φ̃= [φ̃2,−1(x), φ̃2,0(x), φ̃2,1(x), φ̃2,2(x), φ̃2,3(x)
]T

, (2.24)

˜̄Ψ= [ψ̃2,−1(x), ψ̃2,0(x), . . . , ψ̃M,2M−2(x)
]T
. (2.25)

Using (2.17)–(2.20), (2.24), and (2.25) we have

∫ 1

0
Φ̃ΦTdx = I1,

∫ 1

0

˜̄ΨΨ̄Tdx = I2, (2.26)

where I1 and I2 are 5× 5 and (2(M+1)− 4)× (2(M+1)− 4) identity matrices, respectively.
Then (2.21), (2.22), and (2.26) give

Φ̃= P1
−1Φ, ˜̄Ψ= P2

−1Ψ̄. (2.27)
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3. Nonlinear Fredholm-Hammerstein integral equations

In this section, we solve nonlinear Fredholm-Hammerstein integral equations of the form
in (1.1) by using B-spline wavelets. For this purpose, we first assume

z(x)= g(x, y(x)
)
, 0≤ x ≤ 1. (3.1)

We now use (2.14) to approximate y(x), z(x) as

y(x)=DTΨ(x), z(x)= ETΨ(x), (3.2)

where Ψ(x) is defined in (2.15) andD and E are (2(M+1) + 1)× 1 unknown vectors defined
similarly to C in (2.16). We also expand f (x), K(x, t) by B-spline dual wavelets Ψ̃ defined
as in (2.24) and (2.25) as

f (x)=ΛTΨ̃(x), K(x, t)= Ψ̃T(t)ΘΨ̃(x), (3.3)

where

Θ(i, j) =
∫ 1

0

[∫ 1

0
K(x, t)Ψi(t)dt

]
Ψ j(x)dx. (3.4)

From (3.1), (3.2), and (3.3) we get
∫ 1

0
K(x, t)g

(
t, y(t)

)
dt =

∫ 1

0
ETΨ(t)Ψ̃T(t)ΘΨ̃(x)dt

= ET
[∫ 1

0
Ψ(t)Ψ̃T(t)dt

]
ΘΨ̃(x)

= ETΘΨ̃(x).

(3.5)

Applying (3.1)–(3.5) in (1.1), we get

DTΨ(x)−ΛTΨ̃(x)−ETΘΨ̃(x)= 0; (3.6)

multiplying (3.6) by ΨT(x) and integrating from 0 to 1, we have

DTP−ΛT −ETΘ= 0, (3.7)

in which P is a (2(M+1) + 1)× (2(M+1) + 1) square matrix given by

P =
∫ 1

0
Ψ(x)ΨT(x)dx =

[
P1

P2

]
. (3.8)

To find the solution y(x) in (3.2), we first collocate the following equation in xi = i/2M+1,
i= 0,1, . . . ,2M+1:

g
(
x,DTΨ(x)

)= ETΨ(x). (3.9)

Equation (3.7) generates a set of 2(M+1) + 1 algebraic equations. The total number of un-
knowns for vectorsD and E in (3.2) is 2[2(M+1) + 1]. These can be obtained by using (3.7)
and (3.9).



120 Fredholm-Hammerstein equations by using wavelets

Table 4.1. Exact and approximate solutions.

x
Approximate Approximate Approximate

Exact
M = 2 M = 4 M = 6

0 1 1 1 1

0.1 0.995688 0.995012 0.995005 0.995004

0.2 0.983165 0.983077 0.983094 0.983095

0.3 0.955652 0.955324 0.955336 0.955336

0.4 0.921345 0.921066 0.921062 0.921061

0.5 0.877261 0.877575 0.877582 0.877583

0.6 0.825418 0.825343 0.825337 0.825336

0.7 0.764678 0.764859 0.764844 0.764842

0.8 0.696157 0.696694 0.696705 0.696707

0.9 0.621445 0.621603 0.621617 0.621619

1 0.540280 0.540312 0.540303 0.540302

4. Illustrative example

Consider the equation

y(x)= 1 + 3sin2(x) +
∫ 1

0
K(x, t)y2(t)dt, 0≤ x ≤ 1, (4.1)

where

K(x, t)=


−3sin(x− t), 0≤ t ≤ x,

0, x < t ≤ 1.
(4.2)

The solution for y(x) is obtained by the method in Section 3. The computational results
for M = 2, M = 4, and M = 6 together with the exact solution y(x)= cos(x) are given in
Table 4.1.

5. Conclusion

In the present work, a technique has been developed for solving nonlinear Fredholm-
Hammerstein integral equations. The method is based upon compactly supported linear
semiorthogonal B-spline wavelets. The dual wavelets for these B-spline wavelets were also
given. The problem has been reduced to solving a system of nonlinear algebraic equations.
An illustrative example was included to demonstrate the validity and applicability of the
technique.
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