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We investigate the exact and approximate spectrum assignment properties associated
with realizable output-feedback pole-placement-type controllers for single-input single-
output linear time-invariant time-delay systems with commensurate point delays. The
controller synthesis problem is discussed through the solvability of a set of coupled Dio-
phantine equations of polynomials. An extra complexity is incorporated in the above
design to cancel extra unsuitable dynamics being generated when solving the above Dio-
phantine equations. Thus, the complete controller tracks any arbitrary prefixed (either
finite or delay-dependent) closed-loop spectrum. However, if the controller is simplified
by deleting the above-mentioned extra complexity, then robust stability and approxi-
mated spectrum assignment are still achievable for a certain sufficiently small amount
of delayed dynamics. Finally, the approximate spectrum assignment and robust stability
problems are revisited under plant disturbances if the nominal controller is maintained.
In the current approach, the finite spectrum assignment is only considered as a partic-
ular case of the designer’s choice of a (delay-dependent) arbitrary spectrum assignment
objective.

1. Introduction

Time-delay systems have received an increasing interest in the last years (see, for instance,
[2, 3, 4, 5, 6, 7, 12, 13, 15, 17, 18, 20, 21] since, apart from their inherent theoretical inter-
est, they are also of interest in practical applications like, for instance, transmission lines,
dynamics of fluids, or population growth rules [3, 4, 18]. One of the main characteris-
tics of such systems is that they are infinite dimensional [4, 6, 7, 12, 13, 17], making the
controller design more complex than for the delay-free case [2, 6, 12, 13, 15, 17, 20, 21].
Closed-loop stabilization may be achieved through memoryless controllers (see, for in-
stance, [13, 20]) when the plant delayed dynamics is sufficiently small. However, the sta-
bilization and spectrum assignment cannot be achieved, in general, for any amount of
delayed dynamics by delay-free controllers (see [6, 17] and the references therein). Gen-
erally speaking, there are two main groups of techniques used for the controller synthesis.
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One of them consists of designing a stabilizing controller for the delay-free plant dynam-
ics while considering the unsuitable combined effects caused by the interaction of the
controller and the delayed dynamics as a robustness problem [2, 10, 17, 20, 23]. An-
other group of design techniques, including those of pole-placement type, consists of
synthesizing controllers for the whole plant, taking into account its delayed dynamics in
the design itself [6, 15, 17]. In this paper, the synthesis of an output-feedback controller
with a particular structure which is based on pole placement is focused on. The obtained
controller has a transfer function structure similar to that of the plant, that is, a quo-
tient of quasipolynomials. It is proved that the controller synthesis problem is solvable,
in general, with a realizable delay-dependent controller for any prefixed (either finite or
delay-dependent) spectrum if the (delay-dependent) plant transfer function P(s) and that
obtained as a particular case when neglecting all the delayed dynamics, namely P0(s), are
both cancellation free. The controller synthesis consists of two parts. The first one con-
sists of the solution of a finite set of nested Diophantine equations of polynomials, all of
which being sequentially solvable if and only if P0(s) has no zero-pole cancellation. This
part of the design sets a part of the controller numerator and denominator quasipoly-
nomials while generating an extra unsuitable dynamics in the closed-loop spectrum that
is inherent in the proposed synthesis method. The second part consists of incorporating
into the design an extra controller complexity to cancel the above-mentioned unsuit-
able dynamics so that the complete controller sets any arbitrary prefixed (either finite or
delay-dependent) closed-loop spectrum. It is proved that a prefixed approximate closed-
loop spectrum is obtained even if the plant possesses parametrical and/or unmodeled dy-
namics disturbances to some extent of tolerance while the nominal controller is kept in
operation. However, if the controller is simplified by deleting the second phase of the de-
sign, then robust stability and approximated spectrum assignment are still achievable for
a sufficiently small amount of plant delayed dynamics. The paper is organized as follows.
Section 2 deals with the controller synthesis problem for exact spectrum assignment. The
approximate spectrum assignment as well as the robust internal stability are investigated
in Section 3 under low-complexity controllers for sufficiently small amounts of delayed
dynamics. Some design examples are also included related to the achievement of exact
and approximate spectrum assignments with the proposed methods. Finally, conclusions
end the paper.

2. Controller synthesis problem

2.1. Plant. Consider the linear and time-invariant single-input single-output plant with
commensurate point delays:

ẋ(t)= A0x(t) +
q0∑
i=1

Aix(t− ih) + bu(t), (2.1a)

y(t)= cTx(t) +du(t), (2.1b)

where h ≥ 0 is the basic delay and hi = ih (i = 1,q0) are the commensurate point de-
lays, Ai ∈ Rn×n (i = 0,q0), and b,c ∈ Rn, d ∈ R parametrize the system. The plant is
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strictly proper (biproper) if and only if d = 0 (d �= 0). The signals u(t)∈R, y(t)∈R, and
x(t) ∈ Rn are the scalar input and output and the state vector, respectively. The initial
condition of (2.1a) is as follows: ϕ : [−q0h,0]∩R→Rn is a continuous function with
(possibly) isolated bounded discontinuities on a subset of [−q0h,0]∩R of zero measure.
The transfer function of (2.1) is defined in a standard way by using Laplace transforms of
the output and input as P(s)= [Y(s)/U(s)]ϕ≡0, thus leading to

P(s)= B(s)
A(s)

= cT
(
sI −

q0∑
i=0

Aie
−ihs

)−1

b+d, (2.2)

where A(s) and B(s) are quasipolynomials in the indeterminate s defined by

A(s)= det

(
sI −

q0∑
i=0

Aie
−ihs

)
=

q∑
i=0

Ai(s)e−ihs

=
n∑
i=0

A∗i
(
e−hs

)
si =

q∑
i=0

n∑
k=0

aiks
ke−ihs,

(2.3a)

B(s)= cTAdj

(
sI −

q0∑
i=0

Aie
−ihs

)
b+dA(s)

=
q′∑
i=0

Bi(s)e−ihs =
m∑
i=0

B∗i
(
e−hs

)
si =

q′∑
i=0

m∑
k=0

biks
ke−ihs

(2.3b)

with q and q′ being integers satisfying q′ ≤ q ≤ q0n. For exposition simplicity, it is as-
sumed with no loss in generality that q′ = q. Otherwise, (2.3b) still applies by zeroing the
necessary polynomials B(·).

Bi(s)=
∑mi

k=0 biks
k and Ai(s)=

∑ni
k=0 aiks

k are polynomials of respective degrees mi and
ni (i = 0,q) with mi ≤m0 =m ≤ n and ni ≤ n0 = n for i = 0,q with m = n if and only if
d �= 0 in (2.1b), that is, the plant is not a strictly proper plant, and m≤ n− 1 otherwise.
Note that n = n0 ≥Max(m,Max1≤i≤q(ni,mi)) since the transfer function (2.2)-(2.3) ob-
tained from (2.1) is realizable. After normalization of the coefficients of the transfer func-
tion if necessary, A0(s) may be chosen as monic; that is, a0n = 1. Alternative polynomials
B∗i (e−hs) and A∗i (e−hs) are defined in the same way leading to an equivalent description
of (2.1)-(2.2).

2.2. Controller parametrization and control law. The members of the class of output-
feedback single-input single-output controllers to be synthesized have the general transfer
function structure

Kυ(s)= S(s)
R(s)

=
∑υ

i=0 Si(s)e
−ihs∑υ−1

i=0 Ri(s)e−ihs +Rυ(s)

=
Dυ(s)

(∑υ
i=0

∑m′
i

l=0 si�s
le−ihs

)
Dυ(s)

(∑υ−1
i=0

∑r′i
l=0 ri�s

le−ihs
)

+Nν(s)e−υhs

(2.4)
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for some integer υ with q ≥ υ≥ 1, where

Si(s)=
m′

i∑
l=0

sils
l, Ri(s)=

n′i∑
l=0

rils
l (2.5)

are polynomials of respective degrees:

(i) ∂Si =m′
i ; ∂Ri = n′i (i= 0,υ− 1);

(ii) Sυ(s) is a polynomial of degree ∂Sυ =m′
υ ≤ n− 1;

(iii) Rυ(s)=Nυ(s)/Dυ(s) is, in general, a proper or improper rational function defined
as a quotient of quasipolynomials to be specified later.

It is apparent that the controllers of transfer function (2.4) are proper if n′ = n′0 ≥
Max(Max1≤i≤υ−1(n′i ),Max0≤i≤υ−1(m′

i )) with m′ =m′
0 for any proper or improper Rυ(s)

and any parametrization. The control law obtained from the above controllers becomes

u(t)=− S(D)
R(D)

(
y(t)− y∗(t)

)
(2.6)

with y∗(t) being any given uniformly bounded reference signal and D = d/dt is the time-
derivative operator (formally equivalent to the Laplace operator).

2.3. Control objective. From (2.2), and (2.4)–(2.6), the closed-loop characteristic
quasipolynomial becomes

A(s)R(s) +B(s)S(s)= Âm(s), (2.7)

where Âm(s) = 0 specifies the closed-loop characteristic modes. The subsequent discus-
sion relies on the conditions of the existence of controllers of transfer function (2.4)
to accomplish the identity (2.7) for any prescribed strictly Hurwitzian quasipolynomial
Âm(s) =∑qm

l=0 Âml(s)e−lhs with Âmi(s) =
∑nmi

l=0 âmil(s)sl for any given integer qm satisfying
0≤ qm ≤ υ+ q, q ≥ υ≥ 1. If Âm0(s) is strictly Hurwitzian and Âml(s)= 0 for all l = 1,q+ υ,
then a suitable stable closed-loop spectrum is finite and delay-independent. If Âml(s) is not
identically zero for all l = 1,q+ υ, then the spectrum is infinite and delay-dependent. Note
that the proposed design is very flexible, contrary to previous results in the literature [6,
12, 13, 16, 17], to achieve prefixed suitable either delay-independent or delay-dependent
closed-loop spectrum. This more general problem statement may be beneficial in some
applications where the suitable closed-loop spectrum is reallocated, but still delay-
dependent, due to the intrinsic delayed nature of the original open-loop plant [3, 4, 18].
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The expansions of (2.7) in powers of e−hs yields

A(s)R(s) +B(s)S(s)=
υ+q∑
l=0

Min(l,q)∑
i=Max(0,l−υ)

[
Ai(s)Rl−i(s) +Bi(s)Sl−i(s)

]
e−lhs

=
{υ−1∑

�=0

Min(l,q)∑
i=Max(0,l−υ)

[
Ai(s)Rl−i(s) +Bi(s)Sl−i(s)

]
e−lhs

}

+

{ υ+q∑
�=υ

Min(l,q)∑
i=Max(0,l−υ)

[
Ai(s)Rl−i(s) +Bi(s)Sl−i(s)

]
e−lhs

}

= {Â∗m(s)
}

+ {0},

(2.8)

where Â∗m(s) =∑υ−1
l=0 Aml(s)e−lhs defines a suitable closed-loop spectrum with ∂Âmi(s) =

nmi. If υ = 1, then the desired spectrum is in particular delay-independent and finite.
The solvability of (2.8) for any given integer υ satisfying q ≥ υ ≥ 1 is decomposed into the
combined solvability of the two corresponding identities resulting from equating the corre-
sponding terms in key brackets at both sides of the last equality. The first identity holds if
there exist pairs of polynomials (Ri(s),Si(s)), i= 0,υ− 1, a polynomial Sυ(s), and a ratio-
nal complex function Rυ(s) which satisfy

A0(s)Ri(s) +B0(s)Si(s)= Âmi(s)−
i∑

l=1

(
Al(s)Ri−l(s) +Bl(s)Si−l(s)

)
, i= 0,υ− 1, (2.9)

∆Â∗m(s)=
υ+q∑
�=υ

Min(l,q)∑
i=Max(0,l−υ)

[
Ai(s)Rl−i(s) +Bi(s)Sl−i(s)

]
e−lhs = 0. (2.10)

The second identity is ensured after canceling the unsuitable terms contained in ∆Â∗m(s)
in the closed-loop spectrum by appropriate choice of a rational complex function Rν(s)
with the polynomial Sν(s) being arbitrary of degree not exceeding (n− 1). In the case
when n=m (which implies d �= 0), the inverse system of (2.1) is realizable and the con-
troller might be alternatively synthesized by choosing Rυ(s) as a prescribed polynomial
or quasipolynomial with the given degree constraints for (2.1) and Sυ(s) being a rational
complex function of denominator B(s). The controller synthesis problem is now decom-
posed in the combined solution of both (2.9)-(2.10). The method consists of first solving
(2.8) irrespective of (2.9) in the polynomial pairs of polynomials (Ri(s),Si(s)), i = 0,υ− 1,
which is performed sequentially from i= 0 to i= υ− 1. Then (2.10) is solved in (Rυ(s),Sυ(s))
after substitution of the above solutions. Usually, Rυ(s) is a rational function and Sυ(s) is a
polynomial.

2.4. Controller synthesis for closed-loop spectrum assignment. The three following
additional assumptions are made.

(A1) The quasipolynomials A(s) and B(s) have no common zeros.
(A2) The polynomials A0(s) and B0(s) have no common zeros.



128 On pole placement

(A3) The unforced time-delay system (2.1) is asymptotically stable if n > m, that is,
A(s) has all its zeros in Res < 0. Either system (2.1) or its inverse is asymptotically stable
when n=m; that is, either A(s) or B(s) has all its zeros in Res < 0 if d �= 0 in (2.2).

(A1) means that system (2.1) is spectrally controllable and spectrally observable [8,
16]. This is an obvious requirement for the existence of a control law for prefixed spec-
trum assignment via output-feedback controllers. This is a more stringent condition
than the spectral stabilizability required for the existence of a stabilizing control law
[1, 2, 9, 14, 15]. Note in (2.8)-(2.9) that if (A1) fails, then the common zeros of A(s)
and B(s) should be included as zeros of Âm(s) so that the closed-loop spectrum is not
completely of the designer’s free choice. (A2) is equivalent to the particular delay-free
system obtained from (2.1) for Ai = 0, i= 1,q being completely controllable and observ-
able. This condition is needed as inherent in the method proposed to solve the part of
the controller synthesis problem related to fix Â∗m(s). In particular, it is required to solve
sequentially the Diophantine equations of polynomials in (2.9). (A3) is needed due to
the fact that the controller proposed generates a closed-loop zero-pole cancellation of the
plant poles (or zeros) which are removed in this way from the closed-loop spectrum. This
follows from the fact thatRν(s) cancels the plant poles (zeros) in order to remove the spec-
trum included in Âm(s) that is not in Â∗m(s) as will be discussed later on. If system (2.1) is
not asymptotically stable but is stabilizable, it may be first stabilized via some stabilizing
controller to then apply the proposed technique for spectrum assignment to the stabilized
system. An important practical question is the following which is obvious by simple in-
spection. If (A2) holds (i.e., the system without delayed dynamics, or when the base delay
tends to infinity, is controllable and observable), then (A1) holds (i.e., the overall delay
system is spectrally controllable and observable) for almost all values of the basic delay h
for each given nonzero parametrization of the delayed dynamics. Thus, it is sufficient in
practice to test that (A2) holds to guarantee that (A1) holds as well for almost all values
of the base delay h. Note that B0(s)/A0(s) is the transfer function of the plant as the delays
tend to infinity. Thus, it follows that Assumptions (A1)-(A2) are not mutually indepen-
dent from each other since if (A1) holds, then (A2) holds for all h≥ 0 and as h→∞. Also,
if (A2) holds, then (A1) holds for almost every finite base delay h≥ 0 or as this one tends
to infinity. Both assumptions are not exactly equivalent since (A2) is a condition which
excludes a set of zero-pole cancellations from a potential finite number of them while
(A2) excludes any cancellation from infinitely many possible ones. On the other hand,
Assumptions (A1)-(A2) have a clear technical role in the proof of Theorem 2.1 related
to the solvability of Diophantine equations of quasipolynomial and polynomials, respec-
tively. While (A1) concerns the whole description of the plant involving point delays, (A2)
(which is automatically guaranteed if (A1) holds) is concerned with the solvability of a
nested set of diophnatine equations whose coefficient polynomials are A0(s) and B0(s).

2.5. Main result of this section

Theorem 2.1 (exact spectrum assignment and closed-loop stability). The following
items hold.

(i) If (A1) holds, then there exist infinitely many polynomial pairs (Ri(s),Si(s)) which
satisfy the υ nested Diophantine equations of polynomials independent of the base delay
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h≥ 0 as in (2.9). Furthermore, if nm0 ≥ 2n− 1, then there is at least a solution (Ri(s),Si(s)),
i= 0,υ− 1, which satisfies the following degree constraints:

n′0 = nm0−n, m′
i (s)= n− 1 for i= 0,υ− 1,

Max
(
n′i ,m− 1

)=Max
(
nmi, Max

1≤k≤i
(
nk +n′i−k

))−n.
(2.11)

(ii) If (A1) holds and nm0 ≥ 2n, then it is possible to build infinitely many proper rational
functions of the form

Q(s)=
∑υ−1

l=0

[
Sl(s)−Λ0(s)A0(s)

]
e−lhs∑υ−1

l=k
[
Rl(s) +Λ0(s)B0(s)

]
e−lhs

, (2.12)

with existing polynomial solution pairs (Ri(s)− Λ0(s)A0(s),Si(s) + Λ0(s)B0(s)) verifying
(2.9) provided that (Ri(s),Si(s)) are also solutions to (2.9), where Λ0(s) = λ0 is any real
scalar (i.e., any polynomial of zero degree) if n >m and Λ0(s) is any arbitrary polynomial of
arbitrary degree otherwise.

If nm0 = 2n− 1, then (2.12) is realizable for Λ0(s)= 0 if n > m and with arbitrary Λ0(s)
if n=m.

(iii) Assume that the controller transfer function (2.4) takes the subsequent specific form
if Assumptions (A1) and (A3) hold with A(s) being strictly Hurwitzian:

Kυ(s)= S(s)
R(s)

=
∑υ−1

l=0

[
Sl(s)−Λ0(s)A0(s)

]
e−lhs∑υ−1

l=k
[
Rl(s) +Λ0(s)B0(s)

]
e−lhs +Rυ(s)

=
∑υ

i=0 S
′
i (s)e

−ihs∑υ−1
i=0 R

′
i (s)e−ihs +Rυ(s)

=
Dυ(s)

(∑υ
i=0

∑m′
i

l=0 s
′
i�s

le−ihs
)

Dυ(s)
(∑υ−1

i=0

∑r′i
l=0 r

′
i�sle−ihs

)
+Nν(s)e−υhs

,

(2.13a)

where (Ri(s),Si(s)) are pairs of polynomials being any solutions to (2.9), i = 0,υ− 1; Λ0(s)
is chosen according to item (ii); Sυ(s) is an arbitrary polynomial of degree not exceeding
(n− 1); and

Rυ(s)= Nυ(s)
Dυ(s)

= 1
A(s)

×
(υ+q∑

l=υ

[
Âml(s)−

( Min(l,q)∑
i=Max(υ·l−υ+1)

Ai(s)Rl−i(s)

+
Min(l,q)∑

i=Max(ν·l−υ)

Bi(s)Sl−i(s)

)
e−(l−υ)hs

])
.

(2.13b)
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Then, the closed-loop spectrum satisfies A(s)R(s)+B(s)S(s)=Â∗m(s)=∑υ−1
i=0 Âmi(s)e−ihs with

the closed loop being stable with poles in Â∗m(s) = 0 providing a closed-loop stable cancel-
lation of the plant poles provided that Â∗m(s) =∑υ−1

l=0 Aml(s)e−lhs is a strictly Hurwitzian
quasipolynomial satisfying nm0 ≥ 2n− 1.

(iv) If (A1) holds, nm0 ≥ 2n− 1, and the controller is simplified to have a transfer function
K∗υ (s) = Q(s) (i.e., Rυ(s) and Sυ(s) are zeroed), then the closed-loop spectrum is set to the
zeros of

Âm(s)=
υ+q∑
l=0

Aml(s)e−lhs

= {Â∗m(s)
}

+

{ υ+q∑
�=υ

Min(l,q)∑
i=Max(0,l−υ)

[
Ai(s)Rl−i(s) +Bi(s)Sl−i(s)

]
e−lhs

} (2.14)

without cancellations of the plant poles.
(v) If (A2) replaces (A1), then items (i)–(iv) hold for almost all h≥ 0.

Remark 2.2. Note that if A(s) and B(s) (resp., A0(s) and B0(s)) have common stable zeros,
then the controller synthesis problem is solvable if the objective spectrum contains those
factors.

Remark 2.3. Note that the objective of the term Rυ(s) is to remove the unsuitable term

∆Â∗m(s)=
υ+q∑
�=υ

Min(l,q)∑
i=Max(0,l−υ)

[
Ai(s)Rl−i(s) +Bi(s)Sl−i(s)

]
e−lhs (2.15)

from the closed-loop spectrum. If the simplified controller of Theorem 2.1(iv) is used,
then this term is not removed and the spectrum cannot be arbitrarily assigned.

Remark 2.4. Since R(s) is, in general, a rational complex function, the basic controller
synthesis (2.8) adopts the particular form

A(s)
R(s)
A(s)

+B(s)S(s)= Âm(s)= {Â∗m(s)
}

+
{
∆Â∗m(s)

}
(2.16)

with R(s) = Âm(s)− B(s)S(s) being a polynomial and R(s) = R(s)/A(s). After canceling
the unsuitable closed-loop dynamics associated with ∆Â∗m(s), the resulting closed-loop
characteristic quasipolynomial arising while solving (2.8) reduces to the suitable dynam-
ics given by the closed-loop equation

A(s)R(s) +B(s)S(s)= Â∗m(s)A(s), (2.17)

whereR(s)=∑υ
i=0Ri(s)e−ihs and S(s)=∑υ

i=0 Si(s)e
−ihs withRυ(s) being rational. The poly-

nomial A(s) also generates zeros of the closed-loop transfer function obtained via the
feed-forward controller (2.13) with Dν(s)= A(s) so that A(s) becomes a closed-loop sta-
ble cancellation.
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If the transfer function P(s) of (2.1) is biproper, that is, n =m, then it is possible to
modify the controller (2.13) by setting Rυ(s) as a polynomial of degree at most (n− 1) and
Sυ(s) as a rational function to remove the unsuitable remaining term in (2.14) from the
spectrum. This will result in a closed-loop characteristic equation defined by A(s)R(s) +
B(s)S(s)= Â∗m(s)B(s). Section 3 will discuss the situation when the controller of transfer
function structure (2.13) is replaced with the lower complexity controller of a transfer
function structure (2.12), being a quotient of quasipolynomials. It will be proved that for
sufficiently small sizes of the matrices defining the delayed dynamics in (2.1) the spectrum
assignment objective is solved approximately in this way.

Remark 2.5. If (2.1) is not stable but is stabilizable, that is, rank[sI −∑q0

i=0 Aie−ihs : b] =
n for all complex s with Res ≥ 0, then it may be first stabilized with some stabilizing
controller (which always exists) and then a prescribed closed-loop spectrum to the above
obtained stable system might be assigned with a controller of transfer function structure
(2.13). For instance, assume that the pair (A0,b) is controllable, that is, the delay-free
system (2.1) obtained after removing all the delayed dynamics is controllable. Thus, the
state-feedback control law u1(t)= kTx(t), where ki = c∗i − ci (i= 0,n− 1) sets the closed-
loop spectrum of such a delay-free system to the zeros of c∗(s)= sn +

∑n−1
i=0 c∗i si provided

that A0 is in a matrix in canonical controllable companion form with the last row being
(−c0,−c1, . . . ,−cn−1). Now, the unforced delayed system obtained with an input signal
u(t)= u1(t) remains asymptotically stable from Nyquist’s stability criterion [22] if

1 >
q0a(
α∗c
)n ≥

q0∑
i=1

(∥∥∥∥∥Aie−ihs

c∗(s)

∥∥∥∥∥
∞

)
, (2.18)

where the above norm applies for rational stable transfer matrices in RH∞, α∗c is the
absolute value of the stability abscissa of (A0 + bkT), that is, (−α∗c ) is the real part of the
zero of c∗(s) being closer to the imaginary axis, and a≥Max1≤i≤q0 (‖Ai‖2). Note that if a is
large, stability is maintained by correspondingly increasing α∗c . As a result, det(sI −A0−
bkT −∑n

i=1 Aie−ihs) has all its zeros in Res < 0. Now, the closed-loop spectrum assignation
method may be applied to the above stabilized system by generating an extra control
signal u2(t) from a controller within the transfer function structure (2.13) so that the
control law

u(t)= u1(t) +u2(t)=
(
k+

S(D)
R(D)

)
cTx(t) +

S(D)
R(D)

y∗(t) (2.19)

stabilizes system (2.1) whereas it assigns its closed-loop spectrum to the zeros of Â∗m(s)
provided that the controller of transfer function (2.13) is used with

Dν(s)=A(s)= det

(
sI −A0− bkT −

n∑
i=1

Aie
−ihs

)
(2.20)

being canceled by stable zeros in the closed-loop transfer function. The above technique
may be easily simplified by first assigning only the unstable and critically stable zeros
of det(sI −A0), if any, via the control signal u1(t) without removal of the stable ones
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provided that the pair (A0,b) is stabilizable. If the poles of (2.1) satisfying Res≥ 0 may be
separated in a factor A−(s) from A(s), then an output-feedback stabilizing controller may
be alternatively derived from Youla’s parametrization [23] to synthesize a stabilizing input
u1(t) for system (2.1) before applying the proposed assignment method via the control
signal u2(t).

3. Approximate spectrum assignment and robust stability for sufficiently
small amounts of delayed dynamics

Now, assume for convenience that A0 = A0, Ai = ρAi (i = 1,q0) with ρ ∈ R. Note that
(2.1)-(2.2) is free of delayed dynamics if ρ = 0. The respective unforced delay-free par-
ticular systems are defined by matrices A0 and (A0 + ρ

∑q
i=1 Ai), respectively. It is now

investigated when the closed-loop spectrum may be approximately assigned while main-
taining the closed-loop stability by using a low-complexity controller of transfer function
K∗υ (s) = Q(s) with Q(s) defined in (2.12). In this case, the rational function Rυ(s) and
Sυ(s) are both zeroed at the expense of losing, in general, the property of exact spectrum
assignment but with the advantage that neither of the plant poles or zeros are canceled in
the closed-loop system so that (A3) is not required. It is proved that for sufficiently small
|ρ| (i.e., for sufficiently small delayed dynamics), the spectrum may be approximately
assigned and the closed-loop stability may be achieved.

3.1. Mathematical results. The above properties are summarized in the next result which
is proved in Appendix B.

Theorem 3.1 (approximate spectrum assignment and closed-loop stability for sufficiently
small delayed dynamics). Assume that a low-complexity controller of the transfer func-
tion K∗υ (s) = Q(s) is used for a system (2.1) satisfying Assumptions (A1)-(A2). Thus, the
closed-loop spectrum consists of the zeros of Âm(s) defined in (2.14) for arbitrary prescribed
Â∗m(s). Furthermore, there is ρ0 > 0 such that the closed-loop spectrum remains stable for all
ρ ∈ [−ρ0,ρ0] and arbitrarily close to the zeros of Â∗m(s) for a sufficiently small ρ0 provided
that Â∗m(s) is strictly Hurwitzian.

Corollary 3.2. Assume that Â∗m(s) is strictly Hurwitzian with stability abscissa (−σ0) < 0.
Thus, for any σ ∈ (0,σ0), there always exists ρ0 > 0 such that the closed-loop spectrum has
stability abscissa −σc ≤−σ < 0 for all ρ∈ [−ρ0,ρ0].

The proof of Corollary 3.2 is also given in Appendix B.

Remark 3.3 (practical use of Theorem 3.1 or Corollary 3.2). The computation of an
available upper bound ρ0 > 0 to apply Theorem 3.1 and Corollary 3.2 may be performed
numerically from the sufficiency-type conditions derived in their respective proofs. This
may be performed by starting with values ρ = ρ0 = 0 and by increasing it in small posi-
tive amounts ∆ρ in case (B.5), or (B.6), in Appendix B holds if Theorem 3.1 is used, or,
respectively, (B.7) holds if Corollary 3.2 is used. An available valid upper bound may also
be calculated graphically by representing some of the various related conditions (see the
above-mentioned formulas) by the intersection in the first quadrant of two curves of the
type ρ0 =Maxρ≥0 ρ : G(ρ)= ρ < F−1(ρ). The derivation of an explicit analytic formula is
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unfeasible in the more general cases because of the nonlinear nature of the respective
sufficiency-type conditions.

The subsequent result is proved in Appendix C. It is referred to the robust stability
problem in the presence of plant unmodeled dynamics and/or parametrical uncertainties
if either the nominal controller or its associate low-complexity one is kept in operation.

Theorem 3.4 (robust stability theorem under plant uncertainties). Consider the plant
(2.1)-(2.2) under Assumptions (A1)–(A3) together with the following additional ones.

(A4) The nominal (i.e., disturbance-free) connection is well posed (i.e., 1 +Kυ(∞)P(∞) �=
0) and the nominal closed-loop system is stable.

(A5) The plant transfer function is perturbed from P(s) to (P(s) +∆(s)) with ∆∈RH∞.
Thus, the following items hold:

(i) the resulting closed-loop system remains well posed and internally stable if and only
if ‖Kυ(s)∆(s)/(1 +P(s)Kυ(s))‖∞ < 1, where Kυ(s) is the nominal controller transfer
function (2.13);

(ii) there are nominal controllers of transfer function (2.13), which keep the well-
posedness of the feedback connection under the same assumptions as in (i) for all ρ ∈
[−ρ0,ρ0] and some sufficiently small ρ0 > 0. If (A5) holds with the low-complexity
controller of transfer function K∗υ (s)=Q(s) of (2.12), then the well-posedness of the
feedback connection holds if ‖K∗υ (s)∆(s)/(1 + P(s)K∗υ (s))‖∞ < 1 for all ρ ∈ [−ρ∗0 ,
ρ∗0 ] for some sufficiently small ρ∗0 > 0.

Remark 3.5. Note, for instance, that if P(∞) = −1/Kυ(∞) with Kυ(∞) being a constant
nominal controller, then the feedback connection is not well posed since output or sensor
measurement errors are transmitted through the loop by nonrealizable transfer functions
[23]. If d = 0, then P(∞) = 0 and the nominal feedback connection is always guaran-
teed to be well posed since Theorem 3.4(A) holds. The feedback well-posedness under
plant disturbances and nominal controller is guaranteed if ∆(∞) �= −(P(∞) +K−1

υ (∞))
provided that the controller is biproper (since K−1

υ (∞) �= 0) and always guaranteed if
it is strictly proper since (A) of Theorem 3.4 holds. This is guaranteed from its proof if
∆(s) ∈ RH∞, ‖Kυ(s)∆(s)/(1 + P(s)Kυ(s))‖∞ < 1, and either P(∞) �= −K−1

υ (∞) with
biproper stabilizing controller or Kυ(∞)=0 (i.e., the nominal controller is strictly proper).

3.2. Examples. Some examples are now given concerning the exact spectrum assignment
of Section 2 and the approximate one of the current section.

Example 3.6. Assume the plant transfer function P(s) = (s + 2e−hs)/(s + 1 + ρe−hs). A
physical problem described by this example for the unforced case is the (linearized) so-
called Mackey-Glass equation. A more complex version would arise with ρ being re-
placed by a (nonlinear) real monotone function of ρ. If such a function is nonmonotone,
then the equation still possesses massive problems like, for instance, strange attractors,
routes of chaos, as well as bifurcations of the periodic solutions which are phenomena
caused by delays combined with nonlinearities. The problem in those general cases re-
mains without being solved so that the attention is paid to the forced linear case ac-
cording to the analysis and design philosophy proposed in this paper. If |ρ| < 1, then
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the open-loop plant is globally asymptotically stable as deduced by simple inspection.
The spectrum assignment method of Section 3 with υ = 1 is used for a designed suitable
finite closed-loop spectrum given by the polynomial Â∗m(s)= 0.1s+ 2. An obtained delay-
dependent particular controller transfer function (2.13) by using Theorem 2.1(iii) with
one Diophantine equation of polynomials, a rational R1(s), and Λ0(s) = S1(s) = 0 pos-
sess a transfer function K1(s) = −1.9(s+ 1 + ρe−hs)/(2(s+ 1) + 3.8e−hs). The closed-loop
transfer function possesses in addition a zero-pole cancellation factor A(s)= s+ 1 + ρe−hs

which is stable for |ρ| < 1. If ρ = 2, then a low-complexity controller of transfer function
K∗1 (s) = (1.9− 0.2e−hs)/(0.2e−hs − 2) assigns exactly the same stable closed-loop spec-
trum as above without any zero-pole closed-loop cancellation.

If now Theorem 2.1(iv) is applied for arbitrary ρ, the resulting controller is a pure
gain K∗1 =−0.95 that yields a closed-loop spectrum defined by Âm(s) = 0.1s+ 2 + (2ρ−
3.8)e−hs which contains unsuitable dynamics due to the use of a low-complexity con-
troller. Since (A3) is not required because the low-complexity controller does not gener-
ate closed-loop cancellations, ρ is not constrained a priori to guarantee the fulfillment
of (A3). By examining the resulting spectrum, it is found from the small gain theo-
rem that the closed-loop system is asymptotically stable if ‖(2ρ−3.8)/(0.1s+2)‖∞ < 1
which is guaranteed if ρ ∈ (−0.9,2.9). If now, the plant transfer function becomes P(s)=
(s+ 2ρe−hs)/(s+ 1 + ρe−hs) (i.e., the delay contributions in both the numerator and de-
nominator depend linearly on ρ), then the closed-loop asymptotic stability is guaranteed
by using the same low-complexity pure-gain controller if 1.8|ρ|‖1/(0.1s+ 2)‖∞ < 1, that
is, for sufficiently small |ρ| < 1.227, and the closed-loop poles are very close to the suited
spectrum as ρ tends to zero in the light of Theorem 3.1.

Example 3.7. Assume the plant transfer function P(s)= (s+ 1 + e−hs)/(s2 + e−hs). This ex-
ample describes in the unforced case a harmonic oscillator with internal delay. In the
forced case, since the zero is relevant to the dynamics, then the above transfer func-
tion describes an oscillator with internal delay in cascade with a derivative control (de-
signed to improve the relative stability degree) involving also a delay. A general class of
realizable controllers of transfer function (2.13) to assign the spectrum to the zeros of
Â∗m(s)= s4 + 4s3 + 8s2 + 8s+ 4= 0 with υ = 1 is given by

K1(s)=
[
4(s+ 1)− λ0s2 + S1(s)e−hs

](
s2 + e−hs

)
(s+ 2)2s2 + λ0s2

(
s+ 1 + e−hs

)− 4(s+ 1)e−hs− (s+ 1 + e−hs
)
S1(s)e−hs

(3.1)

after solving a Diophantine equation and adding the rational transfer function

R1(s)=−
(
s+ 1 + e−hs

)
S1(s) +

[
(s+ 2)2 + 4(s+ 1)

]
+ λ0

(
s+ 1− s2

)
s2 + e−hs

(3.2)

with λ0 being any real number and S1(s) any polynomial of degree unity or zero (i.e., a
constant). Note that the controller transfer function zeros include the plant poles which
can include unstable factors dependent on the delays. Since the plant does not satisfy
(A3), the closed-loop transfer function might include unstable cancellations. This draw-
back may be avoided either by first stabilizing the plant through the implementation of
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an extra control loop before assigning the spectrum (see Remark 2.5) or by using a low-
complexity controller. The first approach modifies the original plant by including the sta-
bilizing controller and then the design results similar to the above one leading to closed-
loop stable cancellations. The second approach avoids closed-loop cancellations so that it
is applicable to unstable plants, while the spectrum is only approximately achievable and
the closed-loop asymptotic stability maintained is for small contribution of the delays. To
synthesize the low-complexity controller, consider the modified plant transfer function
P(s)= (s+ 1 + ρe−hs)/(s2 + ρe−hs), where the amount of delayed dynamics may be zeroed
by zeroing ρ. A low-complexity controller of transfer function K∗1 (s)= 4((s+ 1)/(s+ 2)2)
leads to a closed-loop spectrum given by Âm(s) = Â∗m(s) + [4(s + 1) + (s + 2)2]e−hs with
no zero-pole closed-loop cancellations, which is guaranteed to be stable if |ρ| < 0.5 and
approximately achievable as ρ→ 0.

Example 3.8. Assume the above plant transfer function includes an extra delay in the
numerator and denominator resulting in P(s) = (s+ 1 + e−hs + e−2hs)/(s2 + e−hs + e−2hs).
A realizable controller with υ = 1 within the general class of transfer functions (2.13) is
K1(s)= 4(s+ 1)(s2 + e−hs + e−2hs)/(s2(s+ 2)2− 4(s+ 1)(1 + e−hs)e−hs) after zeroing the free
design constant and polynomial of the general synthesis procedure.

4. Conclusions

This paper has dealt with the synthesis problem of pole-placement-based controllers for
systems with point delays. The robust stability of the design has also been discussed. Spe-
cial emphasis has been devoted to obtain the set of proper controllers and to the achieve-
ment of prescribed (finite or infinite) closed-loop spectrum of the designer’s choice. Gen-
erally speaking, the arbitrary spectrum assignment is achievable under rather weak con-
ditions for controllers of sufficiently high complexity in their delayed dynamics. If such
a complexity is reduced under an appropriate threshold, then the arbitrary spectrum as-
signment becomes lost but it still remains approximately achievable with an approxima-
tion degree depending on the above-mentioned threshold. However, the robust stability
property still holds for certain degrees of tolerance to plant uncertainties and amounts of
nominal delayed dynamics.

Appendices

A. Proof of Theorem 2.1

To shorten the proof of item (i), it is convenient to look first for a particular solution and
then construct infinitely many others from the found solution as stated in (i). Note that
(2.9) may be seen as a set of υ coupled Diophantine equations which may be sequentially
solved from i= 0 to i= υ− 1 since (A1) implies (A2). A solution exists with the choice of
degrees nm0 ≥ 2n− 1; n′0 = nm0− n ≥ n− 1; m′

i = n− 1 for i = 0,υ− 1; and Max(n′i ,m−
1)=Max(nmi,Max1≤k≤i(nk +n′i−k))−n for i= 1,υ− 1. The solution corresponds directly
with that associated with a compatible set of N = υn+ (nm0−n+ 1) +

∑υ−1
i=1 (n′i + 1) alge-

braic linear equations with a similar number of real unknowns (i.e., the set of coefficients
of the pairs (Ri(s),Si(s)), i= 0,υ− 1).
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To prove the existence of infinitely many solutions to the set of Diophantine equations
(2.9), note that if Λ(s) is any arbitrary polynomial of arbitrary degree, then

A0(s)Ri(s) +B0(s)Si(s)=A0(s)
[
Ri(s) +Λ(s)B0(s)

]
+B0(s)

[
Si(s)−Λ(s)A0(s)

]
(A.1)

equalizes the right-hand side of (2.9) so that

R′i (s)= Ri(s) +Λ(s)B0(s), R′i (s)= Si(s)−Λ(s)A0(s) for i= 0,υ− 1 (A.2)

is also a solution for (2.9) with Λ(s) being of arbitrary degree and arbitrary coefficients.
Thus, there are infinitely many solutions to (2.9) for each Âm(s) with the given degree
constraints. Item (i) has been proved. Now, note that if nm0 ≥ 2n; n′0 = nm0−n≥ n; m′

i =
n− 1 for i = 0,υ− 1 so that the set of Diophantine equations are sequentially solvable
as a compatible set of N linear algebraic equations with N real solutions, then, item (i)
follows by taking Λ(s) as a real scalar if n >m or any arbitrary polynomial otherwise since
Q(s) in (2.12) is realizable under the above constraints. For the case nm0 = 2n− 1, the
proof is also direct by checking polynomial degrees in Q(s) in (2.12), and item (ii) has
been proved with Λ0(s)= Λ(s) in (A.2). Item (iii) follows by direct calculation since the
equalities (2.9)-(2.10) hold with a controller of transfer function (2.13). Item (iv) follows
since (2.9) holds through a controller of transfer function (2.12) so long as ∆Â∗m(s) is not
zeroed; namely, (2.10) fails. Item (v) follows since (A2) implies (A1) for almost all finite
values of the base delay and when it tends to infinity.

B. Proof of Theorem 3.1

The transfer function (2.2) of (2.1) satisfies the following relationships for any complex s
which is not an eigenvalue of A0:

A(ρ,s)= det

(
sI −A0− ρ

q0∑
i=1

Aie
−ihs

)

= A0(s) ·det

(
I − ρ

(
sI −A0

)−1
q0∑
i=1

Aie
−ihs

)

= A0(s)− ρtr

(
Adj

(
sI −A0

)( q0∑
i=1

Aie
−ihs

)
+O(ρ)

)

= A0(s) + ρA′(ρ,s)=
n∑
i=0

[
a0i + ρa′0i(ρ,s)

]
si,

(B.1)

where f =O(ρ) if ‖ f ‖ ≤ K1|ρ|+K2 for some real constants K1,2 ≥ 0, and dependence of
A(·) on ρ has been made explicit in the notation for convenience. Thus, A(ρ,s) = A0(s)
if ρ = 0 and the coefficients of A′(ρ,s) depend, in general, on combined powers of ρ.
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Also, one gets directly by using a formal expansion of Adj(sI −A(ρ,s)) [11] for A(ρ,s)=
A0 + ρ

∑q0

i=1 Aie−ihs,

B(ρ,s)= cTAdj

(
sI −A0− ρ

q0∑
i=1

Aie
−ihs

)
b+dA(s)

= cT
n−1∑
µ=0

[n−k∑
l=1

(
a0l + ρa′0l(ρ)

)
sl−1

](
A0 + ρ

q0∑
i=1

Aie
−ihs

)µ

b+dA(ρ,s)

= (B0(s) +dA0(s)
)

+ ρ
(
B′′(ρ,s)

)
+dρA′(ρ,s)

(B.2)

after using A(ρ,s)= A0(s) + ρA′(ρ,s) from (B.1) with

B(ρ,s)ρ=0 = B0(s) +dA0(s)= cT
(n−1∑

µ=0

n−k∑
l=0

a0ls
l−1

)
A
µ
0b+d

n−1∑
i=0

a0is
i (B.3)

being of degree n if d �= 0 and m≤ n− 1 if d = 0. Now, note that P(s)= (B0(s) + ρB′(ρ,s))/
(A0(s) + ρA′(ρ,s)), where the coefficients of B′(ρ,s) and A′(ρ,s) depend, in general, on
a set of powers of ρ. By comparing the above expression for P(s) with that obtained
from (2.3), it follows that all Ai(s) and Bi(s) may be rewritten as Ai(ρ,s) = ρA′i (ρ,s);
Bi(ρ,s)= ρB′i (ρ,s) and thus aik(ρ)= ρa′ik(ρ); bik(ρ)= ρb′ik(ρ) for i≥ 1. Then, the closed-
loop spectrum for any controller of reduced complexity of transfer function K∗υ (s)=Q(s)
becomes A(s)R(s) +B(s)S(s)= Â∗m(s) +∆Â∗m(ρ,s), where

∆Â∗m(ρ,s)= ρÃm(ρ,s),

Ãm(ρ,s)=
υ+q∑
�=υ

Min(l,q)∑
i=Max(0,l−υ)

[
A′i (s)Rl−i(s) +B′i (s)Sl−i(s)

]
e−lhs

(B.4)

with Â∗m(s) being strictly Hurwitzian. From Rouché’s theorem for zeros of complex func-
tions (or from Nyquist’s stability criterion) (see [22]) applied for any bounded open semi-
circle of arbitrarily large radius included in the right-half complex plane Res≥ 0 [19, 22],
the closed-loop spectrum is stable if |ρÃm(ρ, jω)| < |Â∗m( jω)| for all ω ∈R+

0 =R+∪{0}.
The above inequality is guaranteed if ρ ∈ [−ρ0,ρ0] and

ρ0 Sup
|ρ|≤ρ0

(
Sup
ω∈R+

0

(∣∣∣∣∣ Ãm(ρ, jω)

Â∗m( jω)

∣∣∣∣∣
))

< 1. (B.5)

Such a ρ0 > 0 always exists since Ãm(0, jω)≡ 0 from (B.1)–(B.2). Equation (B.5) holds if
ρ0 < ρ′0

−1, where

ρ′0 = Sup
z∈R+

0

(
Sup
ω∈R+

0

(∣∣∣∣∣ Ãm(z, jω)

Â∗m( jω)

∣∣∣∣∣
))

≤ 1 or ρ′0 =Max
(
z ∈R+

0 :
∥∥H̃z

∥∥∞ ≤ 1
)

(B.6)

with H̃z(s)= Ãm(z,s)/Â∗m(s) being an RH∞-Schur’s function since Â∗m(s) is strictly Hur-
witzian [10, 23]. It has been proved that there exists ρ0 > 0 such that the closed-loop
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spectrum is stable for all ρ ∈ [−ρ0,ρ0] provided that Â∗m(s) is strictly Hurwitzian. On
the other hand, the closed-loop spectrum satisfies Am(s)≡ 0⇔ 1 + ρ(Ãm(ρ,s)/Â∗m(s))= 0
which is close to the zeros of Â∗m(s) as |ρ| → 0 from the root locus technique. Therefore,
the closed-loop spectrum Â∗m(s)= 0 is approximately achievable independent of the delay
for arbitrarily small |ρ|, and Theorem 2.1 has been proved.

Proof of Corollary 3.2. Again from Rouché’s theorem (or from Nyquist’s stability crite-
rion), Â∗m(s) and Âm(ρ,s) have the same number of zeros (i.e., none) on Re s ≥ −σ with
σ ∈ (0,σ0) if |ρ||Ãm(ρ, jω)| < |Â∗m( jω)| for all ω ∈ R+

0 since A∗m(s) is strictly Hurwitzian
for Res≥−σ0. Thus, the proof follows as in that of Theorem 2.1 to yield ρ0 < ρ′0

−1 with

ρ′0 = Sup
z∈R+

0

(
Sup
ω∈R+

0

(∣∣∣∣∣ Ãm(z,− σ + jω)

Â∗m(−σ + jω)

∣∣∣∣∣
))

≤ 1 (B.7)

and there is some real σc ≥ σ such that all the zeros of Am(s) are in Res ≤ −σc for all
ρ ∈ [−ρ0,ρ0]. �

C. Proof of Theorem 3.4

(i) Sufficiency. The closed-loop characteristic equation is

1 +
(
P(s) +∆(s)

)
Kυ(s)= 0=⇒ A(s)R(s) +B(s)S(s) +A(s)S(s)∆(s)= 0 (C.1)

which is stable from Rouché’s theorem if

∣∣A( jω)S( jω)
∣∣∣∣∆B( jω)

∣∣ < ∣∣A( jω)R( jω) +B( jω)S( jω)
∣∣∣∣∆A( jω)

∣∣ (C.2)

for all ω ∈ R+
0 with ∆(s) = ∆B(s)/∆A(s) since A(s)R(s) + B(s)S(s) = Âm(s)A(s) �= 0 for

Res < 0. Note that (C.2) holds if ‖Kυ(s)∆(s)/(1+P(s)Kυ(s))‖∞=‖A(s)S(s)∆(s)/Âm(s)‖∞ <
1. Also,

1 +
(
P(∞) +∆(∞)

)
Kυ(∞)= (1 +P(∞)Kυ(∞)

)[
1 +

(
1 +P(∞)Kυ(∞)

)−1
Kυ(∞)∆(∞)

] �= 0
(C.3)

if 1 + P(∞)Kυ(∞) �= 0 (i.e., the nominal feedback connection is well posed and
Kυ(∞)∆(∞)/(1 +P(∞)Kυ(∞)) �= −1 if ‖Kυ(s)∆(s)/(1 +P(s)Kυ(s))‖∞ < 1). Then, the cur-
rent closed-loop system for the disturbed plant is well posed and internally stable since
(P(s) +∆(s))Kυ(s) has no unstable zero-pole cancellation, since P(s)Kυ(s) has no unstable
zero-pole cancellation from Assumptions (A1)–(A3) and ∆(s)∈RH∞.

Necessity. For ∆(s) ∈ RH∞ such that ‖Kυ(s)∆(s)/(1 + P(s)Kυ(s))‖∞ ≥ 1, the Nyquist’s
plot encloses the critical point for some range of frequencies and then the closed-loop
stability becomes lost.
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(ii) The characteristic equation of the closed-loop system for the connection of the
disturbed plant with the nominal controller is obtained from (C.2):

1 +
ρÃm(ρ,s) +A(s)S(s)∆(s)

Â∗m(s)
= 0 (C.4)

with Â∗m(s) being strictly Hurwitzian. From Theorem 3.1, the closed-loop system is stable
for all ρ > 0 satisfying

∥∥∥∥∥ρ Ãm(ρ,s)

Â∗m(s)
+
A(ρ,s)S(ρ,s)∆(s)

Â∗m(s)

∥∥∥∥∥
∞
< 1. (C.5)

Now, take any real constants γ01 ∈ [0,1) and γ02 ∈ [0,1− γ01] and define real constants

ρ01 =Max

(
z ∈R+

0 :

∥∥∥∥∥z Ãm(z,s)

Â∗m(s)

∥∥∥∥∥
∞
≤ γ01

)
,

ρ02 =Max

(
z ∈R+

0 :

∥∥∥∥∥A(z,s)S(z,s)

Â∗m(s)

∥∥∥∥∥
∞
≤ γ02

) (C.6)

which depend respectively on γ01 and γ02. Then, the closed-loop system is kept stable for
all ρ ∈ [−ρ0,ρ0] with ρ0 =Min(ρ01,ρ02) if ‖∆‖∞ < (1− γ01)/γ02 for the given γ01 and γ02.
If the pair (ρ0,δ0)∈R×R is defined as

(
ρ0,δ0

)=
((

Max(ρ≥ 0),Max(δ ≥ 0)
)

:

∥∥∥∥∥ρ Ãm(ρ,s)

Â∗m(s)
+
A(ρ,s)S(ρ,s)∆(s)

Â∗m(s)

∥∥∥∥∥
∞
≤ 1

)
, (C.7)

then the closed-loop system is stable for all ρ ∈ (−ρ0,ρ0) and δ ∈ [−δ0,δ0] or ρ∈ [−ρ0,ρ0]
and δ ∈ (−δ0,δ0), irrespective of γ01 and γ02. A similar reasoning applies for the low-
complexity controller of transfer function K∗υ (s) under nominal well-posedness for suf-
ficiently small |ρ|. The proof is completed.
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[2] C. F. Alastruey, M. de la Sen, and J. R. González de Mendı́vil, The stabilizability of integro-
differential systems with two distributed delays, Math. Comput. Modelling 21 (1995), no. 8,
85–94.

[3] A. Bellen, N. Guglielmi, and A. Ruehli, Methods for linear systems of circuit delay differential
equations of neutral type, IEEE Trans. Circuits Syst. I 46 (1999), no. 1, 212–215.



140 On pole placement

[4] T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional-Differential Equations,
Mathematics in Science and Engineering, vol. 178, Academic Press, Florida, 1985.

[5] C. Corduneanu and N. Luca, The stability of some feedback systems with delay, J. Math. Anal.
Appl. 51 (1975), no. 2, 377–393.

[6] M. de la Sen, On some structures of stabilizing control laws for linear and time-invariant systems
with bounded point delays and unmeasurable states, Internat. J. Control 59 (1994), no. 2,
529–541.

[7] , Allocation of the poles of delayed systems related to those associated with their undelayed
counterparts, Electron. Lett. 36 (2000), no. 4, 373–374.

[8] M. de la Sen and J. Jugo, Pole-placement controllers for linear systems with point delays, IMA J.
Math. Control Inform. 13 (1996), no. 3, 223–249.

[9] M. de la Sen and N. Luo, On the uniform exponential stability of a wide class of linear time-delay
systems, J. Math. Anal. Appl. 289 (2004), no. 2, 456–476.

[10] B. A. Francis, A Course in H∞ Control Theory, Lecture Notes in Control and Information Sci-
ences, vol. 88, Springer-Verlag, Berlin, 1987.

[11] T. Kailath, Linear Systems, Prentice-Hall, New Jersey, 1980.
[12] E. W. Kamen, Linear systems with commensurate time delays: stability and stabilization indepen-

dent of delay, IEEE Trans. Automat. Control AC-27 (1982), no. 2, 367–375.
[13] E. W. Kamen, P. Khargonekar, and A. Tannenbaum, Stabilization of time-delay systems using

finite-dimensional compensators, IEEE Trans. Automat. Control AC-30 (1985), no. 1, 75–78.
[14] N. Luo and M. de la Sen, State feedback sliding mode control of a class of uncertain time delay

systems, IEE Proc. D Control Theory and Applications 140 (1993), no. 4, 261–274.
[15] N. Luo, M. de la Sen, and J. Rodellar, Robust stabilization of a class of uncertain time delay systems

in sliding mode, Internat. J. Robust Nonlinear Control 7 (1997), no. 1, 59–74.
[16] A. J. Manitius and A. J. Olbrot, Finite spectrum assignment problem for systems with delays, IEEE

Trans. Automat. Control AC-24 (1979), no. 4, 541–552.
[17] S.-I. Niculescu, Delay Effects on Stability. A Robust Control Approach, Lecture Notes in Control

and Information Sciences, vol. 269, Springer-Verlag, London, 2001.
[18] A. E. Ruehli, Equivalent circuit models for three-dimensional multiconductor systems, IEEE Trans.

Microwave Theory Tech. 22 (1974), no. 3, 216–221.
[19] R. Schätzle, On the perturbation of the zeros of complex polynomials, IMA J. Numer. Anal. 20

(2000), no. 2, 185–202.
[20] J.-C. Shen, B.-S. Chen, and F.-C. Kung, Memory-less stabilization of uncertain dynamic delay

systems: Riccati equation approach, IEEE Trans. Automat. Control AC-36 (1991), no. 5, 638–
640.

[21] K. K. Shyu and J. J. Yan, Robust stability of uncertain time-delay systems and its stabilization by
variable structure control, Internat. J. Control 57 (1993), no. 1, 237–246.

[22] A. D. Wunsch, Complex Variables with Applications, Addison-Wesley Publishing, Mas-
sachusetts, 1994.

[23] K. Zhou and J. C. Doyle, Essentials of Robust Control, Prentice Hall, New Jersey, 1998.

M. de la Sen: Departamento de Ingenierı́a de Sistemas y Automática, Instituto de Investigación y
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