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A class of infinite-dimensional discrete-time state operators is exhibited as concrete in-
stances of power-bounded operators that are not similar to contractions. It is shown that
such discrete-time systems arise from sampled feedback control of unstable continuous-
time systems. The asymptotic behavior of the state operators of these discrete systems is
not intimately related to their spectral radius.

1. Introduction

This note is originally motivated by the stability property of continuous-time dynami-
cal systems controlled by digital processors within the lifting framework as exposed in
[2]. Our purpose is to exhibit a result on stability which seems counterintuitive, at least
for most control engineers, and at the same time serves as a practical and simple engi-
neering counterexample to an important question raised by Sz.-Nagy in the late fifties.
This question is whether every power-bounded (p.w.b.) operator is similar to a contrac-
tion (s.c.). This mathematical problem which was initially formulated as a conjecture was
proven wrong by Foguel [3] and Halmos [5]. Halmos reformulated it in 1970 in a more
sophisticated way as [7]: is every polynomially bounded (p.b.) operator s.c.? A negative
answer to Halmos question appeared only recently and is due to Pisier [11] who gave
an ingenious example of an operator that is p.b. but not s.c. The abstract nature of the
construction of the counterexamples in the mathematical literature might lead to think
that these operators are esoteric and might rarely, or even cannot, occur in real engineer-
ing problems. When this occurs, it is quite exciting to realize that an abstract result in a
specific class of pure mathematical problems is shared by fields of engineering and this,
in turn, gives some hope that exchanging ideas between the fields might lead to new in-
sights on the original problems as well as deepening our understanding of its engineering
counterpart. The relevance of Sz.-Nagy question to control engineering analysis problems
lies in the asymptotic behaviors of discrete-time systems, such asymptotics being usually
determined in terms of contractiveness (or noncontractiveness) of the state-transition
operators of these dynamical systems. The standard mathematical tool for control engi-
neers analyzing the behavior of an evolving dynamical system is the spectrum (or more
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specifically the eigenvalues) of the operator (or matrix) governing the dynamics of the
system. Such spectra supplement the abstract notion of an operator by a visual informa-
tion in the complex plane, and their analysis has proved highly successful in applications.
For discrete-time systems, it is well known that when the spectrum of the state operator
is contained in the open unit disc of the complex plane, which means also that the state
operator is a strict contraction, the norms of the iterates of the state operator converge to
the zero operator. Such convergence in the operator norm is called uniform stability or
exponential stability and it implies also that the state trajectory converges to zero. When
the state operator has at least a spectral value outside the closed unit disc, which means
that the state operator is not a contraction, the norms of the iterates of the state operator
diverge to infinity and in that case the state trajectory is known to diverge at least for
finite-dimensional systems. The convergence of the state to zero is called asymptotic sta-
bility and it is well known that the notions of exponential and asymptotic stabilities are
actually equivalent for linear systems in finite-dimensional spaces. This has given to con-
trol engineers the “feeling” that when a discrete dynamical system is stable (in the sense of
asymptotic stability), its spectral values are at most contained in the closed unit disc and
if this is not the case, then the system is unstable. This note shows that feedback control
can be used to generate very common system operators that are asymptotically stable al-
beit their spectrum is not a subset of the closed unit disc. The link to Sz.-Nagy’s question
is obtained via a trivial connection between asymptotic stability and power-boundedness
of the state operator and thus yielding concrete and simple counterexamples of p.w.b.
operators which are not similar to contractions.

2. Preliminary

Let X and Y denote separable Hilbert spaces and �(X,Y) the set of all bounded linear
operators from X to Y . The set �(X,Y) will be denoted simply by �(X) when X= Y . A
norm on a space Z will be denoted by ‖ · ‖Z . An operator T ∈�(X) is said to be p.b. if
there exists a constant M such that

∥∥p(T)
∥∥

�(X) <M‖p‖∞ (2.1)

for any scalar polynomial p, where

‖p‖∞ =max
{∣∣p(z)

∣∣ : |z| = 1
}

(2.2)

is the so-called infinity norm of the analytic polynomial p. When the polynomial in (2.1)
is of the form p(z)= zn, where n is a positive integer, then T ∈�(X) is said to be p.w.b.,
that is,

sup
n∈Z+

∥∥Tn
∥∥

�(X) < +∞, (2.3)

or equivalently, the sequence {Tn}n≥0 is a bounded sequence of operators. Recall that a
contraction is an operator C ∈�(X) such that ‖C‖�(X) ≤ 1 and a strict contraction is an
operator C ∈�(X) such that ‖C‖�(X) < 1. An operator T is s.c. if there is a boundedly
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invertible operator S∈�(X), with ‖S−1‖�(X) <∞, such that∥∥S−1TS
∥∥

�(X) ≤ 1. (2.4)

The operators T and S−1TS are then said to be similar. Let σ(T) denote the spectrum of
operator T , then the spectral radius of operator T is the positive real number defined by

rσ(T)= lim
n→∞

∥∥Tn
∥∥1/n

�(X) = max
λ∈σ(T)

|λ|. (2.5)

Similarity is an equivalence relation which preserves each part of the spectrum and hence
the spectral radius [6, Corollary 4, page 77], that is, rσ(T)= rσ(S−1TS). By virtue of Von
Neumann’s inequality, every contraction in �(X) satisfies inequality (2.1) with M = 1 as
well as inequality (2.3) and the following implications hold:

T is s.c.=⇒ T is p.b.=⇒ T is p.w.b. (2.6)

Thus, one may consider the class of p.b. (and hence the class of p.w.b.) operators as a
generalization of the class of contraction operators in �(X) and this was the motivation
of Sz.-Nagy for asking if the reverse implication holds. It is worth noticing that for oper-
ators on finite-dimensional spaces all these notions are equivalent and Sz.-Nagy proved
more than that: every p.w.b. compact operator is s.c. This raised the question: does the
equivalence between power-boundedness and similarity to a contraction still hold for
noncompact operators?

3. Abstract discrete representation of continuous-time systems

Consider the following n-dimensional homogeneous continuous-time time-invariant
system:

ẋ(t)=Ax(t). (3.1)

On the time interval [0,∞), the continuous-time state trajectory of this system satisfies

x(t+h)=Φx(t), ∀t ∈ [0,∞), (3.2)

where h is a fixed positive real number and Φ = eAh. An abstract version of the above
equation is obtained by introducing the mapping � : X→X,

xk 	−→ xk+1 =�xk, (3.3)

which is defined pointwise by(
�xk

)
(t)=Φxk(t), ∀t ∈ [0,h), (3.4)

and where we have set

xk(t)= x(t+ kh) for t ∈ [0,h), k ∈N (3.5)
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and X = L2([0,h),Rn). Clearly, the operator � is bounded on X. The xk’s are pieces of
continuous functions on time intervals of length [0,h). Note that the continuous-time
dynamics of the original system is entirely embedded into the discrete-time dynamics
(3.3). An important property of � is that its spectral values are the eigenvalues of the
matrix Φ, but each spectral value has an infinite geometric multiplicity. This property is
easily seen by realizing X as an ℵ0-fold copies of Rn, that is, X is isomorphic to �2

+(Rn), in
which case � can be identified in a natural way with an infinite-dimensional matrix with
the matrices Φ as its diagonal entries. This is stated precisely in the next theorem.

Theorem 3.1. Each point in the spectrum σ(�) is an eigenvalue of infinite multiplicity.

Proof. Let λi be an eigenvalue of �, then there exists a nonzero vector xi ∈X such that

�xi = λixi. (3.6)

From the definition of operator �, it is immediately seen that there exists a nonzero vector
ui ∈ Cn such that

Φui = λiui. (3.7)

Now, for any scalar function ψ ∈ L2[0,T), we have

Φψ(t)ui = λiψ(t)ui, ∀t ∈ [0,T), (3.8)

that is, the function φi = ψui ∈X, defined by φi(t)= ψ(t)ui for 0≤ t < T , is an eigenvector
of operator � corresponding to the eigenvalue λi. Since L2[0,T) is a Hilbert space, it has
an orthonormal basis, say {ψn}∞n=1, and clearly the following holds true:

span
{
ψnui

}∞
n=1 ⊆ Eλi , (3.9)

hence

dimspan
{
ψnui

}∞
n=1 = ℵ0 ≤ dimEλi , (3.10)

where Eλi = ker(λiI −�). The eigensubspace Eλi being a subspace of the separable space
X, dimEλi cannot exceed ℵ0, and therefore

dimEλi = ℵ0. (3.11)
�

Now, return to the original system and fix n = 1 for simplicity of the analysis in the
sequel. Assume that the 1-dimensional differential equation (3.1) is perturbed by a scalar
function, that is, ẋ = Ax(t) + u(t), where the perturbation u is a control input obtained
by sampled-state feedback with a zero-order hold, that is,

u(t)= Kx(kh) for t ∈ [kh,kh+h) (3.12)

and K is a feedback gain. Then, the closed-loop system is fully described by

ẋ(t)= Ax(t) +Kx(kh) for t ∈ [kh,kh+h). (3.13)
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From the abstract model (3.3) of the homogeneous system and the principle of superpo-
sition, the continuous-time state trajectory of system (3.13) can be lifted to a sequence
{xk}k≥0, where each function piece xk ∈ X is given by

xk+1 =�xk + pk. (3.14)

The vector pk ∈ X is the perturbation resulting from the sampled-state feedback which
can be described by a mapping �K :R→ X , that is,

pk(t)= (�Kx(kh)
)
(t) for t ∈ [kh,kh+h). (3.15)

It is easily shown that operator �K is a bounded integral operator, however its expression
is irrelevant here. Since x(kh) is the sampled value of the continuous-time state at time

t = kh, it can be seen as resulting from an operator �̃1 on X. However, this operator �̃1 is
unbounded on X since it is a sampling process which corresponds to point sensing in X.
Indeed, the observation process (i.e., the sampling process) is described by

X⊃D
(
�̃1
) �̃1−→ Y =R (3.16)

with �̃1 defined by

φ[k]= �̃1qk
∆=
∫ T

0
δ(τ)qk(τ)dτ = qk(0) (3.17)

for qk ∈D(�̃1) and where δ is the Dirac distribution. The observation operator �̃1 is
actually an evaluation operator at the point t = 0 of the distributed domain [0,T). Clearly,

�̃1 is not defined on all of X, its largest domain D(�̃1) in which it is well defined is
the subset of X consisting of functions which are continuous on [0,T). Moreover, this

operator is unbounded on its domain since if we choose a sequence {qk}k∈N in D(�̃1)

with decreasing supports [0,Tk)⊂ [0,T), we can make ‖�̃1qk‖Y as large as we like, while
keeping the norm ‖qk‖X = 1. In order to overcome these difficulties, we will show that

�̃1 is an admissible observation operator [12] for the discrete-time infinite-dimensional
system so that one can define a well-posed observation process.

4. Admissibility of the observation operator

We introduce the following definition of admissibility for discrete-time systems which is
adapted from [12, 14] for continuous-time semigroup systems.

Definition 4.1. Let Z denote a Hilbert space and suppose that F = {�n}n≥0 is a discrete
semigroup on Z. Let � be a dense F-invariant subspace of Z and let the space of observa-
tions Y be another Hilbert space. Then, � : �→ Y is an admissible observation operator
for F with respect to � if for any m > 0, the observation map �m : � −→ �2(Y) defined
by �0 = 0 and

�mq =
{
�q,��q,��2q, . . . ,��m−1q,0,0,0, . . .

}
(4.1)

has a continuous extension to Z.
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In other words, admissibility of � means that for some integer m > 0, and some real
number κ(m)≥ 0 and any q ∈�,

m−1∑
n=0

∥∥��nq
∥∥2
Y ≤ κ(m) · ‖q‖2

Z. (4.2)

Inequality (4.2) expresses a continuity property of the observations with respect to initial
conditions, that is, the observation map is bounded on Z.

For the well-posedness of the observation process, the problem is to find the right
choice of � so that the observation operator satisfies the admissibility conditions. We
introduce the Sobolev space W1,2 [1]:

�=W1,2([0,T),R
)= {x ∈X : x ∈�c

(
[0,T),R

)
, ẋ ∈X

}
, (4.3)

where Ac([0,T),R) is the set of absolutely continuous functions on [0,T) with values in
R, that is, the set of functions x : [0,T)→ R which have almost everywhere a derivative
ẋ ∈ L2([0,T),R) and such that

x(t)=
∫ t

0
ẋ(ξ)dξ + x(0) (a.e.). (4.4)

The space � is in its own right a Hilbert space under the inner product〈
x1,x2

〉
� = 〈x1,x2

〉
X +

〈
ẋ1, ẋ2

〉
X, (4.5)

but note that � is not closed under the norm of X. Clearly, � ⊂ X with continuous
injection, that is, the identity map i : �→X is bounded, and it is in fact a dense subspace

of X with respect to the norm of X. If qn ∈�⊂D(�̃1) for some n≥ 0, then the operator

�̃ defined by

φ[n]= �̃qn = qn(0) (4.6)

makes sense. From the definition of the semigroup generator � and the properties of
elements in the subspace �, it is easily verified that �� ⊂� so that � is F-invariant.
Thus, for q0 ∈�, the formula

φ[n]= �̃�nq0 (4.7)

has a well-defined meaning and allows us to define for any integer m ≥ 0 the map �m :
�→ �2(Y),

�mq0 =
{
�̃q0,�̃�q0,�̃�2q0, . . . ,�̃�m−1q0,0,0,0, . . .

}
. (4.8)

Clearly, �m is continuous on (�,‖ · ‖X), and therefore the operators �m from � to �2(Y)
have unique continuous extensions to continuous operators from the closure of � in X,
that is, (�,‖ · ‖X) = X, to �2(Y). We denote this extension by the same symbol and we
can write, therefore,

φ[n]= (�mq0
)
[n] for n <m (4.9)
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when q0 is a function in X. We conclude that any finite-dimensional continuous-time
system whose state is sampled can be represented by an infinite discrete-time system on
X and the sampling operator is an admissible observation operator for {�n}n∈N.

Next, it is easy to see that the following functional equation holds on �2(Y):

�m+nq = �mq
m��m

(
�mq

)
, (4.10)

where the symbol
m� denote the concatenation operator defined by

(
φ
m�ψ

)
[n]=

φ[n] for n= 0,1, . . . ,m− 1,

ψ[n−m] for n=m,m+ 1, . . . .
(4.11)

If n= 0 in the functional equation (4.10), then for any m≥ 0 we get that

�m = Pm�m (4.12)

and for m≤ k,

�m = Pm�k, (4.13)

where Pm is the projection operator defined by

φ 	−→ ψ = Pmφ with

ψ[n]= φ[n] for n= 0,1, . . . ,m− 1,

ψ[n]= 0 for n≥m. (4.14)

At this stage, to simplify the analysis to follow, we assume that the semigroup F is strongly
stable, meaning that limn→∞‖�nq‖� → 0 for all q ∈ �. This hypothesis is not restrictive
for the result to be derived, the general case can be treated along the same lines at the
expense of some technicalities (see [14]). Under the above assumption, it is clearly seen
that the operator �∞ ∈�(X,�2(Y)) defined by

�∞q = lim
m→∞�mq (4.15)

exits, and for any m≥ 0, equation (4.13) extends to

�m = Pm�∞. (4.16)

Combining (4.10) and (4.16) yields

�∞q = �∞q
m��∞

(
�mq

)
. (4.17)

We define the operator Ξz : X→ Y by the series

Ξzq =
∞∑
k=0

z−k
(
�∞q

)
[k]. (4.18)



94 Similarity to contraction and power-boundedness

For z ∈ C such that |z| > ‖�‖�(X) or |z| sufficiently large and from Lemma 7.1 (see the
appendix), it is easily verified that this series is absolutely convergent and Ξz ∈�(X,Y).
For any q ∈X, the series can be decomposed as

Ξzq =
m−1∑
k=0

z−k
(
�∞q

)
[k] +

∞∑
k=m

z−k
(
�∞�mq

)
[k−m],

Ξzq =
m−1∑
k=0

z−k
(
�∞q

)
[k] + z−mΞz�mq,

(4.19)

and we have

m−1∑
k=0

z−k
(
�∞q

)
[k]= Ξzq− z−mΞz�mq. (4.20)

For m= 1 and any q ∈X, (4.20) leads to

(
�∞q

)
[0]= Ξzq− z−1Ξz�q. (4.21)

In view of the expression (4.8) of the observation map, we set

�̃a
1q =

(
�∞q

)
[0] (4.22)

and since �∈�(X), we get from (4.21) that �̃a
1 ∈�(X,Y) and is given by

�̃a
1q = z−1Ξz(zI −�)q,

Ξzw = z�̃a
1(zI −�)−1w.

(4.23)

The operator �̃a
1 defined by (4.23), which we call the abstract observation operator, is a

bounded operator defined on all of X and its significance is that it is now possible to give
an interpretation of the observation equation for any qn in the state-space X, whereas

the original operator �̃1 in (3.17) is unbounded on X. The above result holds also true if
the semigroup F was not assumed to be strongly stable. It is interesting to compare this
result with the “regularization” of the sampling process with a prefilter placed before the
sampling operator as described by [2] in an input/output setting.

Since Y =R, the abstract observation operator �̃a
1 is actually a linear functional on the

Hilbert space X. Then, from the Riesz representation theorem [6], there exists a unique
element c1 ∈X such that

φ[n]= �̃a
1qn =

〈
c1,qn

〉
X (4.24)

and the norm of the operator �̃a
1 is simply given by∥∥∥�̃a

1

∥∥∥
�(X,Y)

= ∥∥c1
∥∥

X. (4.25)
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It is interesting to note that, as a bounded operator, the observation map �̃a
1 admits an

adjoint operator �̃a∗
1 which is easily computed as

〈
�̃a

1qn,ψ[n]
〉
R
=
〈
qn,�̃a∗

1 ψ[n]
〉

X

=
∫ T

0
q∗n (τ)

(
�̃a∗

1 ψ[n]
)

(τ)dτ

= 〈c1,qn
〉

X ·ψ[n]

=
∫ T

0

{
c∗1 (τ)qn(τ)

}∗
dτψ[n]

=
∫ T

0
q∗n (τ)c1(τ)ψ[n]dτ,

(4.26)

that is, the operator �̃a∗
1 :R→X is given by

(
�̃a∗

1 ψ[n]
)

(τ)= c1(τ)ψ[n], 0≤ τ < T. (4.27)

The adjoint �̃a∗
1 of the abstract observation map behaves like a generalized hold func-

tion [9].

5. A counterexample to Sz.-Nagy problem using feedback control

The observation process on X resulting from sampling can now be written as

�̃a
1 : X−→R with �̃a

1xk = x(kh) (5.1)

with �̃a
1 bounded on X. Combining (3.15) and (5.1), the closed-loop state trajectory

{xk}k≥0 of the original system (3.13) is given by the abstract discrete-time autonomous
equation on X,

xk+1 =
(
� + �K �̃a

1

)
xk. (5.2)

From now, we assume that the sampled-state feedback is stabilizing in the sense that the
closed-state trajectory converges asymptotically to zero, that is,

lim
n→∞

∥∥∥∥(� + �K �̃a
1

)k
x0

∥∥∥∥
�
= 0, ∀x0 ∈X. (5.3)

Note that this is always possible under some mild conditions [4] which reduce to a con-
trollability condition of the sampled model of (3.1) and a nonpathological condition on
the sampling frequency. Under these mild conditions, the asymptotic stability of the feed-
back system (3.13) is guaranteed by choosing the feedback gain K such that the state ma-
trix (here, a scalar) (Φ+K) of its stroboscopic model (i.e., its sampled model) is a stable
matrix. Then, we have the following result.
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Proposition 5.1. Under the stabilizing assumption of the sampled-state feedback, the
closed-loop state operator is p.w.b., that is,

sup
k≥1

∥∥∥∥(� + �K �̃a
1

)k∥∥∥∥
�(�)

<∞. (5.4)

Proof. Since the operator � + �K �̃a
1 is bounded on X, the result is a direct application of

the uniform boundedness principle [6]. �

Now, consider a continuous-time system (3.1) whose abstract discrete open-loop state
operator, denoted by �u, is such that

σ
(
�u
)∩Dc �= ∅, (5.5)

where

Dc = {z ∈ C : |z| > 1
}
. (5.6)

Such system is an unstable open-loop system. The following slightly disappointing result
holds.

Proposition 5.2. The closed-loop state feedback operator (�u + �K �̃a
1) is p.w.b. but not

s.c.

Proof. The power-boundedness results from Proposition 5.1. Since σ(�u) ∩Dc �= ∅,

there is at least one element λ ∈ σ(�u) such that |λ| > 1. For operator �̃a
1 having a fi-

nite range, the perturbation �K �̃a
1 is compact. From the compactness of operator �K �̃a

1

and the fact that all spectral values of �u have infinite multiplicity, the following inclusion
holds [10]:

σ
(
�u
)⊂ σ(�u + �K �̃a

1

)
(5.7)

which implies that the spectrum of �u + �K �̃a
1 has an element λ ∈ C such that |λ| > 1

and therefore its spectral radius

rσ
(
�u + �K �̃a

1

)= sup
λ∈σ(�u+�K �̃a

1)

|λ| ≥ 1. (5.8)

Since similarity preserves the spectral radius [6, Corollary 4, page 77], the operator �u +

�K �̃a
1 on X is clearly not s.c. �

Actually, such an operator may be arbitrarily far from being similar to contractions. It

is interesting to note that from the spectral mapping theorem the operator �u + �K �̃a
1
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cannot converge uniformly to zero, that is,

lim
n→∞

∥∥∥∥(� + �K �̃a
1

)k∥∥∥∥
�(�)

�= 0. (5.9)

We conclude that unstable continuous-time systems under stabilizing sampled-state feed-
back control have closed-loop lifted state operators which are p.w.b. without being similar
to contractions. Many feedback control systems fall in this category, and contrary to the
pure abstract mathematical constructions [3, 5], the feedback operators of such systems
are concrete and simple physical counterexamples to Sz.-Nagy’s question. Such systems
are in fact asymptotically stabilizable, but never uniformly stabilizable on X. The coun-
terexample presented in this paper is instructive for identifying the main mathematical
properties of a more general class of discrete-time systems which might lead to noncon-
tractive operators which are p.w.b. This is an ongoing research topic.

6. A remark

The negative answer to the similarity problem raised in this paper shows that the spectra
of operators (preserved under similarity transformations) are not always good indica-
tors of their asymptotics on infinite-dimensional spaces. Note that this is not the case
for finite-dimensional systems with regard to the significance of eigenvalues to the as-
ymptotic behavior of such systems. However, as pointed out by a reviewer, misleading
properties of spectra on the behavior of dynamical systems might occur in finite dimen-
sion with regard to their transient behavior. For instance, consider the two-dimensional
discrete-time system

xn+1 =Axn (6.1)

with matrix A given by

A=
(

0.90 1/ε
0 0.95

)
(6.2)

and ε > 0. The trajectories of this discrete-time system are given by the sequences
{Anx0}n≥0 for any initial state values x0 ∈R2 and clearly limn→∞‖Anx0‖ = 0. This system
is asymptotically stable and hence s.c. However, the trajectories of this asymptotically sta-
ble system can lead to some period of growth very far away from the origin before they
decay to zero as shown in Figure 6.1. This growth can be made arbitrarily large by letting
ε→ 0.

This finite-dimensional system has a transient behavior that differs entirely from the
asymptotic behavior suggested by the spectrum (i.e., the eigenvalues). From an engineer-
ing point of view, such “almost unbounded” state trajectory behaves as that of a “prac-
tically unstable” system. Clearly, the spectrum of the state matrix (and hence a possible
similarity to contraction of this matrix) fails as a tool for predicting the transient behavior
of such finite-dimensional systems and therefore it is not a good indicator of this behav-
ior. Further details which are beyond the scope of this paper can be found in [8, 13] and
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‖A
n
x 0
‖

1009080706050403020100

n

0

1

2

3

4

5

6
×104

Figure 6.1. Transient growth of Anx0 with initial state x0 = [1 1]T .

the references therein, where particular mathematical tools, known under the name of
pseudospectra, are used for the analysis of the transient behavior of linear systems.

7. Appendix

Let rσ(�) be the spectral radius of � as defined by (2.5), then we have the following
lemma on the “growth bound” of �n.

Lemma 7.1. For r > rσ(�), there exists a constant Mr > 0 such that

∥∥�n
∥∥

�(X) ≤Mrr
n. (7.1)

Proof. By the very definition of the spectral radius, if r > rσ(�), then there exists a positive
integer m such that ‖�n‖1/n

�(X) < r for n >m or equivalently

∥∥�n
∥∥

�(X) < r
n for n >m. (7.2)

But �n is uniformly bounded on any finite interval, that is, for a fixed positive integer m,
there exists a constant M0 such that

∥∥�n
∥∥

�(X) <M0 for 0≤ n≤m. (7.3)

Set n= km+ l, where k and l are positive integers and 0≤ l ≤m− 1. Using the semigroup
property of F, we obtain

∥∥�n
∥∥

�(X) ≤
∥∥�km

∥∥ ∥∥�l
∥∥≤M0

∥∥�km
∥∥≤M0r

km =M0r
n−l = (M0r

−l) · rn. (7.4)
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Note that for r ≥ 1, M0r−l ≤M0r−m ≤M0 and we can take Mr =M0 and for r < 1, we
have M0 <M0r−l ≤M0r−m and we set Mr =M0r−m. �

This lemma states that �n does not grow faster than a “discrete exponential.”
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