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Both time- and space-splitted Burgers’ equations are solved numerically. Cubic B-spline
collocation method is applied to the time-splitted Burgers’ equation. Quadratic B-spline
collocation method is used to get numerical solution of the space-splitted Burgers’ equa-
tion. The results of both schemes are compared for some test problems.

1. Introduction

The Burgers’ equation first appeared in the paper by Bateman [3], who mentioned two
of the essentially steady solutions. Due to extensive works of Burgers [4] involving the
Burgers’ equation especially as a mathematical model for the turbulence, it is known as
Burgers’ equation. The equation is used as a model in fields as wide as heat conduction
[5], gas dynamics [13], shock waves [4], longitudinal elastic waves in an isotropic solid
[15], number theory [18], continues stochastic processes [5], and so forth. Hopf [8] and
Cole [5] solved the Burgers’ equation analytically and independently for arbitrary ini-
tial conditions. In many cases, these solutions involve infinite series which may converge
very slowly for small values of viscosity coefficients ν, which correspond to steep wave
fronts in the propagation of the dynamic wave forms. Burgers’ equation shows a similar
features with Navier-Stokes equation due to the form of the nonlinear convection term
and the occurrence of the viscosity term. Before concentrating on the numerical solution
of the Navier-Stokes equation, it seems reasonable to first study a simple model of the
Burgers’ equation. Therefore, the Burgers’ equation has been used as a model equation to
test the numerical methods in terms of accuracy and stability for the Navier-Stokes equa-
tion. Many authors have used a variety of numerical techniques for getting the numerical
solution of the Burgers’ equation. Numerical difficulties have been come across in the nu-
merical solution of the Burgers’ equation with a very small viscosity. Various numerical
techniques accompanied with spline functions have been set up for computing the solu-
tions of the Burgers’ equation. Rubin and Graves have used the cubic spline function tech-
nique and quasilinearisation for the numerical solutions of the Burgers’ equation in one
space variable at low Reynolds numbers [16]. A cubic spline collocation procedure has
been developed for the numerical solution of the Burgers’ equation [17]. A combination
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of the time-splitted scheme and cubic spline functions was used to set up implicit finite
difference schemes for obtaining the numerical solution of the Burgers’ equation in the
papers [9, 10, 11, 14]. The equation is solved numerically by the collocation method with
cubic B-spline interpolation functions over uniform elements by Ali et al. [2]. A finite
element solution of the Burgers’ equation based on Galerkin method using B-splines as
both element shape and test functions is developed in the studies [1, 6, 7]. Least-squares
formulation using quadratic B-splines as trial function is given over the finite intervals
by Kutluay et al. [12]. Numerical solutions of the partial differential equations have been
found by splitting the equation both to make the numerical method applicable and to in-
crease the accuracy of the method. We have written two algorithms for the splitted Burg-
ers’ equation. First, Burgers’ equation is splitted in time and then cubic B-spline colloca-
tion method is applied. To be able to use the quadratic B-splines as trial functions in the
collocation method, setting V =−Ux in the Burgers’ equation gives a first-order coupled
system. This system of equations involving the first-order derivatives can be computed by
employing the quadratic B-spline collocation method. Numerical results for some known
initial and boundary conditions are illustrated for both methods.

Briefly, outline is as follows. In Section 2, numerical methods are described. Numer-
ical experiments are carried out for two test problems and results of those methods are
compared with each other and with theoretical results in Section 3.

2. B-spline collocation methods

The form of one-dimensional Burgers’ equation is

Ut +UUx − νUxx = 0, (2.1)

where ν > 0 is the coefficient of the kinematic viscosity and subscripts x and t denote
differentiation. Initial and boundary conditions are chosen as follows:

U(x,0)= f (x), a≤ x ≤ b, (2.2)

U(a, t)= α1, U(b, t)= α2, t ∈ [0,T]. (2.3)

We consider a mesh a = x0 < x1 ··· < xN = b as a uniform partition of the solution
domain a≤ x ≤ b by the knots xm and h= xm− xm−1, m= 1, . . . ,N , throughout paper.

2.1. Quadratic B-spline collocation method (QBCM). A direct application of the qua-
dratic B-spline collocation method requires the first-order derivatives in the equation to
obtain smooth solutions. To start with formulation of the quadratic B-spline collocation
method for the Burgers’ equation, the space splitting is done with setting V = −Ux. So
that Burgers’ equation turns into the system of equations which involves the first-order
derivatives. In the system of equations, the unknown functions U , V and their space
derivatives Ux,Vx are discretized by the quadratic B-splines.
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Let Qm(x), m=−1, . . . ,N ,

Qm(x)= 1
h2




(
xm+2− x

)2− 3
(
xm+1− x

)2
+ 3
(
xm− x

)2
,
[
xm−1,xm

]
,(

xm+2− x
)2− 3

(
xm+1− x

)2
,

[
xm,xm+1

]
,(

xm+2− x
)2

,
[
xm+1,xm+2

]
,

0, otherwise,

(2.4)

be quadratic B-splines with the knots xm, m= 0, . . . ,N . A basis is formed with quadratic
B-splines Qm(x) over the domain region a≤ x ≤ b.

The first-order space splitting of the Burgers’ equation, with V(x, t)=−Ux(x, t), gives
a coupled system for U and V :

Ut −UV + νVx = 0,

V +Ux = 0
(2.5)

and boundary and initial conditions are

U(a, t)= α1, U(b, t)= α2, V(a, t)=V(b, t)= 0, t ∈ [0,T],

U(x,0)= f (x), V(x,0)=− f ′(x), a≤ x ≤ b.
(2.6)

The collocation method is applied to find approximate solutions of the system (2.5).
Collocation approximant can be expressed for U(x, t) and V(x, t) in terms of element
parameters δm and σm, respectively, and quadratic B-splines Qm(x), m=−1, . . . ,N :

UN (x, t)=
N∑

m=−1

δm(t)Qm(x), VN (x, t)=
N∑

m=−1

σm(t)Qm(x). (2.7)

Element parameters δm and σm are found by requiring that UN and VN satisfy the
system of (2.5) at knots xm, m= 0, . . . ,N . The nodal variables Um, Vm and their derivatives
U ′

m, V ′
m have the following representation obtained with substitution of the knots in (2.7)

and their first derivative in terms of elements parameters:

Um =U
(
xm
)= δm−1 + δm,

hU ′
m = hU ′(xm

)= 2
(
δm− δm−1

)
,

Vm =V
(
xm
)= σm−1 + σm,

hV ′
m = hV ′(xm

)= 2
(
σm− σm−1

)
.

(2.8)

Substituting the collocation approximants (2.7)-(2.8) in the system (2.5) and its eval-
uation at the knots give a nonlinear system of equations:

h
(◦
δm−1 +

◦
δm
)
−hzm

(
σm−1 + σm

)
+ 2ν

(− σm−1 + σm
)= 0,

h
(
σm−1 + σm

)
+ 2
(
δm− δm−1

)= 0,
(2.9)

where ◦ denotes differentiation with respect to time and zm = δm−1 + δm is known as
nonlinear term.
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Time discretization of parameters δm and σm of the obtained system (2.9) is done with
interpolation between two successive time levels n and n + 1. So, replacing the follow-
ing time centering on t = (n + 1/2)∆t and its time derivative with a Crank-Nicholson
approach into (2.9),

δm = δn+1
m + δnm

2
,

◦
δm = δn+1

m − δnm
∆t

,

σm = σn+1
m + σnm

2
,

◦
σm = σn+1

m − σnm
∆t

,

(2.10)

leads to nonlinear system of 2N + 2 algebraic equations in the 2N + 4 unknowns:

2hδn+1
m−1−βm1σ

n+1
m−1 + 2hδn+1

m +βm2σ
n+1
m = 2hδnm−1 +βm1σ

n
m−1 + 2hδnm−βm2σ

n
m,

−2δn+1
m−1 +hσn+1

m−1 + 2δn+1
m +hσn+1

m = 2δnm−1−hσnm−1− 2δnm−hσn+1
m , m= 0, . . . ,N ,

(2.11)
where

βm1 = zmh∆t+ 2ν∆t, βm2 =−zmh∆t+ 2ν∆t, zm = δm−1 + δm. (2.12)

The boundary conditions U0 = δ−1 + δ0 and VN = σN−1 + σN are imposed to eliminate
parameters δ−1 and σN from the system (2.11) to have an equal solvable (2N + 2)× (2N +
2) penta-diagonal matrix system.

To iterate the system (2.11), we need to compute the initial parameters δ0
m, σ0

m. To do
so, the following requirements of initial and boundary conditions at time t = 0 are used:

(
UN
)
x(a,0)= 0,

(
VN
)
x(a,0)= 0,

UN (x,0)=U
(
xm,0

)
, VN (x,0)=V

(
xm,0

)
, m= 0, . . . ,N ,

(2.13)

these requirements gives the following determination of the unknown element parame-
ters:

δ0
−1 =

U(a,0)
2

, δ0
0 =

U(a,0)
2

, δ0
m =U

(
xm,0

)− δ0
m−1,

σ0
−1 =

V(a,0)
2

, σ0
0 =

V(a,0)
2

, σ0
m =V

(
xm,0

)− σ0
m−1, m= 0, . . . ,N.

(2.14)

Once element parameters are determined, time evolutions of the δnm, σnm are found from
the system. Any nodal value and its derivatives can be recovered from (2.8) during the
running of the program. To cope with the nonlinearity of the system (2.11), solutions
can be made better by using the following two or three iterations at each time n+ 1 for
the parameters δn+1

m , σn+1
m :

(
δ∗
)n+1 = δn +

1
2

(
δn+1−δn ), (

σ∗
)n+1 = σn +

1
2

(
σn+1−σn

)
, (2.15)

where

δn = (δn−1,δn0 , . . . ,δnN
)T

, σn = (σn−1,σn0 , . . . ,σnN
)T
. (2.16)
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2.2. The cubic B-spline collocation method (CBCM). The Burgers’ equation is splitted
for the time variable into

Ut + 2UUx = 0,

Ut − 2νUxx = 0.
(2.17)

The time-splitted Burgers’ equation includes the second-order derivatives. So we
should select the cubic B-splines for the trial functions in the collocation method. This
selection provides the continuity of up to second order of the trial functions.

The forms of the cubic B-splines Qm, m=−1, . . . ,N + 1, are defined over the interval
[a,b] as follows:

Qm(x)= 1
h3




(
x− xm−2

)3
,

[
xm−2,xm−1

]
,

h3 + 3h2
(
x− xm−1

)
+ 3h

(
x− xm−1

)2− 3
(
x− xm−1

)3
,
[
xm−1,xm

]
,

h3 + 3h2
(
xm+1− x

)
+ 3h

(
xm+1− x

)2− 3
(
xm+1− x

)3
,

[
xm,xm+1

]
,(

xm+2− x
)3

,
[
xm+1,xm+2

]
,

0, otherwise.
(2.18)

We seek an approximating solution of the time-splitted Burgers’ equation of this form:

UN (x, t)=
N+1∑
m=−1

δm(t)Qm(x). (2.19)

The coefficients δm are found by requiring that UN satisfies (2.17) at N + 1 collocation
points and boundary conditions.

Nodal value U , the first derivative U ′, and the second derivative U ′′ at the knots xm
are obtained using the expression (2.19) and cubic B-splines Qm(x) (2.18) in terms of the
element parameters by

Um = δm−1 + 4δm + δm+1,

hU ′
m = 3

(
δm+1− δm−1

)
,

h2U ′′
m = 6

(
δm−1− 2δm + δm+1

)
,

(2.20)

where ′, ′′ denote the first and the second differentiations with respect to x, respectively.
To apply the collocation method, collocation points are selected to coincide with knots

and then substituting nodal values Um and first two successive derivatives U ′
m, U ′′

m into
(2.17). This yields the following coupled matrix system of the first-order ordinary differ-
ential equations:

◦
δm−1 + 4

◦
δm +

◦
δm+1 +

6
h
zm
(− δm−1 + δm+1

)= 0, (2.21)

◦
δm−1 + 4

◦
δm +

◦
δm+1− 12

h2
ν
(
δm−1− 2δm + δm+1

)= 0, (2.22)

where ◦ denotes derivative with respect to time and zm = δm−1 + 4δm + δm+1 is the non-
linear term of (2.21).



526 B-spline FEM to the Burgers’ equation

Assume that the vector of parameters δm and their time derivatives are linearly inter-
polated between two time levels n and n+ 1/2 for (2.21) as

δm=δnm + δn+1/2
m

4
,

◦
δm = 1

∆t

(
δn+1/2
m − δnm

)
, (2.23)

and parameters δm and their time derivatives are interpolated between two time levels
n+ 1/2 and n+ 1 for (2.22) as

δm = δn+1
m + δn+1/2

m

4
,

◦
δm = δn+1

m − δn+1/2
m

∆t
. (2.24)

Plugging expressions (2.23)-(2.24) up into (2.21)-(2.22), respectively, leads to a non-
linear system of equations each having N + 1 equations in N + 3 unknown parameters:

α1δ
n+1/2
m−1 +α2δ

n+1/2
m +α3δ

n+1/2
m+1 = α3δ

n
m−1 +α2δ

n
m +α1δ

n
m+1, (2.25)

α4δ
n+1
m−1 +α5δ

n+1
m +α4δ

n+1
m+1 = α6δ

n+1/2
m−1 +α7δ

n+1/2
m +α6δ

n+1/2
m+1 , (2.26)

where

α1 = 4h− 6d∆t, α2 = 16h+ 24µ, α3 = 4h+ 6d∆t,

α4 = h2− 3ν∆t, α5 = 4h2 + 6ν∆t, α6 = h2 + 3ν∆t.
(2.27)

To have solvable system (2.25)-(2.26), application of the boundary conditions U(a,
t)=U0, U(b, t)=UN helps us to eliminate the parameters δn+1/2

−1 =U0− δn+1/2
0 , δn+1/2

N =
UN − δn+1/2

N−1 from (2.25)-(2.26) so that (N + 1)× (N + 1) tridiagonal band matrix equa-
tion can be solved with the Thomas algorithm. By having found the parameters δn+1/2

m ,
m = −1, . . . ,N + 1, from the system (2.25), solution parameters δn+1

m are obtained from
the system (2.26).

Before carrying on obtaining solution parameters, we have to find initial parameters
δ0
m by using initial and boundary conditions:

(
Ux
)
N

(
x0,0

)= 3
h

(
δ1− δ−1

)=Ux
(
x0,0

)
,

UN
(
xj ,0

)= δm−1 + 4δm + δm+1 =U
(
xj ,0

)
, j = 0, . . . ,N ,

(
Ux
)
N

(
xN ,0

)= 3
h

(
δN+1− δN−1

)=Ux
(
xN ,0

)
.

(2.28)

The above equations yield a tridiagonal band matrix system whose solution can also be
found using the Thomas algorithm. Once we find an approximation δ0

m using the systems
(2.28), the rest of the time parameters δnm is computed from the algebraic systems (2.25)-
(2.26). Before proceeding to the each next time step δn+1, the iteration (2.15) should be
repeated two or three times for improving the solution of the nonlinear algebraic equa-
tion system.

3. Numerical examples and conclusion

In this section, we will present numerical results of the Burgers’ equation for two test
problems. Accuracy of the methods will be measured with discrete L2 and L∞ error norms
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by

∣∣U −UN

∣∣∞ =max
j

∣∣Uj −
(
Un

N

)
j

∣∣,
∥∥U −UN

∥∥2
2 = h

N∑
j=0

∣∣(Uj −
(
Un

N

)
j

)2∣∣. (3.1)

(a) Shock-like solution of the Burgers’ equation has analytic solution of the form

U(x, t)= x/t

1 +
√(

t/t0
)

exp
(
x2/4νt

) , t ≥ 1, 0≤ x ≤ 1, (3.2)

where t0 = exp(1/8ν). Initial condition evaluated from (3.2) at time t = 1 is taken and
boundary conditions are used U(0, t) = U(1, t) = 0. To test effectiveness of the method,
the problem is solved with the earlier used data set h = 0.005 and ∆t = 0.01, ν = 0.005
over the interval [0,1]. Program is run up to time t = 3.25. Results of the QBCM, CBCM
and the analytical solution at some times are documented in Table 3.1. Numerical so-
lutions reflect analytical solutions within very acceptable limits. It is seen that results of
the QBCM are better than those of the CBCM in terms of the norms. Error norms of
earlier times of the results are much better than that of later times. Comparison of the
presented results with those referenced in the paper [1, 2], when the equation is splitted,
shows that there is advantage of using the QBCM due to having less error than results of
the cubic B-spline collocation method to the nonsplitted Burgers’ equation, but we get
the same results with using CBCM. Graphical solutions of both schemes are also given at
time t = 3.25 in Figures 3.1(a)–3.1(b). Absolute error distributions are depicted at time
t = 3.25 in Figure 3.2, from which errors are concentrated at right boundary. This means
that selection of the artificial right boundary causes an increase in error.

With the smaller viscosity constant v = 0.0005, corresponding computational experi-
ments are carried out. Tabulated results are documented in Table 3.2. Once again, QBCM
provided less error than the CBCM. Figures 3.3(a)–3.3(b) show us behavior of the numer-
ical solutions at some times for the presented schemes. For the smaller viscosity value, the
propagation value is steeper. Those graphs agree with some of the previous studies within
plotting accuracy. As the smaller viscosity value is used, errors increase. In Figures 3.4(a)–
3.4(b), error distributions of both schemes at time t = 3.25 are plotted, from which max-
imum errors are seen at about the center of the shock and measured as about 0.014 for
the QBCM and as about 0.021 for CBCM. As for the comparison with the results given in
the papers [1, 2], a direct application of both the cubic B-spline collocation method and
the B-spline Galerkin finite element method to the Burgers’ equation provided less error
than both of the proposed schemes.

(b) For our second test example, we consider the particular solution of Burgers’ equa-
tion

U(x, t)= α+µ+ (µ−α)expη
1 + expη

, 0≤ x ≤ 1, t ≥ 0, (3.3)

where

η = α(x−µt− γ)
ν

(3.4)
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Table
3.1.

C
om

parison
ofresu

lts
at

diff
eren

t
tim

es
for

ν=
0.005

w
ith

h=
0.005

an
d
∆
t=

0.01.

x
Q

B
C

M
C

B
C

M
E

xact
Q

B
C

M
C

B
C

M
E

xact
Q

B
C

M
C

B
C

M
E

xact

t=
1.7

t=
1.7

t=
1.7

t=
2.5

t=
2.5

t=
2.5

t=
3.25

t=
3.25

t=
3.25

0.1
.05882

0.05882
0.05882

0.04000
0.04000

0.04000
0.03077

0.03077
0.03077

0.2
0.11764

0.11764
0.11765

0.08000
0.08000

0.08000
0.06154

0.06154
0.06154

0.3
0.17646

0.17646
0.17646

0.12000
0.12000

0.12000
0.09230

0.09230
0.09231

0.4
0.23517

0.23517
0.23517

0.15998
0.15998

0.15998
0.12307

0.12307
0.12307

0.5
0.29190

0.29192
0.29190

0.19982
0.19983

0.19983
0.15380

0.15380
0.15380

0.6
0.29572

0.29492
0.29591

0.23811
0.23812

0.23812
0.18430

0.18430
0.18430

0.7
0.04207

0.04299
0.04193

0.25302
0.25275

0.25310
0.21269

0.21269
0.21270

0.8
0.00063

0.00066
0.00065

0.10228
0.10269

0.10210
0.21838

0.21817
0.21844

0.9
0.00000

0.00000
0.00000

0.00553
0.00568

0.00554
0.10170

0.10124
0.10126

L
2 ×

10
3

0.07215
2.46642

0.05103
2.11187

1.24901
1.92482

L∞ ×
10

3
0.31153

27.5770
0.18902

25.1517
8.98390

21.0489

t=
1.7

t=
2.4

t=
3.1

L
2 ×

10
3

[1]
0.857

0.423
0.235

L∞ ×
10

3
[1]

2.576
1.242

0.688

L
2 ×

10
3

[2]
0.857

0.423
0.235

L∞ ×
10

3
[2]

2.576
1.242

0.688
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Table
3.2.

C
om

parison
ofresu

lts
at

diff
eren

t
tim

es
for

ν=
0.005

w
ith

h=
0.005

an
d
∆
t=

0.01.

x
Q

B
C

M
C

B
C

M
E

xact
Q

B
C

M
C

B
C

M
E

xact
Q

B
C

M
C

B
C

M
E

xact

t=
1.7

t=
1.7

t=
1.7

t=
2.5

t=
2.5

t=
2.5

t=
3.25

t=
3.25

t=
3.25

0.1
0.05882

0.05882
0.05882

0.04000
0.04000

0.04000
0.03077

0.03077
0.03077

0.2
0.11765

0.11765
0.11765

0.08000
0.08000

0.08000
0.06154

0.06154
0.06154

0.3
0.17646

0.17647
0.17647

0.11999
0.12000

0.12000
0.09232

0.09231
0.09231

0.4
0.23525

0.23529
0.23529

0.15998
0.16000

0.16000
0.12309

0.12308
0.12308

0.5
0.29414

0.29412
0.29412

0.20002
0.20000

0.20000
0.15383

0.15385
0.15385

0.6
0.35303

0.35294
0.35294

0.24005
0.24000

0.24000
0.18457

0.18461
0.18462

0.7
0.00001

0.00000
0.00000

0.28002
0.28000

0.28000
0.21536

0.21538
0.21538

0.8
0.00000

0.00000
0.00000

0.00719
0.00845

0.00977
0.24615

0.24615
0.24615

0.9
0.00000

0.00000
0.00000

0.00000
0.00000

0.00000
0.12021

0.11037
0.12434

L
2 ×

10
3

1.24624
2.46642

1.43951
2.11186

1.24624
1.92482

L∞ ×
10

3
13.8155

27.5770
16.7712
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Figure 3.1. ν= 0.005, h= 0.005, ∆t = 0.01.
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Figure 3.2. Errors (|Numerical−Analytical|) at time t = 3.25 with ν= 0.005.
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Figure 3.3. ν= 0.0005, h= 0.005, ∆t = 0.01.
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Figure 3.4. Errors (|Numerical−Analytical|) at time t = 3.25 with ν= 0.0005.
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Table 3.3. Comparison of results at time t = 0.5 for ν= 0.01 with h= 1/36 and ∆t = 0.01.

x QBCM CBCM Exact

0.000 1.000 1.000 1.000

0.056 1.000 1.000 1.000

0.111 1.000 1.000 1.000

0.167 1.000 1.000 1.000

0.222 1.000 1.000 1.000

0.278 0.997 1.000 0.998

0.333 0.977 0.983 0.980

0.389 0.838 0.825 0.847

0.444 0.472 0.465 0.452

0.500 0.237 0.244 0.238

0.556 0.202 0.204 0.204

0.611 0.200 0.200 0.200

0.667 0.200 0.200 0.200

0.722 0.200 0.200 0.200

0.778 0.200 0.200 0.200

0.833 0.200 0.200 0.200

0.889 0.200 0.200 0.200

0.944 0.200 0.200 0.200

1.000 0.200 0.200 0.200

L2× 103 4.48881 5.86664

L∞ × 103 19.80734 22.23450

and α, µ, and γ are constants, which we choose for our experiments α= 0.4, µ= 0.6, γ =
0.125. This solution represents a travelling wave and initial condition obtained from the
analytic solution moves to the right with speed η . So the initial condition is determined
from (3.3) when t = 0. The boundary conditions are

U(0, t)= 1, U(1, t)= 0.2, t ≥ 0. (3.5)

The simulations are run to time t = 0.5. Viscosity coefficient ν= 0.01, space time h=
1/36, and time step ∆t = 0.01 are chosen for computation. Both numerical solutions and
analytical solution are given in Table 3.3. It is seen that the agreement between our two
numerical solutions and the analytical solution appears satisfactory. Numerical results at
various times are graphed in Figures 3.5(a)–3.5(b) for both schemes. The almost same
resemblance of wave fronts which was produced from both scheme is noticeable. The
QBCM produced slightly better results than the CBCM. Errors of difference between the
analytical and numerical results are visualized in Figures 3.6(a)–3.6(b).
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Numerical solutions of the time-space-splitted Burgers’ equation are illustrated when
both cubic and quadratic B-spline collocation methods are used. Although both schemes
give satisfactory results, the comparison of the two schemes shows that the cubic col-
location method for time-splitted Burgers’ equation gives less error than the quadratic
B-spline collocation method for the space-splitted Burgers’ equation. We can also make
further comparison of the presented schemes with some of recent previous methods ref-
erenced in the paper [1, 2]. A direct application of those methods to the Burgers’ equation
produces worse results than the QBCM and almost same results with CBCM. Unfortu-
naly, the splitting tecnique for the Burgers’ equation together with numerical tecnique
gives worse results than those of the proposed methods when the smaller values of the
viscosity are used. However, when the differential equation involves higher derivatives,
time-space-splitted scheme accompanied with low-order polynomial enables to construct
some approximate functions in the numerical tecniques so that time-space-splitted nu-
merical methods can be preferable in getting the numerical solution of those differential
equations due to providing easy algorithm.
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E-mail address: idag@ogu.edu.tr

Dursun Irk: Mathematics Department, Osmangazi University, 26480 Eskişehir, Turkey
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