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1. Introduction

In many problems arising in mathematics, physics, engineering, economics, and other
sciences, it is necessary to minimize amounts of a certain functional. Because of the im-
portant role of this subject, considerable attention has been devoted to these kinds of
problems. Such problems are called variational problems, see [1, 2].

The simplest form of a variational problem can be considered as

b
Tyl = j Floy(0,y () dx, (L.1)

where J is called a functional, and its minimum must be found. Functional J can be con-
sidered by two kinds of boundary conditions. The first kind, we refer to as fixed boundary
problems, the admissible function y(x) must satisfy the boundary conditions

y(@) = Ya, y(b) = yp. (1.2)

The second kind, we call problems with moving boundaries and concern ourselves
with them, is variational problems for which at least one of the boundary points of the
admissible function is movable along a boundary curve.
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The variational problem where the beginning point and the endpoint are fixed is often
referred to as point-point problem, and the problems with variable boundaries as point-
curve, curve-point, and curve-curve problems.

A necessary condition for the admissible solutions of such problems is to satisfy the
Euler-Lagrange equation

of d of

dy dx oy =0

(1.3)

For the point-point problem, Euler-Lagrange equation must be considered by the bound-
ary conditions (1.2). For the problems with variable boundaries, we have two cases.

Type 1: As the first case, we consider problems for which at least one of the boundary
points move freely along a line parallel to the y-axis, in fact at this point y(x) is not
specified. In this case, admissible functions must fulfill the natural boundary conditions
(2.3) and (2.4), (or only one of them).

Type 2: For the second case, we will let the beginning and endpoints (or only one of
them) move freely on given curves y = y(x), y = ¢(x). In this case, the admissible func-
tion y(x) and points a and b (or one of them) must satisfy the necessary conditions (2.5)
and (2.6) called transversality conditions.

The decomposition method proposed by G. Adomian is a power tool to investigate
various models in applied science, engineering, and so forth, (see [3, 4]). The method
provides the solution in a rapidly convergent series with components that can be com-
puted recursively, see [5, 6] for convergence. Adomian decomposition is applied on vari-
ous kinds of problems, for example, see [7-24] for some recent works. It produces an ef-
ficient solution with high accuracy and minimal calculation for finding the approximate
solution of the linear and nonlinear problems. Dehghan and Tatari in [9] used Adomian
decomposition to solve variational problems with fixed boundaries. In this work we solve
variational problems with moving boundaries by this method. In fact, we apply Adomian
decomposition method to solve the Euler-Lagrange equation considered by the boundary
conditions which yield from natural boundary conditions and transversality conditions.
In the last section, we use some examples to show the numerical treatment of the pro-
posed method.

2. Statement of the problem

2.1. Boundary conditions. The first type of problem here is one for which at least at
one of the endpoints, y(x) is not specified. In this case, all admissible functions have the
same domain of definition [a, b] and satisfy the Euler-Lagrange equation in this interval.
Furthermore, such function must satisfy conditions called natural boundary conditions
prescribed in the following theorem.

THEOREM 2.1. Suppose the function y = yo(x) € C'[a,b] yield a relative minimum of the
functional (1.1) for which

y(a) = y, is given, y(b) is arbitrary  (free right endpoint) (2.1)
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or
y(a), y(b) are arbitrary  (free endpoints). (2.2)

Then yo(x) satisfies, respectively, the following natural boundary conditions:

af
a9y’

(b, yo(b), yo(b)) =0 (free right endpoint) (2.3)

or

g(a,yo(a),yé(a)) =0= g){/(b,)/()(b),yé(b)) (free endpoints). (2.4)

We now consider a generalized form of the problem. We let endpoints move freely on
given curves.

In this case, we seek for a function y(x), which emanates at some x = a from the curve
y = ¥(x) and terminates for some x = b on the curve y = ¢(x) and minimizes the func-
tional (1.1). In this problem also the points a,b are not known, they must satisfy the
necessary conditions called transversality conditions, prescribed in the following theo-
rem.

THEOREM 2.2. If the function y = yo(x) € C'[a,b], which emanates at some x = a from
the curve y = y(x) € C!(—o0,0) and terminates for some x = b on the curve y = ¢(x) €
Cl(—o00, ), yields a relative minimum for functional (1.1), where f € C'(R), R being a do-
main in the (x, y, y") space that contains all lineal elements of y = yo(x), then it is necessary
that y = yo(x) must satisfy the Euler-Lagrange equation in the interval [a,b] and that at the
point of departure and the point of arrival, the transversality conditions

P
a;' (a,y0(a), yo(a)) (v (a) — yo(a)) + f(a,yo(a), yo(a)) =0, (2.5)

52 (B30 KO) ¢ )= SO + b =0 2o

are satisfied. In the case that one of the points is fixed, then the transversality condition has
to hold at the other point.

We see that the natural boundary conditions (2.3) and (2.4) may be viewed as a special
case of the transversality conditions for y'(a) = co and ¢’ (b) = co.

If the initial curve or the terminal curve (or both) is a horizontal line, that is, if ¢/ (x) =
0 or ¢'(x) = 0 (or both), then we obtain from (2.5) that

afy,(a,yo(a),yé(a))yé(a) — fla,yo(a), y5(a)) =0, (2.7)
and an analogous condition for the right endpoint holds.

One can consider transversality conditions for the problems with more than one un-
known function.
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For example, in the two-dimensional case we seek a vector function
¥ = ¥(x) = (y1(x), y2(x)) such that it minimizes

b
Iy, y2] = L F o p1(x), y2(x), y1(x), y3(x))dx, (2.8)

in which yi(a) = y1,4, ¥2(a) = ¥, and the endpoint lies on a two-dimensional surface
that is given by x = u(y1, y»). Here, the necessary condition for the extremum of the func-
tional (2.8) is to satisfy the following system of second-order differential equations:

of ~dof o ...
5y dxay] =0, i=1,2; (2.9)

and the terminal point x = b must satisfy the following transversality conditions:
ou ( ou o ou 0,> of )
<ay1f o N1 ayzyz oy,
ou ( ou o ou 0,> of )
<3)’2 / o™ "oy oy,
in which y = y(x) = ( y?(x), yg(x)) is an admissible vector function. For further infor-

mation on transversality conditions, specially for the proofs of Theorems 2.1 and 2.2 and
condition (2.10), see [2].

=0,
x=b

(2.10)

=0,
x=b

2.2. Solution of problem using Adomian decomposition method. The Euler-Lagrange
(1.3) can be considered in an operator form

L(y)-N(y) =g (2.11)

for a < x < b, where L = d*/dx? is the second-order derivative operator, N is an operator
(which may be nonlinear), and g is a given function. We consider the inverse operator in
the following form:

L (h(x)) = Jx J h(x))dx, o, (2.12)
Applying operator L™! to both sides of (2.11), we have
y(x)—y(a) -y (a)x+y (a)a=L"'N(y)+L'g. (2.13)
So that,
y(x) =a+Ax—Aa+L 'g+ L 'N(y). (2.14)

Now according to the decomposition procedure of Adomian, we construct the unknown
function y(x) by a sum of components defined by the following series:

y(x) =D yu(x) (2.15)
n=0
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and consider the nonlinear expression N(y) by the infinite series of the polynomials given
by N(y) = >N, where components N, have the following form:

1 ar d
N (Y0> Y15e-5Yn) = a7 [N[ Akyk]])L K n=>0. (2.16)
k=0 =

Notice that if N be a linear operator then we have N,, = y,. Now we have the following
recursive relations:

yo(x) = a+Ax+L 'g(x),

2.17
Yn1(x) = L7IN,, n=0. ( )

Based on the Adomian decomposition method, we constructed the solution y(x) as

y=Ilim¢, (2.18)

n— o0

where the n+ 1 term approximation of the solution is defined in the following form:

¢, => y(x), n>0. (2.19)
k=0

The solution here is given in a series form that converges rapidly in physical problems.

Applying the decomposition procedure of Adomian, we find the series solution of y(x)
follows with constants «, A which are unknown. For the determination of these constants,
we have two cases.

Case (1): For the variational problems of type 1, we impose the boundary conditions that
yield from natural boundary conditions (2.3) and (2.4) to the obtained approximation of
the solution (2.19) which results equations in «, A. Remark that for the point-curve and
curve-point problems of this type only constant A is undetermined, also we have one
equation in A. However, by solving these equations we find «, A.

Case (2): Consider variational problems of type 2, for example, a point-curve problem.
In such problem, the point a and constant « are known but the point b and the constant A
are unknown. In this case, we have two equations, one equation yields from transversality
condition at x = b and another equation yields from the intersection of y(x) and the
terminal curve y = ¢(x) at x = b. By solving this system of equations, which is usually
nonlinear, we find both b and A and the solution of the Euler-Lagrange equation follows
immediately.

Note that for a curve-curve problem of this type, we have four unknown g, b, a, A.
In this case, we have four equations. Two equations yield from transversality conditions
at x = a,b and two equations obtained from the intersection of y(x) by y = w(x) and
y = @(x) at x = a and x = b, respectively. Solution of this system of equations determines
these unknown.
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3. Numerical tests

To give an obvious overview of the Adomian decomposition method on the variational
problems with moving boundaries, we present some examples.

3.1. Example 1 (Ramsey growth model). Consider the following variational problem:

2

T
191 = |, albyto) =y (0 - ), (3.1)
in which a,b >0, C* > 0 and y(t) is the amount of a capital at time ¢ (see [1] for further
information on this economic model).

Here, the capital stock y(0) at the initial time ¢ = 0 of the planing period is assumed to
be known: ¥(0) = yo; on the other hand, the planner will not want to prescribe how large
the capital will be at time t = T. We have therefore a variational problem with free right
endpoint.

For this numerical example, we leta=b=c* =1, T = 1, and y, = 2 which has the
analytical solution y(t) = 1 +¢'.

The corresponding Euler-Lagrange equation is

y'(t)—y(t)+1=0. (3.2)
Now we consider the natural boundary condition (2.3) att = 1:

of
a9y’

(Ly(D),y' (1)) = =2(y(t) =y’ () 1) | ., =0. (3.3)
Therefore, we have the following boundary conditions for (3.2):

y(0)=2, y(1)-y(1)-1=0. (3.4)

Using the operator form of (3.2), we have

Ly=y-1
(3.5)
y(x) =2+Ax—L Y1)+ L' (y(x)).
Applying the Adomian decomposition, we have
> yn (%) :2+Ax—2+L‘1<Zyn(x)). (3.6)
n=0 n=0

Therefore, we use the reccursive relations

2

x
yo(x) =2+Ax — PR (3.7)

Ynr1(x) = L H(yu(x)), n=0.
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o Approximate solution
— Exact solution

FiGure 3.1. Plot of y(x) and ¢,(x) in example 1.

Now we use ¢, (x) as the approximation of y(x), for example, for n = 3 we have

_ 1o, 1,5 1 1,5

¢3(x)—2+Ax+2x +6Ax +24x + 12OAx
1 6 1 7 1 3
b—xOt ——AxT — ———— 5,
720" T 5040 T 40320

(3.8)

For the determination of A, we solve the equation ¢, (1) — ¢5(1) — 1 = 0. Figure 3.1 shows
y(x) and ¢5(x) and Table 3.1 shows the error of ¢5.

3.2. Example 2 (Fermat’s principle). We consider in this example the problem of a light
ray emanating from a fixed point P,, propagating in a plane through a medium with
n(x,y) >0 as an index of refraction, and terminating at some point x = b on the curve
y = ¢(x).

By Fermat’s principle, the light ray will take the path that minimizes the total traveling
time from P, to x = b on y = (x), that is,

b
Tly] = j n(x, y ()1 + y2(x)dx. (3.9)

a

Observe that the Brachistocherone problem, the minimal surfaces of revolution and the
shortest path problem are special cases of Fermat’s principle for n(x, y) = 1/, /y,n(x,y) =
y,and n(x, y) = 1, respectively.
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TaBLE 3.1. Error (e(x) = |y(x) — ¢,(x)|) in Example 1.

X 0 0.2 0.4 0.6 0.8 1
e(x) 0 .203617e-3 .415371e-3 .643003e-3 .889442e-3 .1135848e-2

The transversality condition in this case is of the form

( n(x,y \/1+y’2+\/172 ')) =0 (3.10)
+ ’
or
<n(x)}’)(1+¢)’ ) -0 (3.11)
\1+}’,2 x=b '

Finally, we have y'(b) = —1/¢’(b), that is, the transversality condition is in this case re-
duced to the orthogonality condition.

For this numerical example, we let n(x,y) = 1+ y, P, = (0,0), and y = ¢(x) = x+1
which has the analytical solution y(x) = —1+d cosh(x/d), in which d, b must satisfy
transversality condition at x = b. The corresponding Euler-Lagrange equation for this
problem is

1+ yr2(x)

y'x) = 1+ y(x) *

(3.12)

By using (2.16), we obtain the following Adomian polynomials for N(y) = (1+ y"2)/(1 +
%

1+ 2 2 77 1+ _ 1+ ”
No(yo) = S0 Ny (g ) = 202005 20) =31 (14 37)
o g () (3.13)
Nz(}’(),)/l,)/z) = m,
0
in which

B=(1+y0)" 2y (1+y0) +4y075 (1+ 30) +2y5y1 31 — 2y (1+ &) = 20191 %0)

L , (3.14)
=21 (14 y0) (2yoy1 (1 + o) = y1 (14 y07)).
Now we have the following recursive relations:
yo(x) = Ax, Y1 (x) = LN (N, (y05---5yn)), n=0. (3.15)

In this example, we use 2-term approximation of the solution, ¢, (x). For the determi-
nation of A and b, we solve the system of two equations ¢,(b) = b+ 1 and ¢,(b) = —
Figure 3.2 shows y(x) and ¢, (x) and Table 3.2 shows the error of ¢,.
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F1GURE 3.2. Plot of y(x) and ¢, (x) in example 2.

TaBLE 3.2. Error (e(x) = |y(x) — ¢,(x)|) in Example 2.

x -0.3 0 0.3 0.6 1.25
e(x) .68239187e-3 .38763200e-1 .72982030e-1 .9805628e-1 .6617189e-2

4, Conclusion

In this work, the Adomian decomposition method was successfully used to solve vari-
ational problems with moving boundaries. We solve Euler-Lagrange equation with the
boundary conditions that yield from natural boundary conditions and transversality con-
ditions, using Adomian method. It is important to note that this method does not require
any disceretization or linearization and is not affected by computation roundoff errors.
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