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We have considered the scattering of a plane wave by a penetrable acoustic circular cylin-
der. The boundary conditions are continuity of the total pressure and the total veloc-
ity. The wave speed and density of the target are different from that of the surrounding
medium. We investigated the performance of higher-order SRCs up to L4 operator in two
dimensions. We assume that in the rectangular Cartesian system of axes, (x, y,z), the z
axis coincides with the axis of the cylinder and an incident wave propagates in a direction
perpendicular to the z axis. All the field quantities are then independent of z. Numerical
results are added to present the change of the module of the total field and the magnitude
of the far field with respect to θ.
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1. Introduction

Approximate techniques have been introduced to study the scattering of waves by obsta-
cles. The aim of these methods is to reduce the work involved in solving an integral equa-
tion or any appropriate formulation of the problem. The on-surface radiation condition
(OSRC) method has been devised by Kriegsmann et al. to investigate electromagnetic
scattering problems involving cylindrical convex objects [1]. The main concept in this
method is the application of a radiation condition, connecting the field and its normal
derivative, directly onto the surface of the scatterer to determine approximately the sur-
face field or its derivative in terms of the given field. The calculation of the scattered field
is then reduced to quadratures. As is demonstrated in [1–4] for a wide variety of two-
and three-dimensional obstacles, results are in conformity with exact analysis or numer-
ical methods over a wide range of frequencies. One of the approaches to derive radiation
boundary conditions (RBCs) is based on the idea of killing the terms of the expansion of
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the scattering field satisfying the Helmholtz equation and Sommerfeld radiation condi-
tion. An nth-order RBC operator which annihilates the first n terms in the expansion is
obtained either on a large circular cylinder enclosing a cylindrical convex object, or on a
large sphere enclosing a finite convex object, depending on the geometrical dimensions
of the problem. These RBCs can be generalized so that they can be used in the OSRC
method for constructing the approximate solution of a scattering problem involving an
arbitrary convex object. In [1–4] only the first- and second-order RBCs have been pro-
duced and used in conjunction with the OSRC method. Later [5] third- and fourth-order
RBCs have been used to examine whether the use of higher-order SRCs in the OSRC
method models creeping-wave physics more accurately than a second-order SRC. Some
three-dimensional canonical problems, namely, scattering by an impedance sphere and a
penetrable sphere, are investigated in a variety of circumstances. The conclusion was that
introduction of higher-order radiation conditions improves the approximation consider-
ably in comparison with results obtained by the use of a second-order SRC, especially in
cases in which creeping waves are less pervasive.

In this work, we employ the second- and fourth-order RBCs given by Bayliss et al.
[6] in the method to investigate the scattering of a plane wave by a penetrable circular
cylinder. The results obtained by the SRC method are compared with the exact result for
a penetrable cylinder.

The paper is organized as follows. The formulation of the problem and the RBCs of
the mode-annihilation method are presented in Section 2. In Section 3, first the exact
solution of the problem is given. Then approximate solutions by the OSRC method are
obtained. In Section 3, comparisons are made between the second- and fourth-order con-
ditions via the exact results. Section 4 contains some concluding remarks.

2. Formulation

Elliptic boundary value problems governed by the Helmholtz equation in exterior regions
arise in many branches of continuum physics. An example is the scattering of a time har-
monic acoustic wave ui by an obstacle occupying the region �2 with a boundary surface
Σ1. Let us denote the region outside Σ1 by �1. If we assume that �1 is a homogeneous
isotropic medium with sound speed c1, constant density ρ1, angular frequency w, and
the time dependence is taken as exp(iwt), then in this region the scattered field u1 must
satisfy the Helmholtz equation

∇2u1 + k2
1u1 = 0, k1 = w

c1
(2.1)

with boundary condition(s) specified on Σ1. In addition, at infinity u1 must have the
form of a radiating wave, that is, the following Sommerfeld radiation condition must be
satisfied:

lim
r→∞r

1/2
(
∂u1

∂r
+ ik1u1

)
= 0. (2.2)
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When the obstacle is penetrable and the region inside Σ1, denoted by �2, is filled with
a homogeneous isotropic fluid with sound speed c2 and constant density ρ2 which are dif-
ferent from those of the surrounding infinite medium �1, then the field u2, transmitted
inside Σ1, satisfies the Helmholtz equation

∇2u2 + k2
2u2 = 0. (2.3)

In this case, the solutions of (2.1) and (2.3) are subject to the following continuity condi-
tions on Σ1:

u1 +ui = u2,
∂

∂n

(
u1 +ui

)= ζ
∂u2

∂n
for x ∈ Σ1, (2.4)

where ui represents the incident wave, ∂/∂n denotes the differentiation along the outward
normal to Σ1, and ζ = ρ1/ρ2. If the medium inside the obstacle is inhomogeneous, k2 =
c1/c2 will be a given function of the position, that is, k2 = k2(x) for x ∈�2. Also notice
that when ζ� 1 the target is nearly rigid, whereas when ζ� 1 the target is nearly soft.

It is well known that the solution of the Helmholtz equation satisfying the Sommerfeld
radiation condition can be represented by the series which is convergent in �1 and is
given as

u=H(2)
0 (kr)

∞∑
n=0

Fn(θ)
rn

+H(2)
1 (kr)

∞∑
n=0

Gn(θ)
rn

, (2.5)

where H(2)
0 and H(2)

1 are Hankel functions of the second kind of order 0 and 1, respectively
[8]. As this expansion is difficult to work with for large values, we will use the asymptotic
expansion for u as follows:

u≈
√

2
πkr

e−i(kr−π/4)
∞∑
n=0

fn(θ)
rn

. (2.6)

To solve the problem numerically by direct methods; we must first make the region
�1 finite. This can be done by means of a

∑
2 curve which includes

∑
1 curve and whose

center is in �2 and has radius r1. With these assumptions the problem is reduced to
finding the solution of the Helmholtz equation on the region bounded by

∑
1 and

∑
2,

the solution must satisfy the impedance condition on
∑

1 and the boundary condition
must be satisfied on

∑
2 which will play the role of the Sommerfeld radiation condition.

However, this condition is as yet unknown and the first thing that comes in mind is to
carry the Sommerfeld condition over to

∑
2, that is,

(
∂u

∂r
+ iku

)
r=r1

= 0. (2.7)

However, it can be easily seen that even for the first term of the expansion (2.6), (2.7)
does not hold since

(
∂

∂r
+ ik

)√
2

πkr
e−i(kr−π/4) f0(θ)= ϑ

(
r−3/2). (2.8)
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If the operator L1 = ∂/∂r + ik+ 1/2r is used instead of (∂/∂r + ik),

L1

(√
2

πkr
e−i(kr−π/4) f0(θ)

)
= 0 (2.9)

will be found.
This result will be true for

e−i(kr)
√
kr

F(θ), (2.10)

where F(θ) is an arbitrary function and for (2.6) the following will be valid:

(
L1u

)
r=r1

= ϑ
(
r−5/2). (2.11)

That is when L1 is applied to u, a result less erroneous than the Sommerfeld radiation
condition is obtained. Higher-order boundary condition operators can be obtained by
using similar arguments and they are defined by the following relations for m > 1 (see
[2]):

Lm =
(
∂

∂r
+ ik+

4m− 3
2r

)
Lm−1. (2.12)

The first four operators in polar coordinates for the Helmholtz equations [7], used in this
paper, are

L1u= ∂u

∂r
+ iku+

u

2r
(2.13)

L2u= 2
(

1
r

+ ik
)
∂u

∂r
−
(

2k2 +
3

4r2
+

3ik
r

)
u− 1

r2

∂2u

∂θ2
(2.14)

L3u=
(

23
4r2

+
12ik
r
− 4k2

)
∂u

∂r
+
(

15
8r3

+
45ik
4r2

− 14k2

r
− 4ik3

)
u

+
(−9

2r3
− 3ik

r2

)
∂2u

∂θ2
− 1
r2

∂2

∂θ2

(
∂u

∂r

)
,

(2.15)

L4u=
(

22
r3

+
71ik
r2

− 48k2

r
− 8ik3

)
∂u

∂r
+
(

105
16r4

+
105ik

2r3
− 94k2

r2
− 52ik3

r
+ 8k4

)
u

+
(−43

2r4
− 30ik

r3
+

8k2

r2

)
∂2u

∂θ2
+
(−8
r3
− 4ik

r2

)
∂2

∂θ2

(
∂u

∂r

)
+

1
r4

∂4u

∂θ4
.

(2.16)
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3. Comparison

The following equation can be written for a plane wave incident in the direction of the
positive x-axis:

ui = e−ik1r cosθ =
∞∑

n=−∞
Jn
(
k1r
)
ein(θ−π/2). (3.1)

Let the centre of the cylinder be at the origin and let a be the radius, consider the exterior
region �1 = {r > a} and the interior region �2 = {r < a}, and a circle with r = a on

∑
1.

The problem is defined as

∇2u1 + k2
1u1 = 0 (x, y)∈�1, (3.2)

∇2u2 + k2
2u2 = 0 (x, y)∈�2, (3.3)

r = a, ui +u1 = u2,
∂

∂n

(
ui +u1

)= ζ
∂u2

∂n
. (3.4)

In addition, u1 must satisfy the condition (2.2). The solution of Helmholtz equation
for u1 and u2 at �1 and �2, respectively, can be written as

u1 =
∞∑

n=−∞
anH

(2)
n

(
k1r
)
ein(θ−π/2),

u2 =
∞∑

n=−∞
bnJn

(
k2r
)
ein(θ−π/2).

(3.5)

Using boundary conditions (3.4) for u1 and u2, we determine an and bn as follows:

an = ζk2J ′n
(
k2a
)
Jn
(
k1a
)− k1Jn

(
k2a
)
J ′n
(
k1a
)

k1Jn
(
k2a
)
H(2)′

n
(
k1a
)− ζk2J ′n

(
k2a
)
H(2)

n
(
k1a
) , (3.6)

bn =− 2i

πa
{
k1Jn

(
k2a
)
H(2)′

n
(
k1a
)− ζk2J ′n

(
k2a
)
H(2)

n
(
k1a
)} . (3.7)

Note that if ζ� 1 and ζ → 0, then the obstacle is almost like a hard obstacle. If ζ� 1,
then the obstacle is almost like a soft obstacle.

The radiation boundary conditions have been derived at the phase fronts and on these
surfaces establish the approximate (asymptotic) relation between the derivative of u in the
direction of the normal to u and its tangential derivatives. Hence these relations will be
valid wherever there is a wave front. Kriegsmann et al. [1] assume that these expressions
are also valid on

∑
1 and replace ∂/∂n with ∂/∂r at L1u and L2u. Therefore, at the repre-

sentation in two dimensions of the radiation boundary conditions given by (2.12)–(2.16)
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replacing ∂/∂r with ∂/∂n and writing u= u1, the following relation is given between nor-
mal derivative of scattering field and tangential derivative on

∑
1:

∂u1

∂n
=Λ(m)u1, m= 2,3,4. (3.8)

This relation is based on behavior local to a wavefront. Λ(m)u1 denotes all the terms of
the radiations except the term with ∂u/∂r. Boundary condition on

∑
1 from (2.4) is

u1 = u2−ui,
∂u1

∂n
= ζ

∂u2

∂n
− ∂ui

∂n
. (3.9)

Then the relation

ζ
∂u2

∂n
−Λ(m)u2 = ∂ui

∂n
−Λ(m)ui (3.10)

is obtained (3.3), and (3.10) defines an interior problem for u2. For a cylinder of radius
a, the second-, third- and fourth-order radiation conditions are found to be

α(m)
1

d4v1

dθ4
+α(m)

2
d2v1

dθ2
+α(m)

3 v1 = α(m)
4

d2w1

dθ2
+α(m)

5 w1, m= 2,3,4, (3.11)

where

v1(θ)= u1(a,θ), w1(θ)= 1
k1

∂u1

∂r
(a,θ), (3.12)

and α(m)
q are functions of ε = k1a. In (3.11) the superscript m denotes the order. α(m)

q are
defined as

α(2)
1 = 0, α(2)

2 = 1, α(2)
3 =−3

4
− 3iε+ 2ε2, α(2)

4 = 0, α(2)
5 = 2ε(1 + iε),

α(3)
1 = 0, α(3)

2 =−3iε− 9
2

, α(3)
3 = 15

8
+

45
4
iε− 14ε2− 4iε3,

α(3)
4 = ε, α(3)

5 =−ε
(

23
4

+ 12iε− 4ε2
)

,

α(4)
1 = 1, α(4)

2 =−43
2
− 30iε+ 8ε2, α(4)

3 = 105
16

+
105iε

2
− 94ε2− 52iε3 + 8ε4,

α(4)
4 = 4ε(2 + iε), α(4)

5 =−ε(22 + 71iε− 48ε2− 8iε3).
(3.13)

In the case of a penetrable cylinder, by defining

v2(θ)= u2(a,θ), w2(θ)= 1
k2

∂u2

∂r
on r = a, (3.14)
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the boundary conditions (2.4) can be written as

v1 + vi = v2, k1(w1 +wi)= k2ζw2. (3.15)

Using these equations, we can now eliminate v1 and w1 from the SRCs given by (3.11) to
obtain

α(m)
1

d4v2

dθ4
+α(m)

2
d2v2

dθ2
+α(m)

3 v2− k2

k1
ζ
{
α(m)

4
d2w2

dθ2
+α(m)

5 w2

}

= α(m)
1

d4vi

dθ4
+α(m)

2
d2vi

dθ2
+α(m)

3 vi− k2

k1
ζ
{
α(m)

4
d2wi

dθ2
+α(m)

5 wi
}
.

(3.16)

The result is an impedance-type boundary condition on r = a connecting v2 and w2

and their tangential derivatives with the incident field. Thus u2 is to be the solution of

∇2u2 + k2u2 = 0, x ∈�2, (3.17)

which satisfies this resulting impedance boundary condition on r = a. Notice that (3.16)
and (3.17) constitute an interior elliptic boundary value problem. Once u2 has been deter-
mined, v1 and w1 are found from (3.15). Applying the method of separation of variables,
the solution of (3.17) is obtained as

u2 =
∞∑

n=−∞
BnJn

(
k2r
)
ein(θ−π/2) (3.18)

and the use of the boundary condition (3.16) yields

Bn = Θ(m)(ε)Jn(ε)− J ′n(ε)
Θ(m)(ε)Jn

(
k2a
)− (k2/k1

)
ζJ ′n
(
k2a
) , (3.19)

where

Θ(m)(ε)=−n4α(m)
1 −n2α(m)

2 +α(m)
3

n2α(m)
4 −α(m)

5

. (3.20)

The exact solution of the problem is also given by (3.18), on replacing Θ(m)
n (ε) by

H(2)′
n (ε)/H(2)

n (ε) in (3.19). Thus, for the problem under consideration the SRCs method
is equivalent to introducing the approximation

H(2)′
n (ε)

H(2)
n (ε)

≈Θ(m)(ε), (3.21)

and therefore, this result is independent of the boundary conditions prescribed on the
surface of the circular cylinder Σ1. Hence, the accuracy of the method for the cylinder
problems will depend on the accuracy of the approximation in (3.21).
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Figure 3.1

If, at r = a, namely, over Σ1, relations ut(a,θ)= v2(θ), (∂ut/∂r)(a,θ)= k2ξ1w2(θ), and

�(x,y)=−(1/4)iH(2)
0 (k1|x− y|) are used in the following integral representation:

ui(x) +
∫
Σ1

{
∂ut(y)
∂ny

�(x,y)−ut(y)
∂

∂ny
�(x,y)

}
dsy = ut(x), x ∈�1, (3.22)
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the scattered field in any point in the region �1 is obtained by calculating the following
integral [9]:

u1(r,θ)= i

4

∫ 2π

0

[
v2(θ′)

∂

∂a
H0
{
k1
(
r2 + a2− 2racos(θ− θ′)

)1/2}

− k2ξ1w2(θ′)H0
{
k1
(
r2 + a2− 2racos(θ− θ′)

)1/2}]
adθ′.

(3.23)

Thus the amplitude of the far field is obtained as follows:

P(θ)= iε

4

∫ 2π

0

{
v2(θ′)icos(θ− θ′)− k2

k1
ξ1w2(θ′)

}
eiεcos(θ−θ′)dθ′. (3.24)

Here if (3.3) is used and the expressions
∫ 2π

0 eiεcos(θ−θ′)+in(θ′−π/2)dθ′ = 2πJn(ε)einθ and∫ 2π
0 cos(θ− θ′)eiεcos(θ−θ′)+in(θ′−π/2)dθ′ = −i2πJ ′n(ε)einθ are considered, the amplitude of the

far field is obtained as follows:

P(θ)= iεπ

2

∞∑
n=−∞

Cne
inθ. (3.25)

Here again Cn is expressed as follows:

Cn =
{
J ′n(ε)Jn

(
k2a
)− k2ξ

k1
Jn(ε)J ′n

(
k2a
)}

Bn. (3.26)

For the exact solution, the amplitude of the far field is calculated from

Pexact(θ)=
∞∑

n=−∞
ane

inθ , (3.27)

where an is given in (3.6). If we compare (3.25) and (3.27), the method gives the approx-

imation (iεπ/2)Cn ∼ an. If we substitute H(2)′
n (ε)/H(2)

n (ε) instead of Θ(m)(ε) in (3.19), we
obtain (iεπ/2)Cn = an. Thus, the approximation (3.21) is also valid for the far field.

4. Conclusion

Comparisons are made between the exact answer of the problem and the SRC solutions.
Numerical results for the variation of the modules of the total surface field with θ and
the variations of the modules of far field, namely, of scattering function P with respect to
θ are presented for various values of ka. It is observed that introduction of higher-order
radiation conditions improve the approximation considerably in comparison to results
obtained by the use of the second-order radiation condition, especially in cases where
creeping waves are less pervasive.

The parameters used are as follows.
(A) ρ1 = 1.2, c1 = 340, ρ2 = 1000, c2 = 1480, k2 = c1k1/c2 (if there is water in B2 and air

in �1).
(B) ρ1 = 1000, c1 = 1480, ρ2 = 1.2, c2 = 340, k2 = c1k1/c2 (if there is air in B2 and water

in �1).



10 Mathematical Problems in Engineering

0 40 80 120 160

θ (degree)
k1a= 1

0

0.001

0.002

0.003

�W

�

Exact
L2

L4

(a)

0 40 80 120 160

θ (degree)
k1a= 10

0

0.01

0.02

0.03

�W

�

Exact
L2

L4

(b)

Figure 3.2

In Figure 3.1, the results of the second- and fourth-order SRCs for the parameters
given in (A) (nearly hard cylinder) are depicted together with the exact curve for k1a= 1
and 10. It can be seen that the fourth-order SRC improves the method and gives better
results than the second-order SRC.
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0 40 80 120 160

θ (degree)
k1a= 10

1.6

2

2.4

�W

�

Exact
L2

L4

Figure 3.4

In Figure 3.2, the results of the second- and fourth-order SRCs for the parameters in
(B) (nearly soft cylinder) for k1a= 1 and 10 are depicted together with exact ones. It can
be seen that for both k1a= 1 and 10 the performance of the fourth-order SRC is perfect.
It offers a good improvement, although the second-order SRC also produces quite good
results. It should be noted that in cases given in the graphs the penetrable cylinder behaves
nearly like a soft cylinder.
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Figure 3.6

In a different manner from A and B whenever the densities of two regions are similar
and the density of the smaller second region is greater than this, the case specific param-
eters and Figure 3.3 for k1a= 10 are as follows.

(C) ρ1 = 1.2, c1 = 340, ρ2 = 2.4, c2 = 800, k2 = c1k1/c2 (if there is water in B2 and air in
�1).
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Whenever the densities of two regions are similar between them and lower than the
second region, the case specific parameters and Figure 3.4 for k1a= 10 are as follows.

(D) ρ1 = 1200, c1 = 1600, ρ2 = 600, c2 = 800, k2 = c1k1/c2 (if there is air in B2 and
water in �1).

It can be seen from Figures 3.1 and 3.2 that the fourth-order SRC produces the most
accurate results for all of the frequencies for both (A) and (B). In Figures 3.3 and 3.4, we
see almost the same results of the problem according to the parameters in C and D as in
A and B, respectively.

It should be noted here that in the case of B, with increasing frequency, the modules of
the surface field predicted by the method becomes remarkably close to the exact answer in
shadow part. This is due to the fact that creeping waves are less pervasive for soft objects
and therefore the results are more accurate in the high-frequency range. Nevertheless, the
fourth-order SRC improves the SRC approximation considerably for both (A) and (B)
and also for all frequencies.

Here in a similar way the scattered field calculations are made for the cases A, B, C,
and D. In the graphics, only the calculations for A and B are plotted for ka= 10 because
it is clear that the scattered field will show a similar attitude for C and D.

Nevertheless, as can be observed from Figure 3.5, where the magnitude of the scatter-
ing function is presented for ka= 10 together with the exact ones, the results are qualita-
tively quite satisfactory. The magnitude of the scattering function becomes less accurate
in the forward region.

The attitude of the scattered field in Figure 3.6 has a similar attitude to that of Figure
3.5.

The analysis presented here is restricted to a special problem. However, it is likely
that similar behavior occurs in scattering problems for arbitrary convex objects with the
boundary condition. The analysis of such problems will be more complicated, but this
above-mentioned concrete example provides valuable information about the capability
of the method to deal with them.
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Göztepe, Kadiköy, 34722 Istanbul, Turkey
Email address: bulentyilmaz@marmara.edu.tr

mailto:bulentyilmaz@marmara.edu.tr

