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ness of the proposed solution.
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1. Introduction

In vibration and structure analysis, second-order linear systems capture the dynamic be-
haviour of many natural phenomena and have found wide applications, whose state equa-
tion can be given as follows:

Eq̈−Aq̇−Cq = Bu, (1.1)

where q ∈ Rn is the generalized coordinate vector, u ∈ Rr is the input vector, and E, A,
B, C are matrices of appropriate dimensions. The matrices in (1.1) satisfy the following
assumption.

Assumption 1.1. The matrix triple (E,A,B) is R-controllable, that is,

rank[A− sE B]= n, ∀s∈ C. (1.2)

Assumption 1.2. The matrix B is of full rank, that is, rank(B)= r.
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Associated with the second-order linear system (1.1), a generalized second-order
Sylvester matrix equation can be written in the form of

EVF2−AVF −CV = BW , (1.3)

where E,A,C ∈ Rn×n, B ∈ Rn×r and F ∈ Rp×p are known matrices; matrices W ∈ Rr×p

and V ∈ Rn×p are to be determined.
When E = 0n, A = −In, the generalized second-order Sylvester matrix equation (1.3)

becomes the following generalized Sylvester matrix equation

VF −CV = BW. (1.4)

When E = 0n, A = −B = −In, W = −Q, the generalized second-order Sylvester matrix
equation (1.3) becomes the following normal Sylvester matrix equation

CV −VF =Q. (1.5)

Further, if we let C =−FT in (1.5), the above normal Sylvester matrix equation becomes
the following well-known Lyapunov matrix equation

FTV +VF =−Q. (1.6)

Thus we can find that the second-order Sylvester equation (1.3) is more general than the
first-order Sylvester equations (1.4) and (1.5). As we all know, the Sylvester equation is
directly concerned with some control problems for linear systems such as eigenvalue as-
signment [1, 2], observer design [3], eigenstructure assignment design [4–6], constrained
control [7], and so forth, and has been studied by many authors (see [3–6], and the ref-
erences therein).

A solution to the normal Sylvester matrix equation (1.5) has been studied by several
researchers. Jameson [8] and Souza and Bhattacharyya [9] gave solutions to this matrix
equation in terms of the controllability and observability matrices of some matrix pairs,
and Hartwig [10] gave a solution to this equation in terms of the inverse of the related
Sylvester resultant, while Jones and Lew [11] presented a solution to this equation in
terms of the principal idempotents and nilpotents of the coefficient matrices. Hearon [12]
considered the case of Q as being a rank one matrix, and presented some conditions for
the matrix V to be nonsingular. For the Lyapunov matrix equation (1.6) with the matrix
C in companion form, many authors have considered the solution. Particularly, Sreeram
and Agathoklis [13] presented an iterative method based on the Routh’s table. Zhou and
Duan [14] presented an explicit solution to the generalized Sylvester matrix equation
(1.4), and a simple and effective approach for parametric pole assignment is proposed
as a demonstration. Duan and Wang [15] proposed two analytical general solutions of
(1.3), and by utilizing these results, they investigated many control problems such as the
robust control problem [16], the eigenstructure assignment problem [17, 18], the model
reference control problem [19], the reconfiguring control problem [20], and so on.

Different from the condition in [15], this paper provides another type of general para-
metric solutions to the second-order Sylvester matrix equation (1.3). In the next section,
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some preliminaries to be used in this paper are given. In Sections 3 and 4, the general so-
lutions to the generalized Sylvester matrix equation (1.3) are presented in two cases: the
undetermined diagonal matrix F and the determined diagonal matrix F. As a demonstra-
tion of the proposed solutions to the second-order Sylvester matrix equation, a numeri-
cal example is illustrated by utilizing the proposed two algorithms, and general complete
parametric forms for the solution to the second-order Sylvester matrix equation are es-
tablished in Section 5. In Section 6, concluding remarks are drawn.

2. Preliminaries

If the matrix F ∈ Rp×p in the matrix equation (1.3) is not diagonal, there must exist a
nonsingular matrix M ∈ Rp×p such that

MFM−1 = diag
(
λ1,λ2, . . . ,λp

)= F̃, (2.1)

where λ1,λ2, . . . ,λp are the eigenvalues of F. Thus (1.3) can be changed into the following
form:

EV
(
M−1F̃M

)2−AVM−1F̃M−CV = BW (2.2)

or

EVM−1F̃2−AVM−1F̃ −CVM−1 = BWM−1. (2.3)

Denote

VM−1 = V̂ , WM−1 = Ŵ. (2.4)

Then the above equation is changed into

EV̂F̃2−AV̂F̃ −CV̂ = BŴ , (2.5)

where F̃ = diag(λ1,λ2, . . . ,λp) is a diagonal Jordan form.
Therefore, without loss of generality, we assume that the matrix F in (1.3) is in a diag-

onal Jordan form. Let Γ= {si,si ∈ C, re(si) < 0, i= 1,2, . . . , p}, which is symmetric about
the real axis and whose elements are distinct, be the set of eigenvalues of F. Thus the
diagonal Jordan matrix F can be written in the following form:

F = diag
(
s1,s2, . . . ,sp

)
. (2.6)

Denote

Ṽ =VF, (2.7)
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then (1.3) can be further changed into

EṼF −AṼ −CV = BW. (2.8)

The matrices V , Ṽ , and W can be written by their columns as

V = [v1 v2 ··· vp
]
,

Ṽ = [ṽ1 ṽ2 ··· ṽp
]
,

W = [w1 w2 ··· wp
]
,

(2.9)

then (2.8) can be decomposed into

Eṽisi−Aṽi−Cvi = Bwi, i= 1,2, . . . , p, (2.10a)

or

[
A− siE B

]
[
ṽi
wi

]

=−Cvi, i= 1,2, . . . , p; (2.10b)

then the problem to solve the second-order Sylvester equation (1.3) can be changed into
the following equivalent problem.

Problem SOS (second-order Sylvester): Given matrices E, A, B, C, and F with appropriate
dimensions in the second-order Sylvester matrix equation (1.3), then find the solutions
V and W to equations (2.7) and (2.8).

In the next two sections, we will consider the solution to the second-order Sylvester
matrix equation (1.3) in two cases: one is the case of the undetermined diagonal matrix
F, and the other is the case of the determined diagonal matrix F.

3. Case of the undetermined diagonal matrix F

If the matrix triple (E,A,B) is R-controllable, there exists a pair of unimodular matrices
P(s)∈ Rn×n[s] and Q(s)∈ R(n+r)×(n+r)[s], satisfying

P(s)
[
A− sE B

]
Q(s)= [0 In

]
, ∀s∈ C. (3.1)

Partition Q(s) as follows:

Q(s)=
[
Q11(s) Q12(s)

Q21(s) Q22(s)

]

, (3.2)

where Q11(s) ∈ Rn×r[s], Q12(s) ∈ Rn×n[s], Q21(s) ∈ Rr×r[s], and Q22(s) ∈ Rr×n[s]. Then
we have the following lemma, which gives the solutions to (2.8).

Lemma 3.1. Assume that the matrix triple (E,A,B) is R-controllable, then all the solutions
Ṽ and W in (2.8) can be given by their column vectors as

[
ṽi

wj

]

=
[
Q11

(
si
)

Q12(s)

Q21(si) Q22(s)

][
fi

−P(si
)
Cvi

]

, i= 1,2, . . . , p, (3.3a)
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or

ṽi =Q11
(
si
)
fi−Q12

(
si
)
P
(
si
)
Cvi

wi =Q21
(
si
)
fi−Q22

(
si
)
P
(
si
)
Cvi,

i= 1,2, . . . , p, (3.3b)

where matrices Q11(s)∈ Rn×r[s], Q12(s)∈ Rn×n[s], Q21(s)∈ Rr×r[s], and Q22(s)∈ Rr×n[s]
satisfy (3.1) and (3.2); fi ∈ Cr , i= 1,2, . . . , p, are a group of free parametric vectors.

Proof. Substitute (3.2) into (3.1), we can obtain

[A− sE B]

[
Q11(s)

Q21(s)

]

= 0, (3.4)

P(s)[A− sE B]

[
Q12(s)

Q22(s)

]

= In. (3.5)

It is clear to see that (3.5) is equivalent with the following equation

[A− sE B]

[
Q12(s)

Q22(s)

]

P(s)= In. (3.6)

By utilizing (3.3a), we can obtain

(
A− siE

)
ṽi +Bwi =

[
A− siE B

]
[
ṽi
wi

]

= [A− siE B
]
[
Q11

(
si
)

Q12
(
si
)

Q21
(
si
)

Q22
(
si
)

][
fi

−P(si
)
Cvi

]

=−Cvi,
(3.7)

thus (3.3) are the solutions to (2.8). �

Now let us show that the vectors ṽi and wi satisfying (2.10a) can be expressed in the
form of (3.3a). Premultiplying by P(si) both sides of (2.10b) and using (3.1) yield

[
0 In

]
Q−1(si

)
[
ṽi

wi

]

=−P(si
)
Cvi, i= 1,2, . . . , p. (3.8)

Let

[
fi

ei

]

=Q−1(si
)
[
ṽi

wi

]

, i= 1,2, . . . , p, (3.9)

then (3.8) becomes

[
0 In

]
[
fi

ei

]

=−P(si
)
Cvi, i= 1,2, . . . , p, (3.10)



6 Mathematical Problems in Engineering

which produces

ei =−P
(
si
)
Cvi, i= 1,2, . . . , p. (3.11)

Substituting (3.11) into (3.9), we can get (3.3a).
Finally, noticing that the equivalence between (3.3a) and (3.3b) is obvious, the proof

is completed.
For control applications, the second-order linear system (1.1) is usually transformed

into the following first-order linear system

E′ẋ = A′x+B′u, (3.12)

where

E′ =
[
In 0
0 E

]

, A′ =
[

0 In
C A

]

, B′ =
[

0
B

]

, x =
[
q

q̇

]

. (3.13)

Then the following lemma gives the relations of the controllability of the matrix triples
(E,A,B) and (E′,A′,B′), which offers more convenience to solve Problem SOS.

Lemma 3.2. Let the matrix triple (E,A,B) be R-controllable, then the matrix triple (E′,A′,
B′) is also R-controllable if and only if

rank
[
Q12(s)P(s)C+ sIn−Q11(s)

]= n, ∀s∈ C, (3.14)

where matrices Q11(s) ∈ Rn×r[s], Q12(s) ∈ Rn×n[s], and P(s) ∈ Rn×n[s] satisfy (3.1) and
(3.2).

Proof. Since the matrix triple (E,A,B) is R-controllable, (3.1) holds for some unimodular
matrices P(s)∈ Rn×n[s] and Q(s)∈ R(n+r)×(n+r)[s]. Using the controllability of the matrix
triple (E′,A′,B′) and the structure of matrices E′, A′, and B′, we can obtain

[
In 0

0 P(s)

]
[
A′ − sE′ B′

]
[
In 0

0 Q(s)

]

=
[
In 0

0 P(s)

][−sIn In 0

C A− sE B

][
In 0

0 Q(s)

]

=
⎡

⎣
−sIn In 0

P(s)C P(s)[A− sE B]

⎤

⎦

[
In 0

0 Q(s)

]

=
⎡

⎣
−sIn [In 0]Q(s)

P(s)C P(s)[A− sE B]Q(s)

⎤

⎦

=
[
−sIn Q11(s) Q12(s)
P(s)C 0 In

]

.

(3.15)
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The above matrix can easily be transformed, by elementary transformations, into the
following form:

[
Q12(s)P(s)C+ sIn −Q11(s) 0

0 0 In

]

. (3.16)

Thus we have

rank[A′ − sE′ B′]= rank
[
Q12(s)P(s)C+ sIn −Q11(s)

]
. (3.17)

From this, we can conclude that the matrix triple (E′,A′,B′) is R-controllable if and only
if (3.14) is valid. �

If (3.14) holds, there exists a pair of unimodular matrices: H(s)∈ Rn×n[s] and L(s)∈
R(n+r)×(n+r)[s], satisfying the following condition:

H(s)
[
Q12(s)P(s)C+ sIn −Q11(s)

]
L(s)= [0 In

]
, ∀s∈ C. (3.18)

Partition L(s) as follows:

L(s)=
[
L11(s) L12(s)

L21(s) L22(s)

]

, (3.19)

where L11(s)∈ Rn×r[s], L12(s)∈ Rn×n[s], L21(s)∈ Rr×r[s], and L22(s)∈ Rr×n[s]. Then we
have the following lemma.

Lemma 3.3. Suppose that (3.18) holds for some pair of unimodular matrices H(s)∈ Rn×n[s]
and L(s)∈ R(n+r)×(n+r)[s]. Then all the vectors y and z satisfying

(
Q12(s)P(s)C+ sIn

)
y−Q11(s)z = 0 (3.20)

are given as
[
y
z

]

=
[
L11(s)
L21(s)

]

g (3.21a)

or

y = L11(s)g, z = L21(s)g (3.21b)

with g ∈ Cr being an arbitrary parameter vector.

Proof. Rewriting (3.20) as

[
Q12(s)P(s)C+ sIn −Q11(s)

]
[
y
z

]

= 0 (3.22)

and premultiplying by H(s) both sides of (3.22) give

H(s)
[
Q12(s)P(s)C+ sIn −Q11(s)

]
L(s)L−1(s)

[
y
z

]

= 0, (3.23)
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which reduces, in view of (3.18), to

[
0 In

]
L−1(s)

[
y
z

]

= 0. (3.24)

Letting

[
g
h

]

= L−1(s)

[
y
z

]

(3.25)

and substituting (3.25) into (3.24), we can obtain h = 0. Thus it can be obtained from
(3.25) that

[
y
z

]

= L(s)

[
g
0

]

, (3.26)

which is equivalent to (3.21a) or (3.21b). �

From Lemma 3.1, we can get that

ṽi =−Q12
(
si
)
P
(
si
)
Cv1i +Q11

(
si
)
fi, i= 1,2, . . . , p. (3.27)

Equation (2.7) can be equivalently written in the following vector form:

ṽi = sivi, i= 1,2, . . . , p. (3.28)

Combining (3.27) and (3.28) yields

[
Q12

(
si
)
P
(
si
)
C+ siIn]vi−Q11

(
si
)
fi = 0, i= 1,2, . . . , p, (3.29)

which is clearly in the form of (3.20). Applying Lemmas 3.2 and 3.3 to (3.29) gets

vi = L11
(
si
)
gi, i= 1,2, . . . , p, (3.30)

fi = L21
(
si
)
gi, i= 1,2, . . . , p, (3.31)

where gi ∈ Cr , i= 1,2, . . . , p are a group of parametric vectors.
Substituting (3.30) and (3.31) into (3.3b) produces

wi =
[
Q21

(
si
)
L21
(
si
)−Q22

(
si
)
P
(
si
)
CL11

(
si
)]
gi, i= 1,2, . . . , p. (3.32)

To sum up, we now have the following theorem for solutions to Problem SOS proposed
in Section 2.

Theorem 3.4. Let the matrix triples (E,A,B) and (E′,A′,B′) both be R-controllable, then
all the solutions V and W to Problem SOS are given by (3.30) and (3.32) in their column
vectors, respectively.
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Algorithm [SOS1]. (1) Solve the pair of unimodular matrices P(s) and Q(s) satisfying
(3.1) by applying elementary transformations to matrix [A−sE B ] and partition matrix
Q(s) as in (3.2).

(2) Solve the pair of unimodular matrices H(s) and L(s) satisfying (3.18) by applying
elementary transformations to the matrix [Q12(s)P(s)C+sI −Q11(s) ] and partition matrix L(s)
as in (3.19).

(3) Establish the general parametric forms for the matrices V and W according to
(3.30) and (3.32), respectively.

Remark 3.5. The advantage of the proposed solutions to the second-order Sylvester equa-
tion is that it can provide the general explicit parametric solution. In the case of the unde-
termined eigenvalues of the matrix F, the free parameters in the solutions are composed
of two parts: one is clearly the group of parameter vectors gi ∈ Cr , i= 1,2, . . . , p, while the
other is the group of eigenvalues si, i = 1,2, . . . , p of the matrix F. Both the two parts of
degrees of freedom may be selected to design some control problems such as the eigen-
structure assignment problem, the model tracking problem, the observer design problem,
and so forth.

4. Case of the determined diagonal matrix F

When the eigenvalues si, i = 1,2, . . . , p of the matrix F are prescribed, the solutions to
the generalized Sylvester matrix equation (1.3) are actually dependent on the constant
matrices

P̃i = P
(
si
)
, Q̃i =Q

(
si
)
, i= 1,2, . . . , p, (4.1)

which satisfy the following:

P̃i
[
A− siE B

]
Q̃i =

[
0 In

]
, i= 1,2, . . . , p. (4.2)

Therefore, we can, instead of seeking the polynomial matrices P(s) and Q(s) satisfying
the relation (3.1), find these constant matrices directly so as to avoid polynomial matrix
manipulations.

The constant matrices Pi = P(si) ∈ Cn×n and Qi = Q(si) ∈ C(n+r)×(n+r), i = 1,2, . . . , p
can be easily obtained by singular value decompositions. In fact, by applying singular
value decomposition to the matrix [A−siE B ], we obtain two orthogonal matrices Pi ∈
Cn×n and Qi ∈ C(n+r)×(n+r) satisfying the following equations:

Pi
[
A− siE B

]
Qi =

[
0 Σi

]
, i= 1,2, . . . , p, (4.3)

where Σi, i = 1,2, . . . , p are diagonal matrices with positive diagonal elements. By rear-
ranging (4.3) in the following form:

Σ−1Pi
[
A− siE B

]
Qi = [0 I], i= 1,2, . . . , p, (4.4)

we can obtain the constant matrices P̃i, and Q̃i, i= 1,2, . . . , p satisfying (4.2) as

P̃i = Σ−1Pi, Q̃i =Qi, i= 1,2, . . . , p. (4.5)
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Partitioning the matrix Qi, i= 1,2, . . . , p is as follows:

Qi =
⎡

⎣
Qi

11 Qi
12

Qi
21 Qi

22

⎤

⎦ , (4.6)

where Qi
11 ∈ Cn×r , Qi

12 ∈ Cn×n, Qi
21 ∈ Cr×r , and Qi

22 ∈ Cr×n. Then we can give a corollary
of Lemma 3.1 as follows.

Corollary 4.1. Let the matrix triple (E,A,B) beR-controllable, and let the diagonal matrix
F be defined as in (2.6) with si, i= 1,2, . . . , p known. Then all the solutions Ṽ and W in (2.8)
can be given by their columns as

[
vi
wi

]

=Qi

[
fi

−Σ−1
i PiCvi

]

, i= 1,2, . . . , p, (4.7)

or, equivalently, as

vi =Qi
11 fi−Qi

12Σ
−1
i PiCvi

wi =Qi
21 fi−Qi

22Σ
−1
i PiCvi,

i= 1,2, . . . , p, (4.8)

where fi ∈ Cr , i= 1,2, . . . , p, are a group of arbitrary parameter vectors.
Similarly, we can derive a corollary of Lemma 3.3.
By applying singular value decomposition to the matrix [Qi

12PiC + siI −Qi
11], we obtain

two orthogonal matrices Hi ∈ Rn×n and Li ∈ R(n+r)×(n+r) satisfying the following equation:

Hi

[
Qi

12Σ
−1
i PiC+ siIn −Qi

11

]
Li =

[
0 Ξi

]
, i= 1,2, . . . , p, (4.9)

where Ξi, i = 1,2, . . . , p, are diagonal matrices with positive diagonal elements. Note that
(4.9) can be arranged in the following form:

Ξ−1
i Hi

[
Qi

12Σ
−1
i PiC+ siIn −Qi

11

]
Li =

[
0 In

]
, i= 1,2, . . . , p. (4.10)

Matrices H(si) and L(si), i= 1,2, . . . , p, in Lemma 3.3 can thus be substituted by the matrices
Ξ−1
i Hi and Li, i= 1,2, . . . , p. Further, partition the matrix Li as

Li =
⎡

⎣
Li11 Li12

Li21 Li22

⎤

⎦ , Li11 ∈ Rn×r , (4.11)

where Li11 ∈ Cn×r , Li12 ∈ Cn×n, Li21 ∈ Cr×r , and Li22 ∈ Cr×n. Then a corollary of Lemma 3.3
can be obtained as follows.

Corollary 4.2. Let Pi, Qi
11, Qi

12, and Σi be given by (4.3) and (4.6). Then all the vectors y
and z satisfying

(
Qi

12Σ
−1
i PiC+ siI

)
y−Qi

11z = 0 (4.12)
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are given as

y = Li11g, z = Li21g (4.13)

with g ∈ Cr being an arbitrary parameter vector.
With the help of the above two corollaries, via a similar development as in Section 3, the

following theorem can be obtained for solution to Problem SOS in the case that the eigenval-
ues of the matrix F are given a priori.

Theorem 4.3. Let the matrix triples (E,A,B) and (E′,A′,B′) both be R-controllable, and let
the desired closed-loop eigenvalues si, i = 1,2, . . . , p be given a priori. Then all the solutions
V and W to Problem SOS can be given by their column vectors, respectively:

vi = Li11gi, i= 1,2, . . . , p, (4.14)

wi =
[
Qi

21L
i
21−Qi

22Σ
−1
i PiCL

i
11

]
gi, i= 1,2, . . . , p, (4.15)

where gi ∈ Cr , i= 1,2, . . . , p, are a group of parameter vectors.
Based on the above theorem, an algorithm for solution to Problem SOS in the case of the

determined eigenvalues of the matrix F can be given as follows.

Algorithm [SOS2]. (1) Solve the matrices Pi, Qi, and Σi, i= 1,2, . . . , p, satisfying singular
value decompositions in (4.3), and partition the matrix Qi, i= 1,2, . . . , p, as in (4.6).

(2) Solve the matrices Hi, Li, and Ξi, i= 1,2, . . . , p, satisfying singular value decompo-
sitions in (4.10), and partition the matrix Li, i= 1,2, . . . , p, as in (4.11).

(3) Establish the general parametric forms for the matrices V and W according to
(4.14) and (4.15), respectively.

Remark 4.4. In the case that the eigenvalues of the matrix F are given a priori, the pro-
posed solution to the second-order Sylvester equation also provides the general explicit
parametric solution. The free parameters are composed of the group of parameter vectors
gi ∈ Cr , i= 1,2, . . . , p, which can also be selected to design some control problems.

5. An illustrative example

Consider a second-order Sylvester equation in the form of (1.1) with the following pa-
rameters:

E =
⎡

⎢
⎣

1 0 0
0 1 0
0 0 −1

⎤

⎥
⎦ , A=

⎡

⎢
⎣

−2.5 0.5 0
0.5 −2.5 2
0 2 −2

⎤

⎥
⎦ ,

C =
⎡

⎢
⎣

−10 5 0
5 −25 20
0 20 −20

⎤

⎥
⎦ , B =

⎡

⎢
⎣

1 0
0 0
0 1

⎤

⎥
⎦ .

(5.1)

It can be easily verified that the matrix triples (E,A,B) and (E′,A′,B′) are both R-con-
trollable.
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5.1. Case of the undetermined diagonal matrix F. We assume that the matrix F =
diag(s1,s2,s3,s4,s5,s6). In the following, we solve the second-order Sylvester equation us-
ing Algorithm SOS1.

(1) By applying some elementary transformations to matrix [A−sE B ], a pair of uni-
modular matrices P(s) and Q(s) satisfying (3.1) can be obtained as

P(s)= diag(1,2,1), (5.2)

Q(s)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

2s+ 5 −4 0 1 0
1 0 0 0 0
0 1 0 0 0

2(s+ 2.5)2− 0.5 −4s− 10 1 s+ 2.5 0
−2 2− s 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.3)

(2) Note that the matrix

[
Q12(s)P(s)C+ sI3 −Q11(s)

]
=
⎡

⎢
⎣

10 + s −50 40 −(2s+ 5) 4
0 s 0 −1 0
0 0 s 0 −1

⎤

⎥
⎦ (5.4)

is controllable. By applying elementary transformations to the above matrix, unimodular
matrices H(s) and L(s) satisfying (3.18) are obtained as

H(s)=
⎡

⎢
⎣

−0.005 0.005(2s+ 5) −0.02
0 −1 0
0 0 −1

⎤

⎥
⎦ , (5.5)

L(s)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

2s2 + 5s+ 50 −4 2s− 15 0 0
s+ 10 0 1 0 0

0 1 0 0 0
s(s+ 10) 0 s 1 0

0 s 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.6)

(3) Let

gi =
[
αi
βi

]

, i= 1∼ 6. (5.7)

According to (3.30), the matrix V in (1.3) is given by its column vectors as

vi =
⎡

⎢
⎣

(
2s2

i + 5si + 50
)
αi− 4βi(

si + 10
)
αi

βi

⎤

⎥
⎦ , i= 1∼ 6. (5.8)

Further, we have

Q21(s)L21(s)−Q22(s)P(s)CL11(s)=
[

2s4 + 10s3 + 82s2 + 165s+ 450 −4s2− 10s− 40
−2s2− 40s− 200 2s+ 20− s2

]

.

(5.9)
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Thus from (3.32), the matrix W in (1.3) is given by its column vectors as

wi =
⎡

⎣

(
2s4

i + 10s3
i + 82s2

i + 165si + 450
)
αi−

(
4s2

i + 10si + 40
)
βi

−2
(
s2
i + 20si + 100

)
αi +

(
2si + 20− s2

i

)
βi

⎤

⎦ , i= 1∼ 6. (5.10)

5.2. Case of the determined diagonal matrix F. We assume that the matrix F = diag(s1,
s2,s3), where s1,2 =−1± 2 j, s3 =−3. In the following, we solve the second-order Sylvester
equation using Algorithm SOS2.

(1) By utilizing SVD to the matrices [A−siE B ], we can obtain the matrices Pi, Qi, and
Σi, i= 1∼ 3, as follows:

P1 = P2 =

⎡

⎢
⎢
⎢
⎣

−0.0811 0.5580− 0.1985i −0.7443− 0.2978i

−0.9862 0.0587 + 0.0695i 0.0912 + 0.1043i

−0.1446 −0.7136− 0.3629i −0.2047− 0.5443i

⎤

⎥
⎥
⎥
⎦

,

Q1 =Q2 =
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.2128−0.2885i −0.0089−0.0613i 0.0771−0.0121i 0.5510−0.7330i −0.1138−0.0876i

−0.0560−0.0942i 0.2438−0.1864i −0.5319+0.2721i −0.0948+0.0048i −0.1114−0.7179i

−0.0010−0.0545i 0.3715+0.1194i 0.7592+0.1910i −0.1333−0.0032i 0.2240−0.4048i

0.9242+0.0398i −0.0127−0.0165i −0.0156−0.0000i −0.3602−0.0000i −0.1176−0.0000i

−0.0000+0.0268i 0.8655−0.0121i −0.1433+0.0573i 0.0333−0.0381i −0.1664+0.4426i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

P3 =

⎡

⎢
⎢
⎢
⎣

−0.0256 0.3018 −0.9530

−0.6688 −0.7137 −0.2081

−0.7430 0.6321 0.2201

⎤

⎥
⎥
⎥
⎦

,

Q3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.8896 0.0154 0.0241 −0.4514 −0.0628

0.3227 −0.2958 −0.3083 −0.7232 0.4361

0.1417 0.0701 0.9363 −0.2527 0.1855

0.2834 0.1402 −0.0045 −0.4368 −0.8421

0.0631 0.9422 −0.1662 −0.1359 0.2495

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Σ1 = Σ2 = diag(5.1953,2.7380,1.2297), Σ3 = diag(5.7338,1.5312,0.8822),

(5.11)

and partition the matrices Qi, i= 1∼ 3, as in (4.6).
(2) Note that the matrix

[
Q12(s)P(s)C+ sI −Q11(s)

]
=
⎡

⎢
⎣

10 + s −50 40 −(2s+ 5) 4
0 s 0 −1 0
0 0 s 0 −1

⎤

⎥
⎦ (5.12)
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is controllable. By utilizing SVD to the matrices [Q12(si)P(si)C+siI3 −Q11(si) ], we can obtain the
matrices Hi, Li, and Ξi, i = 1 ∼ 3, satisfying singular value decompositions in (4.10) as
follows:

H1 =H2 =

⎡

⎢
⎢
⎣

−0.1763 0.5323 + 0.3247i −0.4581 + 0.6085i

−0.8716 0.2685− 0.1202i 0.0449− 0.3895i

0.4573 0.7169− 0.1039i −0.0911− 0.5078i

⎤

⎥
⎥
⎦ ,

L1 = L2 =
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0283−0.0635i −0.1145−0.1832i −0.1032−0.0360i −0.6041−0.6691i 0.2377−0.2597i

−0.1224−0.0827i −0.1849−0.2605i 0.6900+0.2510i 0.1722+0.1214i 0.2945−0.4538i

−0.1340−0.0724i −0.1962−0.2487i −0.6420−0.1921i 0.2993+0.2265i 0.2534−0.4716i

0.9726−0.0042i −0.0494−0.0311i 0.0001+0.0002i 0.0282+0.0279i −0.0231−0.2201i

−0.0638+0.0070i 0.8634−0.0447i 0.0012+0.0039i −0.0138−0.0200i −0.2084−0.4521i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

H3 =

⎡

⎢
⎢
⎣

−0.1473 −0.2209 −0.9641

0.9238 −0.3790 −0.0543

−0.3534 −0.8986 0.2600

⎤

⎥
⎥
⎦ ,

L3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.1589 0.0165 −0.0587 −0.9266 0.3353

−0.0141 0.0667 0.7851 0.1638 0.5934

−0.0301 0.0836 −0.6165 0.2972 0.7236

0.9867 0.0002 0.0019 0.1606 −0.0233

0.0006 0.9941 0.0001 −0.0207 −0.1062

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ξ1 = Ξ2 = diag(41.4945,8.2624,0.8549), Ξ3 = diag(40.6893,5.9256,2.6234),

(5.13)

and partition the matrices Li, i= 1∼ 3, as in (4.11).
(3) Let

gi =
[
αi

βi

]

, i= 1∼ 3. (5.14)

According to (4.14), the matrix V in (1.3) is given by its column vectors as

v1 =

⎡

⎢
⎢
⎣

(39 + 2 j)α1− 4β1

(9 + 2 j)α1

β1

⎤

⎥
⎥
⎦ , v2 =

⎡

⎢
⎢
⎣

(39− 2 j)α2− 4β2

(9− 2 j)α2

β2

⎤

⎥
⎥
⎦ , v3 =

⎡

⎢
⎢
⎣

53α3− 4β3

7α3

β3

⎤

⎥
⎥
⎦ .

(5.15)
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Thus from (4.15), the matrix W in (1.3) is given by its column vectors as

w1 =
[

(135 + 30 j)α1− (18 + 4 j)β1

(21 + 8 j)β1− (154− 72 j)α1

]

, w2 =
[

(135− 30 j)α2 + (4 j− 18)β2

(21− 8 j)β2 + (72 j− 154)α2

]

,

w3 =
[

585α3− 46β3

5β3− 98α3

]

.

(5.16)

6. Conclusions

This paper considers the solutions to a second-order Sylvester matrix equation. Under
the controllability of some matrix triples, complete, general, and explicit parametric so-
lutions to the generalized second-order Sylvester matrix equation are proposed in two
cases of the undetermined eigenvalues of the matrix F and the determined eigenvalues
of the matrix F. The general explicit parametric solutions to the second-order Sylvester
matrix equation are presented. These results provide great convenience to the analysis of
the solution to the equation, and can perform important functions in many analysis and
design problems in control systems theory. As a demonstration, a numerical example is
offered to show the effectiveness of the proposed approaches.
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