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The system of nonlinear variational inequalities (SNVI) is a useful generalization of vari-
ational inequalities. Verma (2001) suggested and analyzed an iterative method for solving
SNVI. In this paper, we present a new self-adaptive method, whose computation cost is
less than that of Verma’s method. The convergence of the new method is proved under
the same assumptions as Verma’s method. Some preliminary computational results are
given to illustrate the efficiency of the proposed method.
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1. Introduction

A large number of problems arising in various branches of pure and applied sciences can
be studied in the unified framework of variational inequalities. In recent years, classical
variational inequality and complementarity problems have been extended and general-
ized to study a wide range of problems arising in mechanics, physics, optimization, and
applied sciences, see [1–13] and the references therein. A useful and important general-
ization of variational inequalities is the system of nonlinear variational inequalities.

Many authors suggested and analyzed various iterative methods for solving different
types of variational inequalities in Hilbert spaces or Banach spaces based on the auxil-
iary principle and resolvent operators technique. Usually, they discuss the convergence
for those methods, but most of them have not discussed the efficiency for the proposed
method, especially through the numerical result.

On the other hand, much attention has been given to develop efficient and implemen-
tal projection method and its variant forms for solving variational inequalities and related
optimization problems in Rn, see, for example, Glowinski et al. [2], Harker and Pang [3],
He [4], He and Liao [5], Shi et al. [8], Y. J. Wang et al. [12, 13], and the references therein.
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However, this type of numerical methods can be only applied for solving the classical
variational inequality.

Verma [11] investigated the approximation solvability of a new system of nonlinear
variational inequalities involving strongly monotone mappings. In 2005, Bnouhachem
[1] presented a new self-adaptive method for solving general mixed variational inequali-
ties. In this paper, inspired and motivated by the results of Verma [11] and Bnouhachem
[1], the author proposed a new self-adaptive iterative method for solving SNVI. The au-
thor also proved the convergence of the proposed method under the same assumptions
as those by Verma [11]. The numerical examples are given to illustrate the efficiency of
the proposed method.

2. Preliminaries

Let H be a real Hilbert space with the inner product 〈·,·〉 and norm ‖ · ‖. Let T : K →H
be any mapping and K a closed convex subsets of H . The author considered a system of
nonlinear variational inequalities (SNVI): determine elements x∗, y∗ ∈ K such that

〈
ρT
(
y∗
)

+ x∗ − y∗,x− x∗
〉≥ 0, ∀x ∈ K , for ρ > 0,

〈
γT
(
x∗) + y∗ − x∗,x− y∗

〉≥ 0, ∀x ∈ K , for γ > 0.
(2.1)

The SNVI (2.1) is first introduced and studied by Verma [11] in 2001. For the applica-
tions, formulation, and numerical methods of SNVI (2.1), we refer the reader to Verma
[11].

For y∗ = x∗ and ρ = γ = 1, the SNVI (2.1) reduces to the following standard nonlinear
variational inequality (NVI) problem: find an element x∗ ∈ K such that

〈
T
(
x∗
)
,x− x∗

〉≥ 0, ∀x ∈ K. (2.2)

Let K be a closed convex cone of H . The SNVI (2.1) is equivalent to a system of non-
linear complementarities (SNC): find the elements x∗, y∗ ∈ K such that T(x∗),T(y∗)∈
K∗,

〈
ρT
(
y∗
)

+ x∗ − y∗,x∗
〉= 0, for ρ > 0,

〈
γT
(
x∗
)

+ y∗ − x∗, y∗
〉= 0, for γ > 0,

(2.3)

where K∗ is a polar cone to K defined by

K∗ = { f ∈H : 〈 f ,x〉 ≥ 0, ∀x ∈ K
}
. (2.4)

For y∗ = x∗ and ρ = γ = 1, the SNC (2.3) reduces to the nonlinear complementarity
problem: find an element x∗ ∈ K such that T(x∗)∈ K∗ and

〈
T
(
x∗
)
,x∗
〉= 0. (2.5)
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The projection of a point x ∈ H onto the closed convex set K , denoted by PK [x], is
defined as the unique solution of the problem

min
y∈K

‖x− y‖. (2.6)

For any closed convex set K ⊂H , a basic property of the projection operator PK [·] is

〈
x−PK [x], y−PK [x]

〉≤ 0, ∀x ∈H , y ∈ K. (2.7)

From the above inequality and the Cauchy-Schwartz inequality, it follows that the pro-
jection operator PK [·] is nonexpansive, that is,

∥
∥PK [x]−PK [y]

∥
∥≤ ‖x− y‖, ∀x, y ∈Rn. (2.8)

Lemma 2.1 [11]. Elements x∗, y∗ ∈ K form a solution set of the SNVI (2.1) if and only if

x∗ = PK
[
y∗ − ρT

(
y∗
)]

, for ρ > 0, (2.9)

where y∗ = PK [x∗ − γT(x∗)], for γ > 0.

In [11], Verma used Lemma 2.1 to suggest and analyze the following algorithm for
solving SNVI.

Algorithm 2.2. For an arbitrarily chosen initial point x ∈ K , compute sequences {xk} and
{yk} by an iterative procedure (for k ≥ 0)

〈
ρT
(
yk
)

+ xk+1− yk,x− xk+1〉≥ 0, ∀x ∈ K , for ρ > 0, (2.10)

where

〈
γT
(
xk
)

+ yk − xk,x− yk
〉≥ 0, ∀x ∈ K , for γ > 0. (2.11)

For γ = 0 and yk = xk, Algorithm 2.2 reduces to the following algorithm.

Algorithm 2.3. Compute a sequence {xk} by the following iteration for an initial point
x0 ∈ K :

〈
ρT
(
xk
)

+ xk+1− xk,x− xk+1〉≥ 0, (2.12)

for all x ∈ K and for ρ > 0.

3. Convergence of projection methods

Unlike Algorithms 2.2-2.3, we construct the following algorithm.

Algorithm 3.1
Step 1. Given ε > 0, γ ∈ [1,2), μ ∈ (0,1), ρ > 0, δ ∈ (0,1), δ0 ∈ (0,1), and u◦ ∈ H , set
k = 0.
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Step 2. Set ρk = ρ, if ‖r(xk,ρ)‖ < ε, then stop; otherwise, find the smallest nonnegative
integer mk, such that ρk = ρμmk satisfying

∥
∥ρk
(
T
(
xk
)−T

(
wk
))∥∥≤ δ

∥
∥r
(
xk,ρk

)∥∥, (3.1)

where wk = PK [xk − ρkT(xk)].
Step 3. Compute

d
(
xk,ρk

)
:= r

(
xk,ρk

)− ρkT
(
xk
)

+ ρkT
(
PK
[
xk − ρkT

(
xk
)])

, (3.2)

where r(x,ρ) := x−PK [x− ρTx].
Step 4. Get the next iterate:

yk = PK
[
xk − γd

(
xk,ρk

)− γTxk
]
;

xk+1 = PK
[
yk − ρTyk

]
.

(3.3)

Step 5. If ‖ρk(T(xk)−T(wk))‖ ≤ δ0‖r(xk,ρk)‖, then set ρ= ρk/μ, else set ρ = ρk. Set k :=
k+ 1, and go to Step 2.

Remark 3.2. Note that Algorithm 3.1 is obviously a modification of the standard proce-
dure. In Algorithm 3.1, the searching direction is taken as −γd(xk,ρk)− γTxk, which is
closely related to the projection residue, and differs from the standard procedure. In ad-
dition, the self-adaptive strategy of step-size choice is used. The numerical results show
that these modifications can introduce computational efficiency substantially.

Theorem 3.1. Let H be a real Hilbert space and T : K → H an r-strongly monotone and
s-Lipschitz continuous mapping from a nonempty closed convex subset K of H into H . Let
x∗, y∗ ∈ K form a solution set for the SNVI (2.1) and let the sequences {xk} and {yk} be

generated by Algorithm 3.1. If 0 < θ =
√

1− 2ρr + ρ2s2(1 + γs) < 1, then the sequence {xk}
converges to x∗ and the sequence {yk} converges to y∗, for 0 < ρ < 2r/s2.

Proof. Since (x∗, y∗) is a solution of SNVI (2.1), it follows from Lemma 2.1 that

x∗ = PK
[
y∗ − ρT

(
y∗
)]

, y∗ = PK
[
x∗ − γT

(
x∗
)]
. (3.4)

Applying Algorithm 3.1, we know

∥
∥xk+1− x∗

∥
∥= ∥∥PK

[
yk − ρTyk

]−PK
[
y∗ − ρTy∗

]∥∥≤ ∥∥yk − y∗ − ρTyk + ρTy∗
∥
∥.

(3.5)
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Since T is r-strongly monotone and s-Lipschitz continuous, we know

∥
∥yk − y∗ − ρ

(
T
(
yk
)−T

(
y∗
))∥∥2

= ∥∥yk − y∗
∥
∥2− 2ρ

〈
T
(
yk
)−T

(
y∗
)
, yk − y∗

〉
+ ρ2

∥
∥T
(
yk
)−T

(
y∗
)∥∥2

≤ ∥∥yk − y∗
∥
∥2− 2ρr

∥
∥yk − y∗

∥
∥2

+ ρ2
∥
∥T
(
yk
)−T

(
y∗
)∥∥2

≤ ∥∥yk − y∗
∥
∥2− 2ρr

∥
∥yk − y∗

∥
∥2

+ ρ2s2
∥
∥yk − y2

∥
∥2

= (1− 2ρr + ρ2s2)∥∥yk − y∗
∥
∥2
.

(3.6)

It follows that

∥
∥xk+1− x∗

∥
∥≤

√
1− 2ρr + ρ2s2

∥
∥yk − y∗

∥
∥. (3.7)

Next, we consider

∥
∥yk − y∗

∥
∥= ∥∥PK

[
xk − γd

(
xk,ρk

)− γT
(
xk
)]−PK

[
x∗ − γT

(
x∗
)]∥∥

≤ ∥∥xk − γd
(
xk,ρk

)− γT
(
xk
)− x∗ + γT

(
x∗
)∥∥

≤ ∥∥xk − x∗ − γd
(
xk,ρk

)∥∥+ γ
∥
∥T
(
xk
)−T

(
x∗
)∥∥,

(3.8)

where we use the property of the operator PK .
Now, we consider

∥
∥xk − x∗ − γd

(
xk,ρk

)∥∥2

≤ ∥∥xk − x∗
∥
∥2− 2γ

〈
xk − x∗,d

(
xk,ρk

)〉
+ γ2

∥
∥d
(
xk,ρk

)∥∥2 ≤ ∥∥xk − x∗
∥
∥2

,
(3.9)

where we use the definition of d(xk,ρk).
It follows that

∥
∥yk − y∗

∥
∥≤ (1 + γs)

∥
∥xk − x∗

∥
∥. (3.10)

From (3.7) and (3.10), we know

∥
∥xk+1− x∗

∥
∥≤

√
1− 2ρr + ρ2s2 (1 + γs)

∥
∥xk − x∗

∥
∥. (3.11)

Since 0 < θ < 1, from (3.11), we know xk → x∗. Thus from (3.10), we know yk → y∗. �

4. Preliminary computational results

In this section, we presented some numerical results for the proposed method.
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Table 4.1

n Algorithm 3.1 Algorithm 2.2

Iteration no. CPU(s) Iteration no. CUP(s)

10 656 0.2820 24546 6.45

50 656 0.312 21397 6.56

100 656 0.359 21397 8.09

200 656 0.61 21397 13.20

Table 4.2

n Algorithm 3.1 Algorithm 2.2

Iteration no. CPU(s) Iteration no. CUP(s)

10 155 0.047 4801 1.563

50 150 0.063 4795 2.016

100 100 0.109 4423 2.20

200 200 0.141 3899 3.047

Example 4.1. Let T(x)=Dx+C, where

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 −2

1 4 −2

··· ··· ···
···

4 −2

1 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.1)

c = (−1,−1, . . . ,−1)T , let K = [l,u], where l = (0,0, . . . ,0)T , u= (1,1, . . . ,1)T .
The calculations are started with a vector x0 = (0,0, . . . ,0)T , and stopped whenever

‖r(xn,γ)‖∞ < 10−5. Table 4.1 gives the numerical results of Algorithms 3.1 and 2.2.
Table 4.1 show that Algorithm 3.1 is very effective for the problem tested. In addition,

for our method, it seems that the computational time and the iteration numbers are not
very sensitive to the problem size.

Example 4.2. Let T(x) = N(x) +Dx +C, where N(x) and Dx + c are the nonlinear and
linear parts of F(x). The element of N(x) is Nj(x)= aj ∗ arctanxj , where aj are randomly
chosen in (0,1), D and c are the same as Example 4.1.

In all tests, the calculations are started with a vector x0 = (0,0, . . . ,0)T , and stopped
whenever ‖r(xn,γ)‖∞ < 10−4. All codes are written in Matlab and run on a desk computer.
The iteration numbers and the computational time from Algorithms 2.2 and 3.1 with
different dimensions are given in Table 4.2.

Table 4.2 shows that Algorithm 3.1 is also very effective for the problem tested. In ad-
dition, for our method, it seems that the computational time and iteration numbers are
not very sensitive to the problem size.
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