
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2007, Article ID 35897, 31 pages
doi:10.1155/2007/35897

Research Article
Rational Probabilistic Deciders—Part I: Individual Behavior

P. T. Kabamba, W.-C. Lin, and S. M. Meerkov

Received 7 December 2006; Accepted 23 February 2007

Recommended by Jingshan Li

This paper is intended to model a decision maker as a rational probabilistic decider (RPD)
and to investigate its behavior in stationary and symmetric Markov switch environments.
RPDs take their decisions based on penalty functions defined by the environment. The
quality of decision making depends on a parameter referred to as level of rationality. The
dynamic behavior of RPDs is described by an ergodic Markov chain. Two classes of RPDs
are considered—local and global. The former take their decisions based on the penalty
in the current state while the latter consider all states. It is shown that asymptotically
(in time and in the level of rationality) both classes behave quite similarly. However, the
second largest eigenvalue of Markov transition matrices for global RPDs is smaller than
that for local ones, indicating faster convergence to the optimal state. As an illustration,
the behavior of a chief executive officer, modeled as a global RPD, is considered, and
it is shown that the company performance may or may not be optimized—depending
on the pay structure employed. While the current paper investigates individual RPDs, a
companion paper will address collective behavior.

Copyright © 2007 P. T. Kabamba et al. This is an open access article distributed under
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1. Introduction

1.1. Motivation. The theory of rational behavior (TRB) is a set of models intended to
capture one of the main features of living organisms’ behavior—the possibility of se-
lecting the most favorable decisions among all possible options in a decision space.TRB
involves two major components: dynamical systems, which model rational behavior, and
rules of interaction among them and with the environment. Analysis of the resulting
complex dynamics reveals fundamental properties of rational behavior.
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TRB emerged in the early ’60s in the work of mathematicians and physicists, primarily
in Russia. A summary of their results can be found in [1, 2] while the earliest publi-
cations are [3, 4]. In [1–4], the decision makers were modeled as automata, the states of
which represent various decisions. The transitions among the states were driven by inputs
(penalties or rewards) generated either by the environment or by the decisions of other
automata. The transition diagrams of the automata were designed so that the steady state
probabilities corresponding to the decisions with the largest rewards were maximized.
This was interpreted as rational behavior of an individual decision maker or a collective
of decision makers.

In [5], this approach was generalized by assuming that the decision makers were not
necessarily automata but general dynamical systems in certain decision spaces. The tra-
jectories of these systems were assumed to satisfy two axioms: ergodicity and retardation.
Roughly speaking, the ergodicity axiom implied that all possible decisions were consid-
ered within the process of decision making, while the retardation axiom required that the
trajectories slow down (i.e., retard) in the vicinity of the most advantageous states. Along
with enlarging the set of possible decision makers, this framework exhibited additional
properties of rational behavior, such as the possibility of rapid convergence to the optimal
state, which was impossible in the framework of automata.

These two modeling approaches involved not only issues of rationality but also com-
plex dynamic behavior, which, on one hand, made the analysis of the resulting systems
difficult and, on the other hand, obscured the issue of rational behavior. As a result, the
steady state probabilities of various decisions as functions of the parameters of the deci-
sion makers and rules of interactions were all but impossible to analyze, especially when
the environment was time-varying and/or more than one decision makers were involved.

The main purpose of the present work is to develop a purely probabilistic modeling
approach to rational behavior, which does not lead to complicated dynamics and which
provides a more complete and transparent analysis of main features of rational behav-
ior. To accomplish this, we introduce the notion of rational probabilistic deciders (RPDs),
which select various states in their decision spaces with certain probabilities. How this
selection takes place is omitted; it could be accomplished by either automata, or the dy-
namical systems of [5], or any other, perhaps unknown, mechanism. But, as long as this
selection takes place, the approach of this work, being divorced from the issues of dy-
namics of the decision making, leads to a simple Markov chain analysis of fundamental
properties of rational behavior. This paper addresses the issues of individual behavior,
while in a forthcoming paper collective behavior is analyzed.

1.2. Brief review of existing results. The work on using automata to model the sim-
plest form of rational behavior first appeared in [3], where the so-called finite automata
with linear tactics were constructed and their individual behavior in stationary and non-
stationary media was investigated. Based on this work, [6–10] developed other types of
rational automata, and investigated their individual behavior. All these automata were
shown to behave optimally with arbitrarily large memory in stationary media. In non-
stationary media, it was shown that there exists a finite memory size for the automata to
behave optimally.
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The collective behavior of the automata mentioned above was investigated [4, 11–21].
In particular, [14–16] analyzed the collective behavior of asymptotically optimal autom-
ata as players in zero-sum matrix games. The results showed that automata with arbitrar-
ily large memory converge to the saddle point in matrix games with pure optimal strategy
and do not converge to the saddle point in mixed strategies. References [17–19] investi-
gated the collective behavior of automata in the so-called Gur game. Conditions for the
group to behave optimally were derived. Specifically, it was shown that as the number
of automata, M, and their memory capacity, N , become arbitrarily large, the ratio N/M
must exceed some constant for the collective to behave optimally.

Similar results, in the framework of general dynamical systems, were obtained in [5].
In addition, [5] provided many examples of dynamical systems that exhibit rational be-
havior. The main among them was the so-called ring-element, which could be viewed as
the simplest search algorithm for global extrema. Unlike the automata, where the conver-
gence to the optimal decision is exponentially slow (with the exponent being the mem-
ory capacity), ring-elements could converge arbitrarily fast. Also, [5] provided a detailed
study of collective behavior under homogeneous and nonhomogeneous fractional inter-
actions and showed that even if N/M tends to 0 (as N ,M →∞), the convergence to the
optimal state still may take place if the interaction was nonhomogeneous.

The earliest western work on rational behavior appeared in [22–24]. Specifically, [22]
introduced a new type of rational automata and [23, 24] initiated the application to learn-
ing systems. The learning system approach, along with applications to telephone routing
problems, has continued in [25–28]. The results of this research were summarized in [29].

A number of applications of rational behavior to various practical problems have also
been reported. Namely, [30, 31] applied rational automata to distributed systems, and
[32–34] discussed the applications to cooperative mobile robots, to quality of service
for sensor networks, and to control of flapping wings in micro air vehicles, respectively.
Recently, TRB was applied to power-efficient operation of wireless personal area networks
[35].

1.3. Goals of the study. The main goals of this work are as follows.
(α) Contributing to TRB by introducing a purely probabilistic modeling framework

for rational behavior.
(β) Using this framework, it develops methods for analysis of rational behavior, that

is, methods, which allow to investigate the steady state probabilities of various
decisions as functions of system parameters.

(γ) Addressing the issues of synthesis of desirable rational behavior, that is, methods
for selecting parameters of RPDs and rules of interactions, which lead to desired
individual and collective behavior.

This paper pursues these goals for the case of individual behavior; a forthcoming paper
will address the collective one.

The outline of this paper is as follows. In Section 2, we define and characterize RPDs,
and state analysis and synthesis problems. The individual behavior of RPDs in stationary
and symmetric Markov switch environments is investigated in Sections 3 and 4, respec-
tively. An application of RPDs to a pay and incentive system is described in Section 5.
Finally, in Section 6, we state the conclusions. All proofs are given in the appendices.
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2. Probabilistic modeling framework

2.1. Probabilistic deciders. A probabilistic decider (PD) is defined as a quadruple,

(�,Φ,N ,�), (2.1)

where
(a) �={1,2, . . . ,s} is the decision space of the PD. At each time moment, n=0,1,2, . . . ,

the PD is in one of the states of �;
(b) Φ = [ϕ1 ϕ2 ··· ϕs ] is a vector, which characterizes the environment surrounding

the PD. The entry 0 < ϕi <∞, i = 1,2, . . . ,s, denotes the penalty associated with
state i;

(c) N ∈ (0,∞) is a positive real number, which will be used below to characterize the
level of rationality of the PD;

(d) �= {P1(Φ;N),P2(Φ;N), . . . ,Ps(Φ;N)} is a set of transition probabilities depend-
ing on Φ and N . If at time n the PD is in state i, the probability that it makes a
state transition at time n+ 1 is

P
[
x(n+ 1) �= i | x(n)= i

]= Pi
(
ϕ1,ϕ2, . . . ,ϕs;N

)= Pi(Φ;N), (2.2)

0 < Pi(Φ;N) < 1; (2.3)

(e) when a state transition occurs, the PD selects any other state with equal proba-
bility

P
[
x(n+ 1)= j | x(n)= i

]= Pi(Φ;N)
s− 1

for j �= i. (2.4)

2.2. Steady state probabilities. Due to (2.2)–(2.4), the dynamics of PD in � are de-
scribed by an ergodic Markov chain with transition matrix

A=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1− (P1(Φ;N)
) P1(Φ;N)

s− 1
··· P1(Φ;N)

s− 1
P2(Φ;N)
s− 1

1− (P2(Φ;N)
) ··· ...

...
...

. . .
...

Ps(Φ;N)
s− 1

··· ··· 1−Ps(Φ;N)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.5)

Therefore, the vector of steady state probabilities,

κ=
[
κ1 κ2 ··· κs

]
, κi = κi(Φ;N), (2.6)

where κi is the steady state probability of the PD choosing state i, can be calculated from

κ= κA,
s∑

i=1

κi = 1, (2.7)
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which has the solution

κi(Φ;N)= 1/Pi(Φ;N)
∑s

j=1

(
1/Pj(Φ;N)

) ∀i∈ {1,2, . . . ,s}. (2.8)

Due to (2.3),

0 < κi(Φ;N) < 1. (2.9)

2.3. Rational probabilistic deciders. A probabilistic decider (�,Φ,N ,�) is referred to
as a rational probabilistic decider (RPD) if

ϕi < ϕj , i, j ∈�, i �= j, (2.10)

implies

κi(Φ;N)
κj(Φ;N)

> 1 ∀N ∈ (0,∞), (2.11)

and, moreover,

lim
N→∞

κi(Φ;N)
κj(Φ;N)

=∞. (2.12)

Equation (2.11) means that, at steady state, the probability of an RPD being in a less pe-
nalized state is higher than the probability of it being in a more penalized state. Equation
(2.12) means that as N increases, the RPD becomes more selective, preferring states that
are least penalized. As before, the parameter, N , is referred to as the level of rationality
(LR) of the RPD.

2.4. Analytical characterization of RPDs. It turns out that there are several types of PDs
satisfying (2.12) and (2.11). Two of them—local and global RPDs—are introduced below.

2.4.1. Local RPDs. Consider PDs such that

Pi(Φ;N)= P
(
ϕi,N

)
, i∈�,

P(ϕ,N) : (0,∞)× (0,∞)−→ (0,1),
(2.13)

that is, the probability of leaving a state depends only on the penalty associated with this
state. For this reason, these PDs are referred to as local probabilistic deciders (L-PDs).

The properties of function P, which guarantee that an L-PD is, in fact, an RPD, that is,
(2.11) and (2.12) are satisfied, are analyzed next.

Assume the following.
(P.1) The relation, ϕ1 < ϕ2, implies

P
(
ϕ1,N

)
< P
(
ϕ2,N

) ∀N ∈ (0,∞), (2.14)
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and, moreover,

lim
N→∞

P
(
ϕ2,N

)

P
(
ϕ1,N

) =∞. (2.15)

The class of functions satisfying (P.1) is denoted as Π.

Theorem 2.1. An L-PD is, in fact, an RPD if and only if P ∈Π.

We refer to L-PDs that are RPDs as local RPDs (L-RPDs). Clearly, an L-RPD is charac-
terized by the function P, P ∈Π. An example of a function P satisfying (P.1) is

P(ϕ,N)= p(ϕ)N , (2.16)

where

p : (0,∞)−→ (0,1) (2.17)

is a strictly increasing function, for example,

p(ϕ)= ϕ

1 +ϕ
, (2.18)

or

p(ϕ)= 2
1 + e−ϕ

− 1, (2.19)

or

p(ϕ)= 2
π

tan−1(ϕ). (2.20)

Finally, we state an analytic property of P, which will be useful later.

Lemma 2.2. If P ∈Π, then limN→∞P(ϕ,N)= 0, for all ϕ∈ (0,∞).

2.4.2. Global RPDs. Consider PDs, which satisfy the following.
(a) The decision space contains two states

�= {1,2}. (2.21)

(b) The steady state probabilities, κi(ϕ1,ϕ2;N), i= 1,2, can be written in the form of
a composite function,

κi
(
ϕ1,ϕ2;N

)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F
(
G
(
N ,

ϕ2

ϕ1

))
if i= 1,

F
(
G
(
N ,

ϕ1

ϕ2

))
if i= 2,

(2.22)

F : (0,∞)−→ (0,1),

G : (0,∞)× (0,∞)−→ (0,∞).
(2.23)
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The purpose of (2.21) is to simplify the characterization. The function G in (2.22) is
intended to model how the PD perceives the ratio of the penalties associated with the
states, while the function F in (2.22) models how the PD makes decisions upon this per-
ception. In addition, (2.22) implies

κ1
(
ϕ1,ϕ2;N

)= κ2
(
ϕ2,ϕ1;N

)
, (2.24)

which indicates that the decisions of the PD are not prejudiced. We specify what functions
in � of the PD give rise to (2.22).

Theorem 2.3. A necessary and sufficient condition for � to lead to (2.22) is

P1(Φ;N)
P2(Φ;N)

= F
(
G
(
N ,ϕ1

/
ϕ2
))

F
(
G
(
N ,ϕ2

/
ϕ1
)) , (2.25)

where F(G(N ,ϕ1/ϕ2)) +F(G(N ,ϕ2/ϕ1))= 1.

Note that, according to (2.25), the probability of leaving a state depends not only on
the penalty of this particular state, but also on the penalty of the other state. For this
reason, PDs, satisfying (a) and (b), are called global probabilistic deciders (G-PDs).

We investigate the properties of F and G, which guarantee that a G-PD is an RPD, that
is, (2.11) and (2.12) are satisfied. Assume the following.

(F.1) F is a continuous, strictly increasing function, and limx→∞F(x)=1, limx→0F(x)=
0.

(F.2) F satisfies the functional equation, F(x) +F(x−1)= 1 for x ∈ (0,∞).
(G.1) For any y ∈ (0,1), G(N , y) is a continuous, strictly decreasing function of N ∈

(0,∞), and limN→∞G(N , y)= 0.
(G.2) For any y ∈ (1,∞), G(N , y) is a continuous, strictly increasing function of N ∈

(0,∞), and limN→∞G(N , y)=∞.
(G.3) For any y ∈ (0,∞), limN→0G(N , y)= 1.
(G.4) For any N ∈ (0,∞), G(N , y) is a continuous, strictly increasing function of y ∈

(0,∞), and limy→∞G(N , y)=∞, limy→0G(N , y)= 0.
(G.5) For any N ∈ (0,∞), G(N , y) satisfies the functional equation, G(N , y−1) =

G(N , y)−1 for y ∈ (0,∞).
Assumptions (G.1) and (G.2) imply that when N →∞, the PD becomes arbitrarily

perceptive to the ratio of the penalties, while (G.3) means that when N → 0, this per-
ception diminishes. Moreover, (F.1) means that, as this perception becomes arbitrarily
good, the probability of the PD making the right decision becomes arbitrarily close to
one. Assumptions (F.2), (G.4), and (G.5) are introduced for technical reasons.

Denote the class of functions F satisfying (F.1) and (F.2) as �, and the class of functions
G satisfying (G.1)–(G.5) as �.

Theorem 2.4. A G-PD is, in fact, an RPD if F ∈� and G∈�.

We refer to G-PDs that are RPDs as global RPDs (G-RPDs). A G-RPD is characterized
by the pair (F,G), F ∈�, G∈ �. The functions in � of the G-RPD can be reconstructed
by Theorem 2.3. For example, consider the G-RPD characterized by the pair (F1,G1),
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where

F1(x)= x

1 + x
, G1(N , y)= yN . (2.26)

The functions in � can be either

P1(Φ,N)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

(
ϕ1

ϕ2

)N
if ϕ1 < ϕ2,

1
2

if ϕ1 > ϕ2,

P2(Φ,N)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

if ϕ1 < ϕ2,

1
2

(
ϕ2

ϕ1

)N
if ϕ1 > ϕ2,

(2.27)

or

P1(Φ,N)= ϕN
1

ϕN
1 +ϕN

2
, P2(Φ,N)= ϕN

2

ϕN
1 +ϕN

2
. (2.28)

We note that Krinskiy’s automata [8] with two actions can be characterized by the pair
(F1,G1), defined in (2.26). Furthermore, new RPDs can be found by using other functions
in � and �. For example, a G-RPD characterized by (F2,G2), where

F2(x)= x− 1
2(x+ 1)

+
1
2

, G2(N , y)=
⎧
⎪⎨

⎪⎩

Ny−N + 1 if y ≥ 1,
1

N/y−N + 1
if y ≤ 1,

(2.29)

has not been found before.

Remark 2.5. Two methods can be used to extend the characterization of G-RPDs dis-
cussed above to a G-RPD with more than two states in the decision space. The first
method is to characterize the G-RPD iteratively: in the first step of the iteration, the de-
cision space is partitioned into two subspaces. The G-RPD then selects one of the two
subspaces in a probabilistic way. The probability of this selection is modeled in a form
similar to (2.22). In the next iteration, the selected subspace in the previous step is par-
titioned into two subspaces and the G-RPD proceeds as before. The second method is to
characterize the G-RPD in a pairwise fashion. Specifically, for each pair of the states, we
characterize the probabilities of the decisions of the G-RPD in the form of (2.22). This
method is used in Section 5 below.

In conclusion of this subsection, we formulate a lemma, which will be useful in later
sections.

Lemma 2.6. Suppose F(x)∈� and G(N , y)∈�. Then,
(i) F(x) has a continuous, strictly increasing inverse, F−1 : (0,1)→ (0,∞);

(ii) given y > 1, G(N , y) has a continuous, strictly increasing inverse with respect to the
variable N , G−1

y : (1,∞)→ (0,∞);
(iii) given N ∈ (0,∞), G(N , y) has a continuous, strictly increasing inverse with respect

to the variable y, G−1
N : (0,∞)→ (0,∞).
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2.5. RPDs’ analysis and synthesis problems. The environment, modeled in Section 2.1
by a constant vector Φ, is referred to as stationary. RPDs may operate also in nonstation-
ary environments, modeled by time varying Φ’s. In Section 4, we introduce a specific case
of such situation referred to as the symmetric Markov switch environment.

This paper investigates the individual behavior of RPDs in both stationary and sym-
metric Markov switch environments. In each of these environments, the following anal-
ysis and synthesis problems are addressed.

Analysis. Given an RPD and an environment, analyze the probability of various decisions
as a function of the level of rationality and the parameters of the environment.

Synthesis. Given an RPD and an environment, calculate the level of rationality and/or
parameters of the environment, which lead to various types of RPD’s behavior.

Exact formulations of these problems along with appropriate answers are given in Sec-
tions 3 and 4.

3. RPDs in stationary environment

3.1. Environment. In this section, we consider the decision space � = {1,2} and the
penalty vector Φ= [ϕ1 ϕ2 ]. Without loss of generality, assume that ϕ1 < ϕ2, that is, state 1
is associated with less penalty than state 2.

3.2. Analysis. In order to characterize the behavior of RPDs qualitatively, introduce the
following definition.

Definition 3.1 (Asymptotically optimal behavior). The behavior of a PD is asymptotically
optimal if for all 0 < ε < 1/2 and for all Φ with ϕ1 < ϕ2, there exists N∗ such that N ≥
N∗ ⇒ 1≥ κ1(Φ,N)≥ 1− ε.

Clearly, asymptotically optimal behavior means that no matter how close the penalties
associated with the two states are, there is an LR large enough so that the RPD selects the
state with less penalty reliably.

We have the following qualitative results.

Theorem 3.2. Both L-RPDs and G-RPDs exhibit asymptotically optimal behavior.

Although, as it is stated in Theorem 3.2, L-RPDs and G-RPDs asymptotically behave
qualitatively similar, their behavior for fixed N and ϕ2 −ϕ1 might be different. To illus-
trate this, consider L-RPD defined by (2.16), (2.18) and G-RPD defined by (2.26), respec-
tively. Figures 3.1(a) and 3.1(b) show the probability of selecting state 1 as a function of
N and ϕ1, respectively. Clearly, G-RPD, having more information, outperforms L-RPD.

In addition, G-RPDs have a faster rate of convergence to the steady state probabilities
than L-RPDs. Indeed, when �= {1,2}, the second largest eigenvalue, λ2, of the transition
matrix (2.5) for the case of L-RPDs is

λ2 = 1−P
(
ϕ1,N

)−P
(
ϕ2,N

)
. (3.1)
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Figure 3.1. Probability of selecting state 1. (a) ϕ1 = 1, ϕ2 = 5. (b)N = 10, ϕ2 = 5.

Due to Lemma 2.2, this implies that λ2 → 1 as N →∞, that is, the transient period tends
to infinity when LR becomes large.

This phenomenon does not take place for G-RPDs. Indeed, for the case of G-RPD
defined by (2.26) and (2.27),

λ2 = 1− 1
2
− 1

2

(
ϕ1

ϕ2

)N
, (3.2)

which tends to 1/2 as N →∞. This qualitatively different behavior is illustrated in Figure
3.2 for L-RPD defined by (2.16), (2.18) and G-RPD defined by (2.26), (2.27).

3.3. Synthesis. We address the following synthesis question.
S: given ϕ1 < ϕ2 and 0 < ε < 1/2, how large should N be so that

1≥ κ1
(
ϕ1,ϕ2;N

)≥ 1− ε (3.3)

holds?
The following theorem give answers to these synthesis questions.

Theorem 3.3. Given (F,G), F ∈�, G∈�, Φ= [ϕ1 ϕ2 ], ϕ1 < ϕ2, and 0 < ε < 1/2, the value
of N∗ introduced in Definition 3.1 is given by

N∗(ε, y)=G−1
y

(
F−1(1− ε)

)
, (3.4)

where y = ϕ2/ϕ1, and F−1 and G−1
y are defined in Lemma 2.6.

To illustrate the behavior of N∗, consider two G-RPDs, characterized by (F1,G1) and
(F2,G2) given in (2.26) and (2.29), respectively. Let N∗

1 (ε, y) = G−1
1,y(F−1

1 (1− ε)) and
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Figure 3.2. Behavior of κ1(n)/κ(Φ;N) for various N (ϕ1 = 1, ϕ2 = 5). (a)N = 5. (b) N = 10. (c) N =
15. (d) N = 20.

N∗
2 (ε, y) = G−1

2,y(F−1
2 (1− ε)). Figure 3.3 shows N∗

1 (ε, y) and N∗
2 (ε, y) as functions of ε

when y = 2 and y = 5. As expected, N∗
i , i = 1,2, is monotonically decreasing in ε and

y. In addition, we observe that the G-RPD defined by (F1,G1) is more efficient than that
defined by (F2,G2) since it requires a smaller LR for the same probability of making the
right decision.

4. RPDs in symmetric Markov switch environment

4.1. Environment. In this section, we consider RPDs in an environment defined by
(a) �= {1,2};
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(b) Φ(n)= [ϕ1(n) ϕ2(n) ], where ϕ1(n) and ϕ2(n) are the penalties associated with states
1 and 2, respectively, at time n;

(c) the dynamics of ϕi(n), i = 1,2, are defined by a symmetric Markov chain with
two states, E1 and E2, and the state transition matrix given by

⎡

⎣
1− ε ε

ε 1− ε

⎤

⎦ , 0 < ε < 1. (4.1)

At time n, the penalties, ϕi(n), i= 1,2, are

ϕ1(n)= φ1, ϕ2(n)= φ2 if the environment is in state E1,

ϕ1(n)= φ2, ϕ2(n)= φ1 if the environment is in state E2,
(4.2)

where 0 < φi <∞, i= 1,2, and without loss of generality, φ1 < φ2.
The environment defined by (a)–(c) is referred to as symmetric Markov switch envi-

ronment. In this section, we consider the behavior of L-RPDs and G-RPDs.

4.2. Analysis

4.2.1. L-RPDs. The dynamics of the system consisting of an L-RPD characterized by the
function P in (2.16) and the symmetric Markov switch environment (a)–(c) are described
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by a four-state ergodic Markov chain with the state transition Matrix

A=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
1− aN

)
(1− ε) aN (1− ε)

(
1− aN

)
ε aNε

bN (1− ε)
(
1− bN

)
(1− ε) bNε

(
1− bN

)
ε

(
1− bN

)
ε bNε

(
1− bN

)
(1− ε) bN (1− ε)

aNε
(
1− aN

)
ε aN (1− ε)

(
1− aN

)
(1− ε)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.3)

where a = p(φ1), b = p(φ2), 0 < a < b < 1, and 0 < ε < 1. Denote the steady state proba-
bility vector of this chain by

κ=
[
κ11 κ12 κ21 κ22

]
, (4.4)

where κi j is the steady state probability of the environment being in state Ei and the L-
RPD being in state j. Solving the equations

κ= κA,
∑

i, j

κi j = 1, (4.5)

we obtain

κ11 = κ22 = −ε+ 2bNε− bN

2
(
2aNε− aN − ε+ 2bNε− bN − ε) ,

κ12 = κ21 = −ε+ 2aNε− aN

2
(
2aNε− aN − ε+ 2bNε− bN − ε) .

(4.6)

Hence, the average penalty incurred by the L-RPD at steady state is

Ψε(N)= φ1κ11 +φ2κ12 +φ2κ21 +φ1κ22 = φ1 +
(
φ2−φ1

)
fε(N), (4.7)

where

fε(N)= aN (2ε− 1)− ε
(
aN + bN

)
(2ε− 1)− 2ε

. (4.8)

In Section 3, the RPDs are in a stationary environment, and the steady state probabil-
ity of the RPDs to be in the less penalized state is a measure of performance. However, in
a symmetric Markov switch environment, the less penalized state changes from time to
time. Hence, the steady state probability of being in a certain state is not a suitable mea-
sure of performance. Instead, we use Ψε(N) as a measure of performance. The analysis
considered here is

A: given an L-RPD in a symmetric Markov switch environment, how does the value
of Ψε(N) behave as a function of N and ε?

A partial answer to this question is provided by the following theorem.
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Figure 4.1. Ψε(N) versus N when ε = 0.1 and ε = 0.9.

Theorem 4.1. For Ψε(N) defined in (4.7), the following four properties hold:
(i)

Ψε(N) <
φ1 +φ2

2
if 0 < ε <

1
2

,

Ψε(N) >
φ1 +φ2

2
if 1 > ε >

1
2

;

(4.9)

(ii)

lim
N→0

Ψε(N)= lim
N→∞

Ψε(N)= φ1 +φ2

2
; (4.10)

(iii) if 0 < ε < 1/2, then Ψε(N) has a unique minimum on N ∈ (0,∞);
(iv) if 1/2 < ε < 1, then Ψε(N) has a unique maximum on N ∈ (0,∞).

Thus, for 1 > ε > 1/2, Ψε(N) is a function of N with a unique maximum that is larger
than (φ1 +φ2)/2. This is clearly not an interesting case. For 0 < ε < 1/2, Ψε(N) is a func-
tion of N with a unique minimum that is smaller than (φ1 +φ2)/2. The behavior of Ψε(N)
is illustrated in Figure 4.1 for φ1 = 1, φ2 = 5, a= 0.2, and b = 0.8.

Let N∗ be the minimizer of Ψε(N) for 0 < ε < 1/2. Then, we have the following theo-
rem.

Theorem 4.2. Function Ψε(N) with 0 < ε < 1/2 satisfies the following property:

ε decreases =⇒N∗ increases and Ψε
(
N∗) decreases. (4.11)
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Figure 4.2. Ψε(N) versus N for ε = 0.05, 0.2, and 0.35.

Thus, as the environment is switching slower, the L-RPD can use a higher LR, which
takes more time for the L-RPD to settle at the least penalized state. As a result, the L-
RPD has better ability to discriminate the two states in between switches of the envi-
ronment. Hence, the average penalty incurred at steady state is less. Figure 4.2 illustrates
Theorem 4.2 for φ1 = 1, φ2 = 5, a= 0.2, b = 0.8.

4.2.2. G-RPDs. Consider a G-RPD characterized by (F1,G1) defined in (2.26) with �
given by (2.27). The dynamics of a system consisting of this G-RPD and the symmetric
Markov switch environment (a)–(c) is described by a four state ergodic Markov chain
with transition matrix

A

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
1− 1

2

(
φ1

φ2

)N)
(1−ε)

1
2

(
φ1

φ2

)N
(1−ε)

(
1− 1

2

(
φ1

φ2

)N)
ε

1
2

(
φ1

φ2

)N
ε

1
2

(1− ε)
1
2

(1− ε)
1
2
ε

1
2
ε

1
2
ε

1
2
ε

1
2

(1− ε)
1
2

(1− ε)

1
2

(
φ1

φ2

)N
ε

(
1− 1

2

(
φ1

φ2

)N)
ε

1
2

(
φ1

φ2

)N
(1−ε)

(
1− 1

2

(
φ1

φ2

)N)
(1−ε)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(4.12)
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The average penalty incurred at steady state is

Ψ′ε(N)= φ1 +
(
φ2−φ1

)
f ′ε (N), (4.13)

where

f ′ε (N)=
(
φ1/φ2

)N
(ε− 1/2)− ε

(
φ1/φ2

)N
(ε− 1/2)− ε− 1/2

. (4.14)

The analysis question considered here is as follows
A: given an G-RPD in a symmetric Markov switch environment, how does the value

of Ψ′ε(N) behave as a function of N and ε?
A partial answer to this question is given by the following.

Theorem 4.3. The function Ψ′ε(N) satisfies the following properties:
(i)

Ψ′ε(N) <
φ1 +φ2

2
if 0 < ε <

1
2

,

Ψ′ε(N) >
φ1 +φ2

2
if 1 > ε >

1
2

;

(4.15)

(ii)

lim
N→0

Ψ′ε(N)= φ1 +φ2

2
, lim

N→∞
Ψ′ε(N)= φ1 +

(
φ2−φ1

) ε
ε+ 1/2

; (4.16)

(iii) if 0 < ε < 1/2, then Ψ′ε(N) is a strictly decreasing function of N ;
(iv) if 1/2 < ε < 1, then Ψ′ε(N) is a strictly increasing function of N .

Thus, unlike L-RPDs, the larger LR, the less penalty incurred by the G-RPD. When the
LR is arbitrarily large, the G-RPD is least penalized. Figure 4.3 illustrates Theorem 4.3 for
φ1 = 1 and φ2 = 5.

4.3. Synthesis. In this section, we ask the synthesis question.
S: given an L-RPD in a symmetric Markov switch environment with 0 < ε < 1/2,

what is the optimal LR, N∗, that minimizes Ψε(N)?
The answer to S can be obtained by solving for N in

d

dN
Ψε(N)= 0. (4.17)

However, this involves solving for the transcendental equation

(lna)aN

aN + ε− 2aNε
= (lnb)bN

bN + ε− 2bNε
. (4.18)
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Let functions Za(N) and Zb(N) be the left-hand side and right-hand side of (4.18), re-
spectively. From plots of functions Za(N) and Zb(N) for various values of a and b, we
note that the solution to (4.18) happens near the maximum of

d

dN
Za(N). (4.19)

An example is shown in Figure 4.4, where a= 0.2, b = 0.6, and ε = 0.1. An initial approx-
imation of N∗, N̂∗, can then be obtained by solving

d2

dN2
Za(N)= 0, (4.20)

which gives

N̂∗ = ln
(
ε/(1− 2ε)

)

lna
. (4.21)

Note that N̂∗ is a very rough approximation of N∗ since this approximation only depends
on a, but not on b. An example is shown in Figure 4.5 where the percentage errors

ΔN = N̂∗ −N∗

N∗ × 100%,

ΔΨ = Ψε
(
N̂∗)−Ψε

(
N∗)

Ψε
(
N∗) × 100%,

(4.22)
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Figure 4.5. Percentage errors ΔN and ΔΨ with respect to varying ε.

for given φ1 = 1, φ2 = 5, a= 0.2, and b = 0.8, are plotted as functions of ε. The percentage
errors, ΔN and ΔΨ, go as high as −160% and 20%, respectively, as ε approaches 0.45.
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The approximation of N∗ can be improved by iterating once in Newton’s method for
solving (4.18) using N̂∗ as initial guess. This improved approximation is then

�N∗1 = N̂∗ − Za
(
N̂∗)−Zb

(
N̂∗)

(d/dN)
(
Za
(
N̂∗)−Zb

(
N̂∗)) , (4.23)

where N̂∗ is given in (4.21). For the same values of φ1, φ2, a, and b as in Figure 4.5,
Figure 4.6 plots the percentage errors

Δ1
N =

�N∗1−N∗

N∗ × 100%,

Δ1
Ψ =

Ψε
(
�N∗1

)−Ψε
(
N∗)

Ψε
(
N∗) × 100%,

(4.24)

as functions of ε. As compared to ΔN and ΔΨ, Δ1
N and Δ1

Ψ improve to −80% and 3%,
respectively, as ε approaches 0.45. Further improvement can be expected if Newton’s
method for solving (4.18) is carried out with more than one iteration.

5. Application

As an application, we use G-RPDs to model the behavior of a Chief Executive Officer
(CEO) of a company to provide insights on how to induce the CEO, through his own
self-interest, to act for the best benefits of the company.
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Figure 5.1. Information structure of the two-stage decision process.

5.1. Environment. Assume that the CEO is making decisions in a two-stage decision
process. The information structure of the decision process is depicted by the graph in
Figure 5.1. At Stage 1, the company is at node A and the CEO can choose between two
decisions, x1 or x2, which lead the company to nodes B or C, respectively. Similarly, at
Stage 2, whether the company is at node B or C, the CEO can choose between two deci-
sions, x1 or x2. At the end of the process, the company is at node Si j if the CEO takes the
sequence of decisions, xi at Stage 1 and xj at Stage 2. We denote the sequence of decisions
by xixj .

The numbers a1, a2, a11, a12, a21, and a22 on the edges of the graph denote the reward
received by the CEO for each decision made. These numbers are assumed to be functions
of the company’s stock prices and reflect the situation of the company due to the deci-
sions of the CEO. The larger the number, the better the situation the company is in. The
information structure is assumed to be “probabilistically” known to the CEO in the sense
that he can take the decision in the form of a G-RPD, that is,

P
[
decision = xi

]=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F1

(
G1

(
N ,

ϕ2

ϕ1

))
for i= 1,

F1

(
G1

(
N ,

ϕ1

ϕ2

))
for i= 2,

(5.1)

where ϕ1 and ϕ2 are the penalties associated with states x1 and x2, respectively, and F1 and
G1 are defined in (2.26). The decision process at Stages 1 and 2 are described below.

Stage 1. At node A, the CEO considers all four possible sequences of decisions, xixj ,
i, j = 1,2. The objective reward for the sequence of decisions xixj is ai + ai j . However,
subjectively, the CEO views his reward for xixj as ai +αai j , 0≤ α≤ 1, where the value of
α is defined by the contractual relation between the CEO and the company. When the
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employment of the CEO is long term, encompassing the two stages, α is large. Otherwise,
α can be small. Thus, parameter α models how much the rewards at Stage 2 are taken into
account by the CEO at Stage 1.

Let κi j denote the probability that the CEO favors the sequence of decisions xixj . Then,
the probability that the CEO chooses xi, i= 1,2, at Stage 1 is

κAi = κi1 + κi2. (5.2)

The probabilities, κi j , are determined by pairwise comparison of the sequence of deci-
sions. To be more specific, taking the reciprocal of rewards as penalties,

κi j
κkl
= F1

(
G1
(
N ,
(
1/
(
ak +αakl

))
/
(
1/
(
ai +αai j

))))

F1
(
G1
(
N ,
(
1/
(
ai +αai j

))
/
(
1/
(
ak +αakl

)))) , 1≤ i, j ≤ 2, (i, j) �= (k, l), (5.3)

where the numerator and denominator on the right-hand side of the ratio are the proba-
bilities of the CEO favoring xixj and xkxl, respectively, if there were only these two choices.
Since F1 and G1 are defined in (2.26), (5.3) implies

κi j
κkl
=
(
ai +αai j
ak +αakl

)N
. (5.4)

Since
∑

i j κi j = 1, we have

κi j =
(
ai +αai j

)N

(
a1 +αa11

)N
+
(
a1 +αa12

)N
+
(
a2 +αa21

)N
+
(
a2 +αa22

)N . (5.5)

Hence, by (5.2), we obtain

κAi =
(
ai +αai1

)N
+
(
ai +αai2

)N

(
a1 +αa11

)N
+
(
a1 +αa12

)N
+
(
a2 +αa21

)N
+
(
a2 +αa22

)N . (5.6)

Stage 2. If the company is at node B, the CEO considers the two decisions, x1 and x2,
with rewards a11 and a12, respectively. Taking the reciprocals of rewards as penalties, the
probability of selecting xi is

κBi = F1

(
G1

(
N ,

1/a1 j

1/a1i

))
= aN1i

aN1i + aN1 j
, (5.7)

where i, j = 1,2, i �= j. Similarly, if the company is at node C, the probability of selecting
xi is

κCi = F1

(
G1

(
N ,

1/a2 j

1/a2i

))
= aN2i

aN2i + aN2 j
, (5.8)

where i, j = 1,2, i �= j.
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Given the above discussion, at the end of the decision process, the probability that the
company is at Si j is

Pi j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

κA1 × κB1 for i= 1, j = 1,

κA1 × κB2 for i= 1, j = 2,

κA2 × κC1 for i= 2, j = 1,

κA2 × κC2 for i= 2, j = 2.

(5.9)

5.2. Analysis. We next analyze how the probabilities, Pi j , change as functions of α and
N . For this purpose, we assume a1 = 1, a2 = 5, a11 = 10, a12 = 15, a21 = 2, a22 = 3. Since
a1 + a12 has the largest value, the sequence of decisions, x1x2, is the best for the company.
Figure 5.2 shows Pi j , calculated according to (5.6)–(5.9), as a function of N for various
values of α, and Figure 5.3 shows Pi j as a function of α for various N ’s.

Based on these figures, we observe the following.
(i) For a fixed α, the probability of the CEO making the best decision for the com-

pany, P12, does not necessary become large as N becomes large. For small α (0.2
and 0.3), the CEO does not make the best decision with high probability as N
becomes large. Moreover, it tends to 0 as N becomes large. However, for large
α (0.6 and 1), the CEO does make the best decision with high probability if N
is large enough. This means that for the CEO to make the best decision for the
company, having a high LR is not enough. The CEO must also take into account
the future rewards.

(ii) For a fixed N , P12 increases when α becomes larger. This means that for a CEO
with small LR, the probability of making the best decision can be improved by
increasing his ability to take into account future rewards.

5.3. Synthesis. From the observations in Section 5.2, it follows that it is best for a com-
pany to have a CEO who takes into account the future rewards when he is making deci-
sions, that is, a CEO with large α. One way to ensure a large α is to guarantee a relatively
long-term contractual relationship between the CEO and the company.

6. Conclusions

This paper shows that rational behavior can be modeled in a purely probabilistic way, thus
avoiding complex dynamics associated with other approaches. The rational probabilistic
deciders, introduced in this work, both in the so-called local and global implementations,
allow us to quantitatively investigate individual rational behavior in stationary and sym-
metric Markov switch environments. Although both G-RPD and L-RPD perform well,
there are qualitative differences between them. Specifically,

(1) in the stationary environment, with the same LR and penalties associated with
their states, G-RPD selects its least penalized state with higher steady state prob-
ability than L-RPD;
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Figure 5.2. Pij versus N for various fixed α. (a) α= 0.2. (b) α= 0.3. (c) α= 0.6. (d) α= 1.

(2) as the LR becomes large, the rate of convergence for G-RPD is much faster than
that for L-RPD in stationary environments;

(3) in a slowly switching symmetric Markov switch environment, the average penalty
incurred by G-RPD is a monotonically decreasing function of the LR, while for
L-RPD, the average penalty is minimized by a finite optimal LR and increases as
the LR deviates from this optimal value.

The results of this paper, as it is shown in the application, can be used as a mathemat-
ical model for investigating efficacy of various pay and incentive systems.
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Figure 5.3. Pij versus α for various fixed N . (a) N = 2. (b) N = 4. (c) N = 6. (d) N = 8.

Appendices

A. Proofs of Section 2

Proof of Theorem 2.1. (Sufficiency). Suppose an L-PD is an RPD, that is, (2.11) and (2.12)
hold. Then,

κi(Φ,N)= 1/P
(
ϕi,N

)

1/P
(
ϕ1,N

)
+ 1/P

(
ϕ2,N

) , i= 1,2, (A.1)

implies that (2.14) and (2.15) hold.
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(Necessity). Suppose the function P in an L-PD satisfies (2.14) and (2.15). Then, (A.1)
implies that (2.11) and (2.12) hold. �

Proof of Lemma 2.2. Suppose that there exists ϕ′ such that limN→∞P(ϕ′,N)=a �= 0. Then,
for all ϕ′′ > ϕ′,

lim
N→∞

P(ϕ′′,N)
P(ϕ′,N)

�= ∞, (A.2)

which is a contradiction to (2.15). Hence, Lemma 2.2 must be true. �

Proof of Theorem 2.3. (a) Suppose (2.22) holds. Then,

κi
(
ϕ1,ϕ2;N

)= 1/Pi(Φ;N)
1/P1(Φ;N) + 1/P2(Φ;N)

, i= 1,2, (A.3)

implies (2.25).
(b) Suppose (2.25) holds. Then, (A.3) implies (2.22).

By (a) and (b), the theorem is proved. �

Proof of Theorem 2.4. (a) Suppose ϕ1 < ϕ2. Then, by (G.4), we have G(N ,ϕ2/ϕ1) >
G(N ,ϕ1/ϕ2). Therefore, by assumption (F.1), we have F(G(N ,ϕ2/ϕ1))> F(G(N ,ϕ1/ϕ2)).
Hence, by (2.22),

κ1
(
ϕ1,ϕ2;N

)

κ2
(
ϕ1,ϕ2;N

) = F
(
G
(
N ,ϕ2/ϕ1

))

F
(
G
(
N ,ϕ1/ϕ2

)) > 1. (A.4)

Furthermore, as N →∞, G(N ,ϕ2/ϕ1)→∞ and G(N ,ϕ1/ϕ2)→ 0. Hence, by assumption
(F.1), as N →∞, F(G(N ,ϕ2/ϕ1))→ 1 and F(G(N ,ϕ1/ϕ2))→ 0. This implies

lim
N→∞

κ1
(
ϕ1,ϕ2;N

)

κ2
(
ϕ1,ϕ2;N

) =∞. (A.5)

(b) Suppose ϕ1 > ϕ2. Similar to (a), we have

κ2
(
ϕ1,ϕ2;N

)

κ1
(
ϕ1,ϕ2;N

) = F
(
G
(
N ,ϕ1/ϕ2

))

F
(
G
(
N ,ϕ2/ϕ1

)) > 1,

lim
N→∞

κ2
(
ϕ1,ϕ2;N

)

κ1
(
ϕ1,ϕ2;N

) =∞.

(A.6)

From (a) and (b), we note that (2.11) and (2.12) are satisfied and the theorem is proved.
�

Proof of Lemma 2.6. The inverse function theorem and assumption (F.1) imply part (i).
Similarly, the inverse function theorem along with assumptions (G.2) and (G.3) imply
part (ii). Finally, the inverse function theorem and assumption (G.4) imply part (iii). �
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B. Proofs of Section 3

Proof of Theorem 3.2. Suppose the PD is an RPD. Then,
(i) for all 0 < ε < 1/2, ∃R∗ = (1− ε)/ε such that κ1(Φ;N)/κ2(Φ;N) ≥ R∗ ⇒ 1 ≥

κ1(Φ;N)≥ 1− ε;
(ii) from (2.12), for all R and for all Φ with ϕ1 < ϕ2, there exists N∗(R,Φ) such that

N ≥N∗(R,Φ)⇒ κ1(Φ;N)/κ2(Φ;N)≥ R.
Observations (i) and (ii) imply the theorem. �

Proof of Theorem 3.3. First, note that assumptions (F.1) and (F.2) imply

F−1(z) > 1 if z ∈
(

1
2

,1
)

, (B.1)

where F−1 is defined in Lemma 2.6. Equation (B.1) implies that, for 0 < ε < 1/2, the num-
ber, G−1

y (F−1(1− ε)), where y = ϕ2/ϕ1 and G−1
y is defined in Lemma 2.6, exists. Further-

more,

∞ > N ≥G−1
y

(
F−1(1− ε)

)=⇒∞ > G(N , y)≥ F−1(1− ε)

=⇒ 1≥ F
(
G(N , y)

)≥ 1− ε

=⇒ 1≥ κ1
(
ϕ1,ϕ2;N

)≥ 1− ε.
(B.2)

Let N∗(ε, y)=G−1
y (F−1(1− ε)), and the theorem is proved. �

C. Proofs of Section 4

Proof of parts (i) and (ii) of Theorem 4.1. We first prove part (i). The function fε(N) de-
fined in (4.8) satisfies

fε(N)− 1
2
=

(
bN − aN

)
(1− 2ε)

2
[
2ε
(
aN − 1

)
+ 2ε

(
bN − 1

)− aN − bN
] . (C.1)

From the discussions in Section 4.2, we have

0 < a < b < 1. (C.2)

Hence, bN − aN > 0 and (2ε(aN − 1) + 2ε(bN − 1)− aN − bN ) < 0. Therefore,

fε(N)− 1
2
< 0 if 0 < ε <

1
2

,

fε(N)− 1
2
> 0 if 1 > ε >

1
2
.

(C.3)

Equations (4.7) and (C.3) give (4.9).
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Next, we prove part (ii). Note that from (4.8) and (C.2),

lim
N→0

fε(N)= 1
2

, lim
N→∞

fε(N)= 1
2
. (C.4)

Equations (4.7) and (C.4) give (4.10). �

To prove parts (iii) and (iv), we need the following lemmas.

Lemma C.1. Suppose N ′ ∈ (0,∞) is a solution to

dΨε(N)
dN

= 0. (C.5)

Then,

d2Ψε(N)
dN2

∣
∣
∣
∣
N=N ′

> 0 if 0 < ε <
1
2

,

d2Ψε(N)
dN2

∣
∣
∣
∣
N=N ′

< 0 if
1
2
< ε < 1.

(C.6)

Proof. Note that

dΨε(N)
dN

= (ϕ2−ϕ1
) (2ε− 1)

((
aN lna

(
2bNε− bN − ε))− (bN lnb

(
2aNε− aN − ε)))

(
2aNε− aN − ε+ 2bNε− bN − ε)2 .

(C.7)

Hence, N ′ must satisfy

(lna)aN
′(
bN

′
+ ε− 2bN

′
ε
)= (lnb)bN

′(
aN

′
+ ε− 2aN

′
ε
)
. (C.8)

Furthermore,

d2Ψε(N)
dN2

∣
∣
∣
∣
N=N ′

= (2ε− 1)
lna(lna)aN

′(
bN

′
+ ε− 2bN

′ε
)−lnb(lnb)bN

′(
aN

′
+ε− 2aN

′ε
)

(
2aN ′ε− aN ′ −ε+ 2bN ′ε− bN ′ − ε)2 .

(C.9)

Equations (C.8) and (C.2) imply

lna(lna)aN
′(
bN

′
+ ε− 2bN

′
ε
)− lnb(lnb)bN

′(
aN

′
+ ε− 2aN

′
ε
)
< 0 (C.10)

for all ε ∈ (0,1). Equations (C.9) and (C.10) imply the lemma. �

Lemma C.2. If 0 < ε < 1 and ε �= 1/2, then (C.5) has a unique real positive solution.

Proof. We note that part (ii) of Theorem 4.1 and Rolle’s theorem imply that there must
be at least one real positive solution to (C.5). Suppose that 0 < ε < 1 and ε �= 1/2 and that
there are more than two solutions to (C.5). Then, Lemma C.1 implies that these solutions
are isolated. Hence, we can find two solutions, N1 and N2, to (C.5) such that N1 < N2 and
there are no other solutions to (C.5) in between them.
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(a) If 0 < ε < 1/2, then there exists a δ1 small enough such that

dΨε(N)
dN

∣
∣
∣
∣
N=N1+δ1

> 0,
dΨε(N)
dN

∣
∣
∣
∣
N=N2−δ1

< 0. (C.11)

By the intermediate value theorem, there exists N3 such that N1 < N3 < N2 and
dΨε(N)/dN|N=N3 = 0, which is a contradiction.

(b) If 1/2 < ε < 1, then there exists a δ2 small enough such that

dΨε(N)
dN

∣
∣
∣
∣
N=N1+δ2

< 0,
dΨε(N)
dN

∣
∣
∣
∣
N=N2−δ2

> 0. (C.12)

By the intermediate value theorem, there exists N3 such that N1 < N3 < N2 and
dΨε(N)/dN|N=N3 = 0, which is a contradiction.

By (a) and (b), there must be only one real positive solution to (C.5). �

Proof of parts (iii) and (iv) of Theorem 4.1. Since Ψε(N) is a differentiable function of
N ∈ (0,∞), its extreme values happen at the end points, N → 0 and N →∞, and the
real positive solution to (C.5). Parts (i) and (ii) of Theorem 4.1 and Lemmas C.1 and C.2
imply the following.

(a) If 0 < ε < 1/2, then Ψε(N) has a unique minimum at the real positive solution to
(C.5).

(b) If 1/2 < ε < 1, then Ψε(N) has a unique maximum at the real positive solution to
(C.5).

Parts (iii) and (iv) of Theorem 4.1 follow from (a) and (b), respectively. �

Proof of Theorem 4.2. From Section 4.3, N∗ satisfies (4.18), which can be re-written as

Za(N)−Zb(N)= 0, (C.13)

where Za(N) and Zb(N) are the left-hand side and right-hand side of (4.18), respectively.
By the implicit function theorem,

dN∗

dε
=− ∂

(
Za(N)−Zb(N)

)
/∂ε

∂
(
Za(N)−Zb(N)

)
/∂N

∣
∣
∣
∣
N=N∗

= −2bN
∗(

lnb/lna− 1
)

+
(− bN

∗
lnb/aN

∗
lna+ 1

)

ε lnb
(
bN∗ /aN∗ − 1

) .

(C.14)

From (C.2) and (4.18), we have

lnb
lna

− 1 < 0,
bN

∗

aN∗ − 1 > 0, −bN
∗

lnb
aN∗ lna

+ 1 < 0, lnb < 0. (C.15)

Hence, dN∗/dε < 0, and hence, ε decreases implies N∗ increases.
Next, note that

Ψε
(
N∗)= ϕ1 +

(
ϕ2−ϕ1

)
fε
(
N∗)

= ϕ1 +
(
ϕ2−ϕ1

) 1
1 + (lnb/lna)(b/a)N∗ .

(C.16)
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Consider ε1 and ε2 such that 0 < ε1 < ε2 < 1/2. Let N∗
1 and N∗

2 be the optimal LRs when
the symmetric Markov switch environment is such that ε = ε1 and ε = ε2, respectively.
By the above discussions, we have N∗

1 > N∗
2 . By (C.2) and (C.16), we have Ψε1 (N∗

1 ) <
Ψε2 (N∗

2 ). Hence, ε decreases implies Ψε(N∗) decreases. �

Proof of Theorem 4.3. We first prove part (ii). We note that

lim
N→0

f ′ε (N)= f ′ε (N)
∣
∣
N=0 =

1
2
. (C.17)

Furthermore, the relation

0 < φ1 < φ2 <∞ (C.18)

implies

lim
N→∞

f ′ε (N)= ε
ε+ 1/2

. (C.19)

Equations (C.17), (C.19), and (4.13) imply part (ii).
Next, we prove parts (iii) and (iv). Note that

df ′ε (N)
dN

= −(1/2)
(

ln
(
φ1/φ2

))(
φ1/φ2

)N
(ε− 1/2)

((
φ1/φ2

)Nε− (1/2)
(
φ1/φ2

)N − ε− 1/2
)2 . (C.20)

Equation (C.18) implies that

df ′ε (N)
dN

< 0 if 0 < ε <
1
2

,

df ′ε (N)
dN

> 0 if
1
2
< ε < 1.

(C.21)

Equations (C.21) and (4.13) imply parts (iii) and (iv).
Finally, parts (ii), (iii), and (iv) imply part (i). �
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