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A control system describing the dynamics of a rotating Timoshenko beam is considered.
We assume that the beam is driven by a control torque at one of its ends, and the other
end carries a rigid body as a load. The model considered takes into account the longitu-
dinal, vertical, and shear motions of the beam. For this distributed parameter system, we
construct a family of Galerkin approximations based on solutions of the homogeneous
Timoshenko beam equation. We derive sufficient conditions for stabilizability of such
finite dimensional system. In addition, the equilibrium of the Galerkin approximation
considered is proved to be stabilizable by an observer-based feedback law, and an explicit
control design is proposed.
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1. Introduction

Control issues for several models of flexible manipulators have been intensively studied
by many authors. A particular list of references in this area can be found in monographs
[1, 2]. There are two common approaches to represent the motion of such manipulators.
The first approach deals with systems of rigid bodies [3], Galerkin approximations [4,
5], or finite element methods [6] to derive mathematical models with finite degrees of
freedom. The second approach treats a manipulator as a distributed parameter system.
The majority of publications in this distributed parameter approach are concentrated on
the Euler-Bernoulli beam model (see [7], [8, Chapter 10.8], [1, Chapter 4], [2, 9, 10]).

A possible extension of the Euler-Bernoulli model was proposed by Timoshenko [11].
From the engineering viewpoint, the Timoshenko beam has an advantage of describing
the effects of rotary inertia and the deflection due to shear. Control of Timoshenko beams
was studied in [12–17], [1, Chapter 5.1.2]. The motion of a payload, usually attached to a
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real manipulator, is neglected in all these publications. In [18], a clamped beam with an
end mass is proved to be stabilizable by a feedback control applied to the tip. The author
of [19] addresses the development of LQR techniques and computation algorithms for
beams with controlling torques applied to the hub. A limitation of these results is that
a knowledge of the full infinite dimensional space is required. In [5], a hybrid system
of partial and ordinary differential equations, representing the oscillations of a flexible
beam, has been studied for the case when the control is the acceleration at a point. We
have considered a model for the vertical motion of a beam and estimated its physical
parameters from measurements of modal frequencies in [20].

It should be emphasized that, in contrast to the above publications, we study here a
rotating beam that carries a payload under the action of gravity, the control torque is
applied at the hub, and the longitudinal motion is taken into account. The motivation
for this study is to control the motion of a real flexible-link manipulator-turntable lad-
der. Such a turntable ladder has been described in [3], where a dynamical model with
two rigid bodies (two degrees of freedom) has been used to represent the first mode of
oscillations.

This paper is organized as follows. In Section 2, we derive the motion equations for
a flexible beam with a load under the action of gravity and the control torque. Section 3
contains necessary details for computing the eigenvalues and eigenfunctions of the associ-
ated Sturm-Liouville problem. By using Galerkin’s method, we approximate the dynamics
by a system of ODEs in Section 4. In the derivation procedure, we exploit the variational
form instead of taking the standard inner product in L2. The order of approximation may
be chosen arbitrarily. In Section 5, a state feedback control which stabilizes the equilib-
rium of the Galerkin approximation is obtained (Theorem 5.1). In order to justify a pos-
sibility of implementation of the controller proposed, we study the observability problem
in Section 6. The closed-loop system is proved to be asymptotically stable, provided that
the feedback is generated by a Luenberger-type observer (Theorem 6.2). The proof of
Theorem 6.2 is based on the invariance principle. The main advantage of our approach is
that the control design is done explicitly; all the parameters appearing in the feedback law
and dynamical observer can be effectively computed through integral moments with re-
spect to solutions of the Sturm-Liouville problem. It is also important that no derivatives
of the input signals are needed for the state estimation.

2. Description of the model

Consider a flexible beam rotating in the vertical plane around the fixed point O (see
Figure 2.1).

We assume that the beam is driven by a control torque M at one of its ends (the hub
at O), and the other end (point C) carries a payload of mass m.

Let l be the length of the beam. We assume that the centerline of the beam in its un-
deformed reference configuration occupies the segment [0, l] on the Ox-axis. Consider a
particle P on the centerline and denote by x its coordinate in the reference configuration.
At a given time t, let (x+ s(x, t),w(x, t)) be the coordinates of the position vector for P in
the Cartesian frame Oxy. We introduce the notation ψ(x, t) for the rotation angle of the
cross section area at P due to bending. By taking into account the longitudinal, vertical,
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Figure 2.1. A rotating Timoshenko beam.

and shear motions, we derive the following expression for the kinetic energy of the system
considered:

2T =
∫ l

0

{
ρ(x)

[
(ẇ+ xϕ̇)2 + (wϕ̇)2 + ṡ2 + 2ϕ̇(ẇs− ṡw) + (ϕ̇)2(s+ 2x)s

]
+ Iρ(x)(ϕ̇+ ψ̇)2}dx

+J0(ϕ̇)2 +m
{

(ẇ+ xϕ̇)2 + (wϕ̇)2 + ṡ2 + 2ϕ̇(ẇs− ṡw) + (ϕ̇)2(s+ 2x)s
}∣∣

x=l

+ Jc{ϕ̇+ ψ̇}2|x=l,
(2.1)

where ϕ(t) is the angle between the moving axis Ox and the horizontal direction, ρ(x)
is the mass per unit length of the beam, Iρ(x) is the mass moment of inertia of the cross
section, and J0 is the hub moment of inertia. The mass distribution for the payload is
characterized by the moment of inertia Jc with respect to its center of mass C.

In this paper, we use dots to denote derivatives with respect to time t, and primes to
denote derivatives with respect to the space variable x.

Assuming that the beam is inextensible, we get the following relation on w and s:

s′ = −1
2
w′2 + o

(
w′2

)
. (2.2)

The integration of this relation, with the higher order terms being omitted, yields

s(x, t)=−1
2

∫ x
0
w′2(ξ, t)dξ. (2.3)

We assume that the deformation of the beam is small and drop the terms of order higher
than 2 relative to w when computing the Lagrangian of the system considered.
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Following the Timoshenko beam model [11], [7, page 1142], and exploiting (2.1),
(2.3), the Lagrangian takes the form

2L=
∫ l

0

{
ρ(x)

(
(ẇ+ xϕ̇)2 + ϕ̇2w2)− ρ2(x)ϕ̇2w′2 + Iρ(ϕ̇+ ψ̇)2−K(ψ−w′)2−EI(ψ′)2}dx

+m
{
ϕ̇2w2(l, t) +

(
lϕ̇+ ẇ(l, t)

)2}
+ Jc

{
ϕ̇+ ψ̇(l, t)

}2
+ J0ϕ̇2

− g
∫ l

0

{(
2ρx− ρ1w

′2)sinϕ+ 2ρw cosϕ
}
dx− 2mg

{
l sinϕ+w(l, t)cosϕ

}
,

(2.4)

where

ρ1(x)=
∫ l
x
ρ(ξ)dξ +m, ρ2(x)=

∫ l
x
ξρ(ξ)dξ +ml. (2.5)

Here E and I are Young’s modulus and the moment of inertia of the cross section of
the beam, respectively, g is the acceleration of gravity. The coefficient K is equal to kGA,
where G is the modulus of elasticity in shear, A is the cross sectional area, and k is a
constant depending on the shape of the cross section. We assume that ρ, Iρ, EI , and K are
all positive, differentiable functions of the space variable x.

If C2-functions (ϕ(t),w(x, t),ψ(x, t)) define the motion of the system for the control
torque M(t) on a segment t ∈ [t1, t2] then Hamilton’s principle yields

δ
(∫ t2

t1
Ldt

)
+
∫ t2
t1
M(t)δϕ(t)dt = 0, (2.6)

for any admissible variations (δϕ(t),δw(x, t),δψ(x, t)) satisfying the boundary conditions

δϕ|t=t1 = δϕ|t=t2 = 0, δw|t=t1 = δw|t=t2 = 0, δψ|t=t1 = δψ|t=t2 = 0,

δw|x=0 = 0, δψ|x=0 = 0.
(2.7)

By computing the first variation in (2.6) and integrating by parts, we get
∫ t2
t1

{(
M +

∂L

∂ϕ
− d

dt

∂L

∂ϕ̇

)
δϕ(t)−μ(δw(·, t),δψ(·, t);ϕ,w,ψ

)}
dt = 0, (2.8)

where the functional μ is linear with respect to δw and δψ:

μ
(
δw(·, t),δψ(·, t);ϕ,w,ψ

)

=
∫ l

0
δw(x, t)

{(
ẅ+ xϕ̈− (ϕ̇)2w+ g cosϕ

)
ρ+

(
K(ψ−w′) +

(
gρ1 sinϕ− (ϕ̇)2ρ2

)
w′
)′}

dx

+
∫ l

0
δψ(x, t)

{
Iρ(ψ̈ + ϕ̈) +K(ψ−w′)− (EIψ′)′

}
dx+ δψ(l, t)

{
Jc(ϕ̈+ ψ̈) +EIψ′

}|x=l
+ δw(l, t)

{
K(w′ −ψ) +m

(
ẅ+ lϕ̈− (ϕ̇)2w+ g cosϕ

)
+m

(
l(ϕ̇)2− g sinϕ

)
w′
}|x=l .

(2.9)
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Thus, as (2.8) vanishes on each admissible variation satisfying (2.7), we get the following
boundary value problem:

ẅ+
1
ρ

(
K(ψ −w′))′ = −g cosϕ− xϕ̈+ ϕ̇2w+

1
ρ

((
ρ2ϕ̇

2− gρ1 sinϕ
)
w′
)′

;

ψ̈ +
K

Iρ
(ψ−w′)− 1

Iρ
(EIψ′)′ = −ϕ̈, x ∈ (0, l);

w|x=0 = ψ|x=0 = 0;

K(ψ −w′)|x=l =m
{
ẅ+ lϕ̈− ϕ̇2w+ g cosϕ+

(
lϕ̇2− g sinϕ

)
w′
}|x=l;

−EIψ′|x=l = Jc
(
ϕ̈+ ψ̈|x=l

)
,

M(t)= d

dt

∂L

∂ϕ̇
− ∂L

∂ϕ
=
{
Jc + J0 +m

[
l2 +w2(l, t)

]
+
∫ l

0

[
Iρ +

(
x2 +w2)ρ− ρ2w

′2]dx
}
ϕ̈

+
∫ l

0

(
ρxẅ+ Iρψ̈ + 2ρwϕ̇ẇ− 2ρ2w

′ϕ̇ẇ′
)
dx+m(lẅ+ 2wϕ̇ẇ)|x=l + Jcψ̈|x=l

+ g
{∫ l

0

(
ρx− 1

2
ρ1w

′2
)
dx+ml

}
cosϕ− g

{∫ l
0
ρwdx+mw(l, t)

}
sinϕ.

(2.10)

Straightforward computations show that the above control system admits an equilib-
rium

ϕ(t)= ϕ0, w(x, t)=w0(x), ψ(x, t)= ψ0(x), M(t)=M0 (2.11)

if and only if the following conditions are satisfied:

(
K
(
w′0(x)−ψ0(x)

))′ = g{ρcosϕ0 +
(
ρ1w0

′)′ sinϕ0
}

;

(
EIψ′0(x)

)′
+K

(
w′0(x)−ψ0(x)

)= 0, x ∈ (0, l);

w0(0)= ψ0(0)= 0; ψ′0(l)= 0; K
(
ψ0(l)−w′0(l)

)=mg(cosϕ0−w0
′(l)sinϕ0

)
;

M0

g
=
(∫ l

0

(
ρx− 1

2
ρ1w

′
0

2
)
dx+ml

)
cosϕ0−

(∫ l
0
ρw0dx+mw0(l)

)
sinϕ0.

(2.12)

Our goal is to control the system (2.10) around its steady state (2.12).

3. Perturbed dynamics

Let (ϕ0,w0,ψ0) be a solution of (2.12) with some M0. Then plugging

ϕ= ϕ0 + ϕ̃, w =w0 + w̃, ψ = ψ0 + ψ̃, M =M0 + M̃ (3.1)
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into the dynamical equations (2.10) yields the following control system:

¨̃ϕ= v;

¨̃w+
1
ρ

(
K(ψ̃− w̃′))′ = −xv+ gϕ̃sinϕ0− g

ρ

((
w̃′ sinϕ0 + ϕ̃w′0 cosϕ0

)
ρ1
)′

+ ··· ;

Iρ ¨̃ψ +K(ψ̃− w̃′)− (EIψ̃′)′ = −Iρv;

w̃|x=0 = ψ̃|x=0 = 0;
(
K

m
(w̃′ − ψ̃) + ¨̃w− g(sinϕ0 +w′0 cosϕ0

)
ϕ̃− gw̃′ sinϕ0 + ···

)∣∣∣∣
x=l
=−lv;

(
EIψ̃′ + Jc ¨̃ψ

)|x=l =−Jcv,

(3.2)

where

v =
(
J0 +

∫ l
0

[(
w0
)2
ρ− (w′0)2

ρ2
]
dx+mw2

0(l)
)−1

×
{
M̃ + g

(∫ l
0

[(
ρw0− ρ1w

′
0

)
cosϕ0− 1

2
ρ1
(
w′0
)2

sinϕ0
]
dx+mw0(l)cosϕ0

)
ϕ̃

+ g
∫ l

0

[(
w′0 cosϕ0− sinϕ0

)
ρ1w̃

′ + ρw̃ sinϕ0
]
dx+mgw̃(l, t)−EIψ̃′(0, t)

}
+ ··· ,

(3.3)

where the symbol “···” denotes terms of order of smallness 2 or higher with respect to
ϕ̃, w̃, ψ̃ and their derivatives.

As, for each state (ϕ̃(t), ˙̃ϕ(t),w̃(·, t), ˙̃w(·, t), ψ̃(·, t), ˙̃ψ(·, t)), there is a one-to-one corre-
spondence between M̃ and v, we may treat v as a control in (3.2) and assume that it may
take any value in R.

3.1. Separation of variables. To derive a finite dimensional approximation, let us first
study solutions of the control system (3.2) of a particular form

ϕ̃(t)≡ 0, w̃(x, t)=w(x)q(t), ψ̃(x, t)= ψ(x)q(t). (3.4)

By substituting the above relations into (3.2), we get q̈(t) = −λq(t) together with the
following Sturm-Liouville problem:

(
K(ψ −w′) + gρ1w

′ sinϕ0
)′ − λρw = 0,

K(ψ −w′)− (EIψ′)′ − λIρψ = 0, x ∈ (0, l),

w(0)= 0, ψ(0)= 0,

K
(
w′(l)−ψ(l)

)−mgw′(l)sinϕ0−mλw(l)= 0,

EIψ′(l)− λJcψ(l)= 0,

(3.5)

where λ is a scalar parameter.
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3.2. Eigenvalues of the Sturm-Liouville problem. Let

�=
{(

w
ψ

)
:w ∈H1[0, l], ψ ∈H1[0, l], w(0)= ψ(0)= 0

}
, (3.6)

where H1[0, l] is the Sobolev space. Consider the following symmetric positive definite
bilinear form on �:

〈
w1

ψ1
,
w2

ψ2

〉

�

=
∫ l

0

(
ρw1w2 + Iρψ1ψ2

)
dx+mw1(l)w2(l) + Jcψ1(l)ψ2(l). (3.7)

A straightforward consequence of the above definition is the following.

Lemma 3.1. Let (λ1,w1,ψ1) and (λ2,w2,ψ2) be nontrivial solutions of (3.5). Then

〈
w1

ψ1
,
w2

ψ2

〉

�

= 0 if λ1 �= λ2. (3.8)

Moreover, if K(x)= const and

2
(
m+

∫ l
0 ρdx

)
g sinϕ0

K
≤ 1,

Kl2

EI
≤ 2 (3.9)

then all eigenvalues λ of (3.5) are nonnegative real numbers.

Proof. If (λ1,w1,ψ1) is a solution of (3.5) then

λ1

〈
w1

ψ1
,
w2

ψ2

〉

�

=
〈
λ1w1

λ1ψ1
,
w2

ψ2

〉

�

=
∫ l

0

(
K
(
ψ1−w′1

)
+ gρ1w

′
1 sinϕ0

)′
w2dx+

∫ l
0

(
K
(
ψ1−w′1

)− (EIψ′1)′
)
ψ2dx

+
(
K
(
w′1(l)−ψ1(l)

)−mgw′1(l)sinϕ0
)
w2(l) +EIψ′1(l)ψ2(l).

(3.10)

Performing integration by parts in the above expression, we get

λ1

〈
w1

ψ1
,
w2

ψ2

〉

�

=
∫ l

0

{
K
(
w′1w

′
2 +ψ1ψ2−w′1ψ2−w′2ψ1

)
+EIψ′1ψ

′
2− gρ1w

′
1w

′
2 sinϕ0

}
dx.

(3.11)
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The permutation of arguments in (3.11) yields

λ2

〈
w1

ψ1
,
w2

ψ2

〉

�

= λ2

〈
w2

ψ2
,
w1

ψ1

〉

�

= λ1

〈
w1

ψ1
,
w2

ψ2

〉

�

. (3.12)

Hence,
〈
w1
ψ1 , w2

ψ2

〉
�
= 0 if λ1 �= λ2. If w2 =w1 and ψ2 = ψ1 then (3.11) implies

λ1

〈
w1

ψ1
,
w1

ψ1

〉

�

=
∫ l

0

(
K
(
w′1−ψ1

)2
+EIψ′1

2− gρ1w
′
1

2 sinϕ0
)
dx

=
∫ l

0

(
K

2
w′1

2 +EIψ′1
2−Kψ2

1 − gρ1w
′
1

2 sinϕ0

)
dx+

1
2

∫ l
0
K
(
w′1− 2ψ1

)2
dx

≥
∫ l

0

((
K

2
− gρ1 sinϕ0

)
w′1

2 +EIψ′1
2−Kψ1

2
)
dx.

(3.13)

The function ψ1(x) subject to the boundary condition ψ1(0) = 0 satisfies Friedrichs’ in-
equality of the following form (cf. [13, page 440]):

∫ l
0
ψ1

2(x)dx ≤ l2

2

∫ l
0
ψ′1

2(x)dx. (3.14)

Using this inequality in (3.13), we conclude that

λ1

〈
w1

ψ1
,
w1

ψ1

〉

�

≥
∫ l

0

((
K

2
− gρ1 sinϕ0

)
w′1

2 +
(
EI − Kl2

2

)
ψ′1

2
)
dx ≥ 0, (3.15)

provided that the conditions (3.9) are satisfied. This proves that all eigenvalues λ are non-
negative. �

For the rest of this section we assume that EI , Iρ, K , and ρ are constants, and that
sinϕ0 = 0. The coefficients of the Sturm-Liouville problem are constant under this as-
sumption, and, therefore, it is easy to find the general solution of the corresponding sys-
tem of ODEs. This solution is needed for computing the coefficients of an approximate
dynamical model in the sequel (formulae (4.5) define coefficients of the approximate sys-
tem (4.4) through eigenvalues and eigenfunctions of (3.5)).

We introduce in (3.5) the following dimensionless functions:

ζ
(
x

l

)
= w(x)

l
, θ

(
x

l

)
= ψ(x), (3.16)

and parameters:

p1 = ρl2

K
, p2 = Kl2

EI
, p3 =

Iρl2

EI
, p4 = ml

K
, p5 = lJc

EI
. (3.17)
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Then (3.5) is reduced to the following problem:

d

dτ

⎛
⎜⎜⎜⎝
ζ(τ)
ζτ(τ)
θ(τ)
θτ(τ)

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

0 1 0 0
−λp1 0 0 1

0 0 0 1
0 −p2 p2− λp3 0

⎞
⎟⎟⎟⎠×

⎛
⎜⎜⎜⎝
ζ(τ)
ζτ(τ)
θ(τ)
θτ(τ)

⎞
⎟⎟⎟⎠ , τ = x

l
∈ (0,1); (3.18)

ζτ(1)− θ(1)= λp4ζ(1), θτ(1)= λp5θ(1), ζ(0)= θ(0)= 0, (3.19)

where ζτ(τ) and θτ(τ) stand for derivatives with respect to τ. The eigenvalues and eigen-
vectors of the matrix in (3.18) are, respectively, given by

μj = iσj , vj =

⎛
⎜⎜⎜⎝

4μj
(
λp3− σj2

)
λc3 + 4λp1

(
σj2− λp3

)
λc3

λc3μj

⎞
⎟⎟⎟⎠ , j = 1,2,3,4, (3.20)

where

σ1 =−σ2 =
√

2
2

√
c1λ−

√
c2

2λ2 + c3λ, σ3 =−σ4 =
√

2
2

√
c1λ+

√
c2

2λ2 + c3λ,

c1 = p1 + p3, c2 = p1− p3, c3 = 4p1p2.
(3.21)

The general solution of (3.18) therefore reads as

(
ζ ,ζτ ,θ,θτ

)T
(τ)= C1v1e

iσ1τ +C2v2e
−iσ1τ +C3v3e

iσ3τ +C4v4e
−iσ3τ . (3.22)

By substituting (3.22) into the boundary conditions (3.19), we get a system of linear
algebraic equations with respect to (complex) variables C1, C2, C3, C4. That system has a
nontrivial solution if

κ(λ)=∣∣∣∣∣∣∣∣∣∣∣∣

e−iσ1 eiσ1 e−iσ3 eiσ3

σ1
(
σ2

1 − λp3
)
e−iσ1 −σ1

(
σ2

1 − λp3
)
eiσ1 σ3

(
σ2

3 − λp3
)
e−iσ3 −σ3

(
σ2

3 − λp3
)
eiσ3

(
σ2

1 − λp3
)(
p1 + ip4σ1

) (
σ2

1 − λp3
)(
p1− ip4σ1

) (
σ2

3 − λp3
)(
p1 + ip4σ3

) (
σ2

3 − λp3
)(
p1− ip4σ3

)

iσ1− λp5 iσ1 + λp5 iσ3− λp5 iσ3 + λp5

∣∣∣∣∣∣∣∣∣∣∣∣
=0.

(3.23)

The roots of κ(λ) = 0 define the eigenvalues λ for the Sturm-Liouville problem (3.5)
when its coefficients are constant. It is clear that the function κ(λ), given by (3.23), is
analytic in its domain of definition. Then the uniqueness theorem for analytic functions
implies that either κ(λ) ≡ 0 or the set of all eigenvalues for (3.5) is discrete. The for-
mer is impossible for “typical” values of parameters (see, for example, [13], where the
spectrum was estimated for a particular case p1 = p2 = p3 = 1, p4 = p5 = 0). We do not
estimate solutions of the characteristic equation (3.23) here. Such a study requires addi-
tional assumptions on the mechanical parameters, based on real measurements, and is
not of principal interest for this work.
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4. The Galerkin approximation

To derive a Galerkin approximation (see, e.g., [6]), we consider a variational formulation
of the boundary value problem as follows: if (ϕ̃(t),w̃(x, t), ψ̃(x, t)) (0≤ x ≤ l) is a solution
of (3.2), corresponding to M(t), on an interval t ∈�⊂R then

¨̃ϕ(t)− v = 0,

μ̃=
∫ l

0
δw̃(x, t)

{( ¨̃w+ xv− gϕ̃sinϕ0
)
ρ

+
(
K(ψ̃− w̃′) + ρ1g

(
w̃′ sinϕ0 + ϕ̃w′0 cosϕ0

))′
+ ···}dx

+
∫ l

0
δψ̃(x, t)

{
Iρ ¨̃ψ +K(ψ̃− w̃′)− (EIψ̃′)′ + Iρv

}
dx+ δψ̃(l, t)

{
Jc ¨̃ψ +EIψ̃′ + Jcv

}|x=l

+ δw̃(l, t)
{
K(w̃′ − ψ̃) +m

( ¨̃w+ lv− g(ϕ̃+ w̃′)sinϕ0− gϕ̃w′0 cosϕ0
)

+ ···}|x=l = 0,

∀t ∈�,
(4.1)

for each admissible variation (δw̃(x, t),δψ̃(x, t)) satisfying the boundary conditions δw̃(0,
t) = 0 and δψ̃(0, t) = 0. (The derivation of μ̃ from (3.2) uses the standard technique:
integration by parts, collecting terms, and so forth. The expression (4.1) may also be
obtained by expanding (2.9) in a neighborhood of the equilibrium and neglecting the
higher order terms.) Here v is given by the expression (3.3).

Let us fix an integer number N ≥ 1 and consider nontrivial solutions (λj ,wj ,ψj) of
(3.5) for j = 1,2, . . . ,N . We assume that all λj are different and substitute finite sums

w̃(x, t)=
N∑
j=1

qj(t)wj(x), ψ̃(x, t)=
N∑
j=1

qj(t)ψj(x) (4.2)

into (3.3) and (4.1). We also restrict δw̃ and δψ̃ to finite-dimensional subspaces:

δw̃(·, t)∈ span
{
w1(·), . . . ,wN (·)}, δψ̃(·, t)∈ span

{
ψ1(·), . . . ,ψN (·)}. (4.3)

By assuming δw̃(x, t)= wi(x) and δψ̃(x, t)= ψi(x) in (4.1) for i= 1,2, . . . ,N and exploit-
ing Lemma 3.1, we obtain the following control system with respect to ϕ̃,q1,q2, . . . ,qN :

ż1 =A11z1 +A12z2 +B1u+R1(z,u),

ż2 =A21z1 +A22z2 +B2u+R2(z,u), z = (zT1 ,zT2
)T

,
(4.4)
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where z is the state, u is the control,

z1 = (ϕ̃, ˙̃ϕ)T , z2 =
(
q1, q̇1,q2, q̇2, . . . ,qN , q̇N

)T
,

u= M̃

J0 +
∫ l

0

(
w2

0ρ−w′02ρ2
)
dx+mw2

0(l)
,

A11 =
(

0 1
d0 0

)
, A12 =

(
0 0 0 0 ··· 0 0
d1 0 d2 0 ··· dN 0

)
,

B1 =
(

0
1

)
, B2 =

(
0,−b1, . . . ,0,−bN

)T
,

A21 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

a1− b1d0 0

0 0

a2− b2d0 0

...
...

0 0

aN − bNd0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A22 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 ··· 0 0

−λ1− b1d1 0 −b1d2 0 ··· −b1dN 0

0 0 0 1 ··· 0 0

−b2d1 0 −λ2− b2d2 0 ··· −b2dN 0

...
...

...
...

. . .
...

...
0 0 0 0 ··· 0 1

−bNd1 0 −bNd2 0 ··· −λN − bNdN 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

aj = g
(∫ l

0 ρwj dx+mwj(l)
)

sinϕ0 +
∫ l

0 ρ1w
′
0w

′
j dxcosϕ0∫ l

0

(
ρw2

j + Iρψ2
j

)
dx+mw2

j (l) + Jcψ2
j (l)

,

bj =
∫ l

0

(
ρxwj + Iρψj

)
dx+mlwj(l) + Jcψj(l)∫ l

0

(
ρw2

j + Iρψ2
j

)
dx+mw2

j (l) + Jcψ2
j (l)

,

d0 =
∫ l

0

[(
ρw0− ρ1w

′
0

)
cosϕ0− (1/2)

(
w′0
)2
ρ1 sinϕ0

]
dx+mw0(l)cosϕ0

J0 +
∫ l

0

(
w2

0ρ−w′02ρ2
)
dx+mw2

0(l)
g,

dj =
g
∫ l

0

[(
w′0 cosϕ0− sinϕ0

)
ρ1w

′
j + ρwj sinϕ0

]
dx+mgwj(l)sinϕ0 +EIψ′j(0)

J0 +
∫ l

0

(
w2

0ρ−w′02ρ2
)
dx+mw2

0(l)
,

(4.5)

the nonlinear term R(z,u)= (RT1 ,RT2 )T satisfies the estimate

∥∥R(z,u)
∥∥=O(‖z‖2 +u2) (4.6)

around the equilibrium point z = 0, u= 0. The control system (4.4) is a finite dimensional
approximation of (3.2) corresponding to the flexible coordinates of order up to N .
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5. Stabilization in finite dimensions

In this section, an explicit procedure for stabilizing controller design is proposed.

Theorem 5.1. Assume that all eigenvalues (λ1, . . . ,λN ) are positive and different, and that
aj + λjbj �= 0 for each j = 1,2, . . . ,N . Then system (4.4) is stabilizable by the following feed-
back control:

u= Kz, K = (K1,K2
)
, K1 =

(
−d0−

h1 +
∑N

j=1 aj
(
bj + aj/λj

)
h2

,−h0

h2

)
,

K2 =
(
−d1 +

a1 + λ1b1

h2
,0,−d2 +

a2 + λ2b2

h2
,0, . . . ,−dN +

aN + λNbN
h2

,0
)

,

(5.1)

where h0, h1, and h2 are arbitrary positive constants.

Proof. Consider a Lyapunov function candidate

2V(z)=
(
h1 +

N∑
j=1

a2
j

λ j

)
ϕ̃2 +

(
h2 +

N∑
j=1

b2
j

)
˙̃ϕ

2
+

N∑
j=1

(
λjqj

2 + q̇2
j − 2ajϕ̃q j + 2bj ˙̃ϕq̇j

)
.

(5.2)

By applying the Cauchy-Schwartz inequality, we get

2V ≥G1

(
−|ϕ̃|,

( N∑
j=1

λjq
2
j

)1/2)
+G2

(
−| ˙̃ϕ|,

( N∑
j=1

q̇2
j

)1/2)
, (5.3)

where

G1(α,β)=
(
h1 +

N∑
j=1

a2
j

λ j

)
α2 + 2

( N∑
j=1

aj2

λj

)1/2

αβ+β2,

G2(α,β)=
(
h2 +

N∑
j=1

b2
j

)
α2 + 2

( N∑
j=1

bj
2

)1/2

αβ+β2.

(5.4)

Sylvester’s criterion for quadratic forms G1 and G2 implies that both G1 and G2 are pos-
itive definite if h1 > 0 and h2 > 0. Then the quadratic form V is positive definite due to
estimate (5.3).

The time-derivative of V along the trajectories of the linear part of (4.4) is

V̇ = h2
˙̃ϕv+

(
h1 +h2d0 +

N∑
j=1

aj

(
bj + aj
λj

))
ϕ̃ ˙̃ϕ+ ˙̃ϕ

N∑
j=1

qj
(
h2dj − aj − λjbj

)
. (5.5)

We choose a constant h0 > 0 arbitrarily and define the feedback control in order to have

V̇ =−h0
˙̃ϕ

2
. This yields expression (5.1).
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Now we apply the Barbashin-Krasovskii theorem (or LaSalle’s invariance principle, cf.
[21]). For this purpose consider the set

Z0 =
{(
ϕ̃, ˙̃ϕ,q1, q̇1, . . . ,qN , q̇N

)∈R2N+2 : V̇ = 0
}
. (5.6)

Each positive semitrajectory of the linear approximation of (4.4) with (5.1) on Z0 satisfies
the following relations:

q̈ j =−λjqj + ajϕ̃,

N∑
j=1

[− ajbj ϕ̃+
(
aj + λjbj

)
qj
]=

(
h1 +

N∑
j=1

a2
j

λ j

)
ϕ̃= const, t ≥ 0.

(5.7)

The above relations imply

N∑
j=1

(
aj + λjbj

)(
r1 j cos

(√
λjt
)

+ r2 j sin
(√
λjt
))
= h1ϕ̃ (5.8)

for some constants r1 j , r2 j , and ϕ̃. Exploiting the fact that

{
1,sin

(√
λjt
)

, cos
(√
λjt
)}N

j=1
(5.9)

are linearly-independent functions on [0,+∞) (cf. [22]), we get that (5.8) is possible only
if ϕ̃ = 0 and r1 j = r2 j = 0 for all j = 1,2, . . . ,N . Thus, the only semitrajectory of the lin-
earized closed-loop system on Z0 is the trivial one, and the trivial solution of the linear
part of (4.4), (5.1) is asymptotically stable by the Barbashin-Krasovskii theorem (LaSalle’s
invariance principle). Now local asymptotic stability of the nonlinear closed-loop system
follows from Lyapunov’s theorem on stability using linearization. �

Remark 5.2. As it follows from the representation V̇ = −h0
˙̃ϕ

2
, the choice of constant

h0 affects the decay rate of the Lyapunov function along trajectories of the closed-loop
system. On the one hand, the more h0 the faster convergence of solutions to the equilib-
rium could be achieved (for solutions with ˙̃ϕ �= 0). On the other hand, for large h0, the
gain −h0/h2, appearing in formula (5.1), may take large values if h2 is small. This sug-
gests us to choose h0 as maximal as possible, and to select h2 in such a way that the term
−(h0/h2) ˙̃ϕ, appearing in u = Kz, would not bring the control input u to its saturation
bound (for typical disturbances ˙̃ϕ). The constant h1 should be then defined according
to a desired geometry of the level surfaces for the quadratic form V . Indeed, constants
h1 and h2 define a relation between semiaxes for the ellipsoids V(z) = const, and hence
a desired ratio between overshoots for ϕ̃ and ˙̃ϕ can be estimated in terms of h1 and h2.
Certainly, this suggestion is based on the linearized system and does not give a rigorous
characterization of the global behavior.

6. Observer design

In order to implement the feedback law (5.1) in practice, one should reconstruct the com-
plete state vector of (4.4) from the outputs which can be measured. The values of w(x, t)
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and ψ(x, t) cannot be directly estimated in a real flexible manipulator. Instead, there is a
set of strain gauges located at a point x = l0, 0≤ l0 ≤ l, which allows measurement of some
components of the strain tensor. By using only the principal part of the strain at x = l0,
we get the output ψ′(x, t)|x=l0 for each t ≥ 0. By subtracting from the signals ϕ(t) and
ψ′(x, t)|x=l0 their steady-state values and rescaling, we assume that the following outputs
are available for the finite dimensional approximation (4.4):

y1(t)= ϕ̃(t), y2(t)= l2ψ̃′(x, t)|x=l0 =
N∑
j=1

χjq j(t), (6.1)

where χj = l2ψ′j(l0). We introduce the factor l2 in order to get the dimension of length for
the output y2.

Let us rewrite the output (6.1) as follows:

y1 = C1z1, y2 = C2z2, C1 = (1,0), C2 =
(
χ1,0,χ2,0, . . . ,χN ,0

)
. (6.2)

Lemma 6.1. The control system (4.4), (6.2) is locally observable at z = 0 if

∣∣∣∣∣∣∣∣∣∣∣

π11 π12 ··· π1N

π21 π22 ··· π2N
...

...
. . .

...
πN1 πN2 ··· πNN

∣∣∣∣∣∣∣∣∣∣∣
�= 0, (6.3)

where π1, j = χj , πk, j =−λjπk−1, j −dj
∑N

i=1πk−1,ibi, j = 1,N , k = 2,N .
In particular, the condition (6.3) is equivalent to χ1 �= 1 if N = 1 or

χ1χ2
(
λ1− λ2 + b1d1− b2d2

)
+ b2χ

2
2d1− b1χ

2
1d2 �= 0 if N = 2. (6.4)

Proof. The linear part of (4.4), (6.2) can be written in terms of output y1 as follows:

z1 =
(
y1, ẏ1

)T
,

ż2 = A22z2 +B2u+
(
0,a1− b1d0,0,a2− b2d0, . . . ,0,aN − bNd0

)T
y1,

y2 = C2z2.

(6.5)

Hence, the above system is observable if the pair (A22,C2) satisfies the Kalman observ-
ability condition (cf. [23, Theorem 3.1, page 58]):

rank

⎛
⎜⎜⎜⎜⎝

C2

C2A22
...

C2A
2N−1
22

⎞
⎟⎟⎟⎟⎠= 2N. (6.6)
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Straightforward computations show that

det

⎛
⎜⎜⎜⎜⎝

C2

C2A22
...

C2A
2N−1
22

⎞
⎟⎟⎟⎟⎠=

∣∣∣∣∣∣∣∣∣∣∣

π11 π12 ··· π1N

π21 π22 ··· π2N
...

...
. . .

...
πN1 πN2 ··· πNN

∣∣∣∣∣∣∣∣∣∣∣

2

. (6.7)

Therefore, (6.3) implies the observability rank condition for the linear part of (4.4), (6.2).
It also means that (4.4), (6.2) is strongly locally observable at z = 0 by the Hermann-
Krener theorem [24]. �

The following theorem gives an explicit procedure for the Luenberger-type observer
design.

Theorem 6.2. Suppose that the control system (4.4), (6.2) satisfies the observability condi-
tion (6.3), all λj are positive and different, aj + λjbj �= 0, and bjdj > 0 for j = 1,N . Then the
origin z = 0, z = 0 of the extended system (4.4), (6.2) and

ż1 =
(
A11−F1C1

)
z1 +A12z2 +F1y1 +B1u,

ż2 =
(
A22−F22C2

)
z2 +F21y1 +F22y2 +B2u

(6.8)

with u= Kz is locally asymptotically stable, where K is given by (5.1),

F1 =
(
φ1,d0 +φ2

)T
, F21 =

(
0,a1− b1d0,0,a2− b2d0, . . . ,0,aN − bNd0

)T
,

F22 =
(
f1,0, f2,0, . . . , fN ,0

)T
,

(
f1, f2, . . . , fN

)T = γQ−1(χ1,χ2, . . . ,χN
)T

,

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1d1

b1
+d2

1 d1d2 ··· d1dN

d2d1
λ2d2

b2
+d2

2 ··· d2dN

...
...

. . .
...

dNd1 dNd2 ··· λNdN
bN

+d2
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(6.9)

Here φ1, φ2, and γ are any positive constants.

Proof. Consider the observation errors e1 = z1 − z1, e2 = z2 − z2. Then subtracting (6.8)
from (4.4) yields the following dynamics:

ė1 =H1e1 +A12e2 +R1(z,u), ė2 =H2e2 +R2(z,u), (6.10)

here H1 = A11−F1C1 and H2 = A22−F22C2. We see that the roots of the polynomial

det
(
H1−μI

)=
∣∣∣∣∣
−φ1−μ 1
−φ2 −μ

∣∣∣∣∣= μ2 +φ1μ+φ2 (6.11)
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have negative real parts if and only if φ1 > 0 and φ2 > 0. Our goal is to show that the real
parts of all eigenvalues of

H2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− f1χ1 1 − f1χ2 0 ··· − f1χN 0

−λ1− b1d1 0 −b1d2 0 ··· −b1dN 0

− f2χ1 0 − f2χ2 1 ··· − f2χN 0

−b2d1 0 −λ2− b2d2 0 ··· −b2dN 0

...
...

...
...

. . .
...

...

− fNχ1 0 − fNχ2 0 ··· − fNχN 1

−bNd1 0 −bNd2 0 ··· −λN − bNdN 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.12)

are also negative if the conditions of Theorem 6.2 are satisfied. Let us denote e2 = (ξ1,η1,
. . . ,ξN ,ηN )T and consider the following quadratic form:

2W
(
e2
)=

N∑
j=1

djη
2
j

b j
+
(
ξ1,ξ2, . . . ,ξN

)
Q
(
ξ1,ξ2, . . . ,ξN

)T
. (6.13)

This form is positive definite as λj > 0 and bjdj > 0. Indeed, all principal minors Δ j of Q
are positive:

Δ j =
(
λ1d1

)(
λ2d2

)···(λjdj)
b1b2 ···bj

(
1 +

j∑
i=1

bidi
λi

)
> 0, j = 1,N. (6.14)

Then Sylvester’s criterion implies that W is positive definite. The inequality det(Q) =
ΔN > 0 also proves invertibility of Q in (6.9). By computing the time derivative of W
along the trajectories of the linear system ė2 =H2e2, we get

Ẇ
(
e2
)=−γ(C2e2

)2 ≤ 0, (6.15)

provided that F22 is defined by (6.9). As the time derivative ofW is negative semi-definite
and vanishes on kerC2 = {e2 ∈R2N : C2e2 = 0}, we check whether the linear system ė2 =
H2e2 admits a nontrivial semitrajectory on kerC2. Let C2e2(t)≡ 0, t ≥ 0, then

dk

dtk
C2e2(t)= C2

(
A22−F22C2

)k
e2(t)= C2A

k
22e2(t)= 0, t ≥ 0, k ≥ 0. (6.16)

This implies that, for each t ≥ 0, e2(t) is a solution of the following system of linear alge-
braic equations:

C2A
k
22e2(t)= 0, k = 0,2N − 1. (6.17)

The above system has only the trivial solution e2(t)= 0 because of the observability rank
condition (6.3). This proves asymptotic stability of the linear system ė2 = H2e2 by the
Barbashin-Krasovskii theorem (LaSalle’s invariance principle).
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We have shown that the matrices H1 and H2 are Hurwitz. The nonlinear closed-loop
system (4.4), (6.2), (6.8) with u= Kz can be written in variables (z,e) as follows:

⎛
⎜⎝
ż
ė1

ė2

⎞
⎟⎠=

⎛
⎜⎝
H0 −BK1 −BK2

0 H1 A12

0 0 H2

⎞
⎟⎠
⎛
⎜⎝
z
e1

e2

⎞
⎟⎠+

⎛
⎜⎝
R
(
z,K(z− e))

R1
(
z,K(z− e))

R2
(
z,K(z− e))

⎞
⎟⎠ , (6.18)

where

H0 =
(
A11 +B1K1 A12 +B1K2

A21 +B2K1 A22 +B2K2

)
, B = (BT1 ,BT2

)T
. (6.19)

As aj + λjbj �= 0 then the conditions of Theorem 5.1 are satisfied and H0 is Hurwitz.
Hence, the trivial solution of (6.18) is asymptotically stable by linear approximation as
the spectrum of its matrix is the union of spectra of the Hurwitz matrices H0, H1, and
H2. �

7. Conclusions

We have proposed a feedback controller that stabilizes the equilibrium of a Galerkin ap-
proximation for a rotating Timoshenko beam, provided that measurements of the raising
angle and the strain at a point are available. The feedback law and coefficients of the
dynamical observer are computed explicitly for any number of modal coordinates. A po-
tential field of application of these results is the control design for fire-rescue turntable
ladders. An advantage of our approach is that the identification procedure can be reduced
significantly in comparison with a multibody model. In addition, the higher modes can
be calculated explicitly, which is important for the design of an oscillation damping con-
trol of a turntable ladder. For a possible implementation of the controller, it is necessary
to integrate a system of ordinary differential equations in real time. We do not consider
here such issues as spillover analysis, convergence of Galerkin approximations, computa-
tional complexity, or limitation of the sampling rate with respect to the calculation time
leaving these problems for future work.
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