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This paper investigates the design and implementation of nonlinear control schemes for
a separately excited DC motor operating in the field-weakening region. A feedback lin-
earization controller, a Corless-Leitman-type controller, and two nonlinear controllers
are designed and implemented for a DC motor system. The stability of the closed-loop
system is proved using Lyapunov theory. A hardware testbed is constructed to experi-
mentally verify the designed controllers. The hardware consists of a DC motor system, a
DSP controller board, a power module, two current sensors, and a tachogenerator. The
experimental results indicate that the developed controllers work well.
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1. Introduction

Generally, DC motors are used in a huge number of industrial applications. In particular,
separately excited DC motors have many applications. The operation of separately excited
DC motors is as follows. Field coils are used to establish an air-gap flux between station-
ary iron poles and the rotating armature which has axially directed conductors that are
connected to a brush commutator; these conductors are continuously switched such that
those located under a pole carry similarly directed currents. The interaction of axially di-
rected currents and radially directed field flux produces a shaft torque. DC motors and
drives generally contain nonlinear relations that are difficult to model. In addition, in a
number of cases, even when the available model is accurate, the exact system parameters
are difficult to measure or estimate. Modern nonlinear control techniques, in conjunc-
tion with improved power electronics and fast digital signal processing tools, can be used
to overcome the nonlinearity of the system and to ensure that the system behaves in the
desired manner.
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Many researchers have addressed the control of electrical machines and specifically the
control of DC motors, for example refer to [1–10]. Several authors have tackled the con-
trol problem of electrical machines operating in the field-weakening region. For example,
Briz et al. [11], Buente et al. [12], Sattler et al. [13], and Seibel et al. [14] dealt with the
control of induction motors operating in the field-weakening region. Krishnan [15] ex-
plored the field-weakening control of a PM synchrounous motor and Nishikata et al. [16]
proposed a field-weakening speed control system for a self-regulated synchronous motor.

Several researchers have contributed to the control of DC motors operating in the
field-weakening region. Liu et al. [17–20] proposed several strategies to control a DC
motor in the field-weakening region. They used the input-output feedback lineariza-
tion technique, the backstepping technique combined with variable structure control,
the load-adaptive and sensorless control technique, and other nonlinear control options
to control the system. Matausek et al. [21] proposed an adaptive controller for a DC mo-
tor drive operating in the field-weakening region. The adaptation update law is based
on gain scheduling; the theoretical result is supported by simulations and experimental
results. Matausek et al. [22] also proposed the internal model control structure to reg-
ulate a DC motor drive in the field-weakening region; they used a feedforward neural
network inverse model with one hidden layer and a small number of hidden neurons
to control the system. Zhou et al. [23] designed a nonlinear adaptive backstepping speed
controller for the field-weakening region of a separately excited DC motor; the theoretical
results are verified through computer simulations. Zhou et al. [24] also designed a global
speed controller for the DC motor; the authors used two models to represent the system:
a linear model was used to describe the system when the motor is operating under the
base speed and a nonlinear model was used to describe the system operating in the field-
weakening region. A linear robust state-feedback controller was proposed to control the
system under the linear model hypothesis while an adaptive backstepping control scheme
is designed for the control of the nonlinear model. Simulations results were presented to
test the proposed controllers. Miti and Renfrew [25] and Miti et al. [26] studied the field-
weakening control problem of brushless DC motors. Zeroug et al. [27] addressed the
problem of performance prediction and field-weakening simulation of a brushless DC
motor.

This paper uses four nonlinear techniques to control a separately excited DC motor
operating in the field-weakening region. Using Lyapunov theory, it is proved that the con-
trollers guarantee the stability of the closed-loop system. The proposed control schemes
are implemented using a developed testbed. The implementation results show the effec-
tiveness of the proposed controllers.

The paper is organized as follows. A mathematical model for the DC motor operating
in the field-weakening region is given in Section 2. A feedback linearization controller is
designed in Section 3. A Corless-Leitman-type controller is proposed in Section 4. Two
continuous nonlinear controllers are developed in Section 5. A description of the hard-
ware setup is given in Section 6. The implementation results are presented and discussed
in Section 7. Finally, the conclusion is given in Section 8.
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2. Mathematical model of a separately excited DC motor

The equations describing a separately excited DC motor are as follows:

dia
dt
= 1

La

(
va−Raia−Kmi f ω

)
,

di f
dt
= 1

L f

(
v f −Rf i f

)
,

dω

dt
= 1

Jm

(
Kmiai f −Bmω−Tl

)
,

(2.1)

where ia and i f are the armature and field currents; ω is the rotor speed. The voltages va
and v f are the armature and field voltages. The resistances Ra and Rf are the armature
and field resistances; La and L f are the armature and field inductances. The constant Km

is the motor torque constant, Jm is the inertia of the motor, Bm is the damping coefficient.
The load torque is Tl.

Define the following constants:

K1 =−Ra

La
, K2 =−Km

La
, K3 =−

Rf

L f
, K4 = Km

Jm
, K5 =−Bm

Jm
. (2.2)

Also, let

x1 = ia, x2 = i f , x3 = ω. (2.3)

Therefore, the equations describing a separately excited DC motor can be written as

ẋ1 = K1x1 +K2x2x3 +
1
La

va,

ẋ2 = K3x2 +
1
L f

v f ,

ẋ3 = K4x1x2 +K5x3− τl
Jm

.

(2.4)

Remark 2.1. The design of the controllers will be performed without taking the load
torque into account. An observer can then be designed to estimate the load torque [28].

The design of the observer is described below.
Let x4 =−τl/Jm and assume that the load is constant. Using the last equation of (2.4)

and the fact that the load is constant, we have the following system:

ẋ3 = K4x1x2 +K5x3 + x4,

ẋ4 = 0.
(2.5)
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Let l1 and l2 be properly chosen positive scalars. Since x1, x2, and x3 are measurable, we
define the observer to be

˙̂x3 = K4x1x2 +K5x3 + x̂4 + l1
(
x3− x̂3

)
,

˙̂x4 = l2
(
x3− x̂3

)
.

(2.6)

Define the error eo such that eo =
[
e3 e4

]T = [ x3−x̂3 x4−x̂4

]T
. The error eo satisfies the equa-

tion ėo = Aoeo, where

Ao =
[
−l1 1
−l2 0

]

. (2.7)

Since l1 and l2 are chosen to be positive, then the error eo(t) converges to zero asymptoti-
cally. Hence, the above observer can be used to estimate x4 =−τl/Jm.

Next, we use a mathematical transformation to write the model of the system into
a form that facilitate the design of control schemes. Consider the following change of
variables:

ζ1 = x3,

ζ2 = K4x1x2 +K5x3,

ζ3 = x2.

(2.8)

For ζ3 �= 0, the inverse of the transformation given in (2.8) is such:

x1 = 1
K4ζ3

(
ζ2−K5ζ1

)
,

x2 = ζ3,

x3 = ζ1.

(2.9)

Define the new inputs u1 and u2 such that

[
u1

u2

]

=

⎡

⎢
⎢
⎢
⎢
⎣

K4

La
x2

K4

L f
x1

0
1
L f

⎤

⎥
⎥
⎥
⎥
⎦

[
va
v f

]

. (2.10)

Therefore, the equations of the separately excited DC motor can be written as functions
of the new variables ζ1, ζ2, ζ3, and the new inputs u1, u2 such that

ζ̇1 = ζ2,

ζ̇2 =−
(
K1K5 +K3K5

)
ζ1 +

(
K1 +K3 +K5

)
ζ2 +K2K4ζ1ζ

2
3 +u1,

ζ̇3 = K3ζ3 +u2.

(2.11)
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The equations given in (2.11) can be written in compact form as

ζ̇ =Aζ +B f +Bu, (2.12)

where

A=
⎡

⎢
⎣

0 1 0
−(K1 +K3

)
K5 K1 +K3 +K5 0

0 0 K3

⎤

⎥
⎦ , ζ =

⎡

⎢
⎣

ζ1

ζ2

ζ3

⎤

⎥
⎦ ,

B =
⎡

⎢
⎣

0 0
1 0
0 1

⎤

⎥
⎦ , f =

[
K2K4ζ1ζ

2
3

0

]

, u=
[
u1

u2

]

.

(2.13)

Remark 2.2. It is assumed that the nonlinear term f is bounded by a known function η
such that

‖ f ‖ = K2K4ζ1ζ
2
3 ≤ η. (2.14)

This assumption is reasonable because it is always possible to find η such that, η ≥ K2K4

ωmaxi
2
f max, where ωmax corresponds to the maximum value of ω and i f max corresponds to

the maximum value of i f .

Let the matrix Ac be such that

Ac =A−BK , (2.15)

where the gain K is selected such that the matrix Ac =A−BK is a stable matrix.
The next four sections deal with the design of nonlinear controllers for the DC motor

system. The objective of the controllers is to regulate the speed of the motor to a desired
constant value. Note that the desired speed is chosen above the rated speed of the motor.

The following variables are needed for the design of the controllers. Let ζd be the de-
sired value of ζ such that

ζd =
⎡

⎢
⎣

ζ1d

ζ2d

ζ3d

⎤

⎥
⎦=

⎡

⎢
⎣

ωd

0
i f d

⎤

⎥
⎦ , (2.16)

where ωd represents the desired constant speed and i f d represents the desired constant
field current.

Define the error e such that

e = ζ − ζd. (2.17)

Also, let the reference input of the system be r = [r1 r2]T such that

Aζd +Br = 0. (2.18)
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Hence, the reference input is chosen as

r =
[
r1

r2

]

=

⎡

⎢
⎢
⎢
⎢
⎣

(
Ra

La
+
Rf

L f

)
B

J
ωd

R f

L f
i f d

⎤

⎥
⎥
⎥
⎥
⎦
. (2.19)

3. A Feedback linearization controller for the DC motor

The equations of the DC motor system can be written in compact form as

ζ̇ = Aζ +B f +Bu. (3.1)

proposition 3.1. The feedback linearization control law

u=− f −Ke+ r (3.2)

when applied to the separately excited DC motor system guarantees the asymptotic conver-
gence to zero of the errors of the system.

Proof. Using (2.17), (3.1), (3.2), (2.18), and (2.15), it follows that

ė = ζ̇ = Aζ +B f +Bu= Aζ +B f +B(− f −Ke+ r)= (A−BK)e+Aζd +Br = Ace.
(3.3)

Since the pair (A,B) is controllable, the poles of the closed-loop system can be selected
such that the response of the system is as desired. Thus, if Ac is chosen to be a stable
matrix, the errors are guaranteed to converge to zero asymptotically. Hence, the closed-
loop system is asymptotically stable. �

4. A Corless-Leitmann-type controller for the DC motor

When designing the feedback linearization controller, it was assumed that the nonlin-
earities of the system can be canceled accurately. In general, this assumption might not
be valid. Corless and Leitmann [29] proposed a controller that works well for a class of
nonlinear systems that has matched uncertainties which are bounded by some known
continuous time functions; their proposed controller guarantees the uniform ultimate
boundedness of the errors of the system.

In this section, a Corless-Leitmann-type controller is used to control the separately
excited DC motor.

Definition 4.1 [29]. The error e(t) is said to be uniformly ultimately bounded if there
exist constants b and c, and for every rc ∈ (0,c), there is a constant T = T(rc) ≥ 0 such
that

∥
∥e
(
t0
)∥∥ < rc=⇒

∥
∥e(t)

∥
∥ < b, ∀t > t0 +T. (4.1)
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The proposed control law is divided into a linear part and a nonlinear part. The linear
part of the controller is designed using the pole placement technique. The nonlinear part
of the controller is designed to resemble a Corless-Leitmann-type controller.

Let the symmetric positive definite matrix P1 be the solution of the following Lya-
punov equation:

AT
c P1 +P1Ac =−Q1 (4.2)

with Q1 =QT
1 > 0.

proposition 4.2. The control law given by (4.3)–(4.6) when applied to the separately ex-
cited DC motor guarantees the uniform ultimate boundedness of the errors of the system:

u= uL +uN (4.3)

with

uL =−Ke+ r, (4.4)

uN =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− μ1∥
∥μ1
∥
∥η if

∥
∥μ1
∥
∥ > ε,

−μ1

ε
η if

∥
∥μ1
∥
∥≤ ε,

(4.5)

with

μ1 = ηBTP1e (4.6)

and η > 0, and ε is a small positive scalar.

Proof. Using (2.17), (3.1), (4.3), (4.4), (2.15) and (2.18), it follows that

ė = Aζ +B f +Bu= Aζ +B f +B
(−Ke+ r +uN

)= Ace+B f +BuN. (4.7)

Consider the following Lyapunov function candidate:

V1 = eTP1e. (4.8)

Note that V1 > 0 for e �= 0 and V1 = 0 for e = 0. Taking the derivative of V1 with respect
to time and using (4.7) and (4.2), it follows that

V̇1 = ėTP1e+ eTP1ė

= (Ace+B f +BuN
)T
P1e+ eTP1

(
Ace+B f +BuN

)

=−eTQe+ 2eTP1BuN + 2 f TBTP1e.

(4.9)

We will treat the two cases ‖μ1‖ > ε and ‖μ1‖ ≤ ε separately.
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For the case when ‖μ1‖ > ε and uN =−(μ1/‖μ1‖)η, (4.9) implies that

V̇1 =−eTQe+ 2eTP1BuN + 2 f TBTP1e

=−eTQ1e− 2eTP1B
μ1∥
∥μ1
∥
∥η+ 2 f TBTP1e

≤−eTQ1e− 2
∥
∥BTP1e

∥
∥η+ 2‖ f ‖T∥∥BTP1e

∥
∥

≤−eTQ1e.

(4.10)

For the case when ‖μ1‖ ≤ ε and uN =−(μ1/ε)η, (4.9) implies that

V̇1 =−eTQ1e+ 2eTP1BuN + 2 f TBTP1e

=−eTQ1e− 2eTP1B
μ1

ε
η+ 2 f TBTP1e

≤−eTQ1e− 2

∥
∥BTP1e

∥
∥2

ε
η2 + 2‖ f ‖T∥∥BTP1e

∥
∥

≤−eTQ1e+ 2
∥
∥BTP1e

∥
∥η2

≤−eTQ1e+ 2ε.

(4.11)

Therefore, it can be concluded that in both cases,

V̇1 ≤−λmin
(
Q1
)‖e‖2 + 2ε, (4.12)

where λmin(Q1) is the minimum eignevalue of Q1. Using (4.8) and (4.12), it can be con-
cluded that V1 decreases monotonically along any trajectory of the closed-loop system
until it reaches the compact set:

Λs =
{
e |V1 ≤Vs

}
, (4.13)

where Vs can be easily determined from (4.8) and (4.12).
Therefore, it can be concluded that the errors are uniformly ultimately bounded.

Hence the control scheme (4.3)–(4.6) guarantees the uniform ultimate boundedness of
the errors of the motor system.

The discontinuous nature of the Corless-Leitmann-type controller may be harmful to
the motor. Hence, two continuous nonlinear state-feedback controllers are designed next.
The controllers are similar to the Corless-Leitmann-type controller in that they work
well for a class of nonlinear uncertain systems that has matched uncertainties which are
bounded by some known continuous time functions. However, the main advantage of
these control schemes are that they are continuous in nature. �
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5. Continuous nonlinear controllers for the DC motor

5.1. First continuous nonlinear controller for the DC motor. The control scheme is di-
vided into a linear part and a nonlinear part. The linear control part is designed using
the pole placement technique. The continuous nonlinear part of the controller is moti-
vated by the work of [30]. The proposed controller has the advantage of guaranteeing the
exponential stability of the closed-loop system.

Let the symmetric positive definite matrix P2 be the solution of the following algebraic
Riccati equation:

AT
c P2 +P2Ac− 2P2BB

TP2 =−Q2, (5.1)

where Q2 =QT
2 > 0.

Define

μ2 = ηBTP2e, η > 0, (5.2)

also let ε and β be small positive scalars.

proposition 5.1. The control law given by (5.3)–(5.6) when applied to the separately ex-
cited DC motor guarantees the exponential convergence to zero of the errors of the system:

u= uL +uN (5.3)

with

uL =−Ke+ r, (5.4)

uN =−BTP2e−φc, (5.5)

φc = μ2
∥
∥μ2
∥
∥2

∥
∥μ2
∥
∥3

+ ε3 exp(−3βt)
η. (5.6)

Proof. Consider the following Lyapunov function candidate:

V2 = eTP2e. (5.7)

Note that V2 > 0 for e �= 0 and V2 = 0 for e = 0. Equation (5.7) implies that λ1‖e‖2 ≤V2 ≤
λ2‖e‖2, where λ1 is the minimum eigenvalue of P2 and λ2 is the maximum eigenvalue of
P2.

Using (2.17), (3.1), (4.3), (4.4), (2.15), (2.18), and (5.5), it follows that

ėTP2e =
(
Ace+B f +BuN

)T
P2e =

(
eTAT

c + f TBT − eTP2BB
T −φT

c B
T
)
P2e. (5.8)
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Taking the derivative of V2 with respect to time and using (5.8) and (5.3)–(5.6), it follows
that

V̇2 = ėTP2e+ eTP2ė

= (eTAT
c + f TBT − eTP2BB

T −φT
c B

T
)
P2e+ eTP2

(
Ace+B f −BBTP2e−Bφc

)

=−eTQ2e+ 2eTP2B f − 2eTP2Bφ
T
c

=−eTQ2e+ 2eTP2B f − 2eTP2Bμ2
∥
∥μ2
∥
∥2

∥
∥μ2
∥
∥3

+ ε3 exp(−3βt)
η

≤−eTQ2e− 2
∥
∥BTP2eη

∥
∥4

∥
∥BTP2eη

∥
∥3

+ ε3 exp(−3βt)
η+ 2

∥
∥BTP2eη

∥
∥

≤−eTQ2e+
2
∥
∥BTP2eη

∥
∥ε3 exp(−3βt)

∥
∥BTP2eη

∥
∥3

+ ε3 exp(−3βt)
η

≤−eTQ2e+ 2εexp(−βt)

≤−λ3‖e‖2 + 2εexp(−βt).

(5.9)

In the above, we used the fact that

0≤ ab3

a3 + b3
≤ b, ∀a,b ≥ 0, a3 + b3 �= 0. (5.10)

and λ3 is the minimum eigenvalue of Q2.
Let κ= λ3/λ2, it follows that

V̇2 ≤−κV2 + 2εexp(−βt). (5.11)

Thus, it can be concluded that the error e(t) is globally exponentially stable. Moreover,
the convergence rate of the errors is such:

∥
∥e(t)

∥
∥≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
λ2

λ1

∥
∥e(0)

∥
∥2

exp(−κt) +
2ε
λ1
t exp(−κt)

]1/2

if β = κ,

[
λ2

λ1

∥
∥e(0)

∥
∥2

exp(−κt) +
2ε

λ1(κ−β)

(
exp(−βt)− exp(−κt))

]1/2

if β �= κ.

(5.12)

Hence, it can be concluded that the proposed control scheme (5.3)–(5.6) when applied
to the DC motor system guarantees the exponential convergence to zero of the errors of
the system. �
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5.2. Second continuous nonlinear controller for the DC motor. Again, the control
scheme is divided into a linear part and a nonlinear part. The linear controller part is
designed using the pole placement technique. The continuous nonlinear part of the con-
troller is motivated by the work of [31].

Let the symmetric positive definite matrix P3 be the solution of the Lyapunov equa-
tion:

AT
c P3 +P3Ac =−Q3 (5.13)

with Q3 =QT
3 > 0.

proposition 5.2. The control law

u= uL +uN (5.14)

with

uL =−Ke+ r, uN =−γoBTP3e (5.15)

when applied to the separately excited DC motor guarantees the exponential convergence of
the errors of the system such that

∥
∥e(t)

∥
∥≤ co exp

(− ν
(
t− to

))
+μ, (5.16)

where

co =
√
√
√
√λmax

(
P3
)

λmin
(
P3
)
∥
∥e
(
to
)∥∥, ν= λmin

(
Q3
)

2λmax
(
P3
) , μ= η

√
√
√
√ λmax

(
P3
)

γoλmin
(
P3
)
λmin

(
Q3
) ,

(5.17)

and λmax(•) is the maximum eigenvalue of •, and λmin(•) is the minimum eigenvalue of •.

Proof. Consider the following Lyapunov function candidate:

V3 = eTP3e. (5.18)

Note that V3 > 0 for e �= 0 and V3 = 0 for e = 0.
Taking the derivative of V3 with respect to time and using (2.17), (3.1), (2.15), and

(5.11)–(5.14), it follows that

V̇3 = ėTP3e+ eTP3ė

= (Ace+B f +BuN
)T
P3e+ eTP3

(
Ace+B f +BuN

)

=−eTQ3e+ 2eTP3BuN + 2 f TBTP3e

=−eTQ3e+ 2eTP3B
(− γoB

TP3e
)

+ 2 f TBTP3e

≤−eTQ3e− 2γo
∥
∥BTP3e

∥
∥2

+ 2
∥
∥BTP3e

∥
∥η
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Reference

DSP controller card

Controller PWM
Power

module
DC motor

system

Current sensor

Tacho-generator

Figure 6.1. A block diagram representation of the system.

=−eTQ3e− 2γo

[∥
∥BTP3e

∥
∥2− η

γo

∥
∥BTP3e

∥
∥
]

=−eTQ3e− 2γo

[∥
∥BTP3e

∥
∥− η

2γo

]2

+
η2

2γo

≤−eTQ3e+
η2

2γo

=−λmin
(
Q3
)‖e‖2 +

η2

2γo
.

(5.19)

Using the results of [31], it can be concluded that

∥
∥e(t)

∥
∥≤ co exp

(− v
(
t− to

))
+μ. (5.20)

Therefore, it can be concluded that the control scheme (5.14)-(5.15) when applied to the
DC motor system guarantees the exponential convergence to zero of the errors of the
system with a prespecified rate of convergence and prespecified tolerance. �

6. Description of the hardware setup

A hardware testbed was built to test the performances of the proposed control schemes.
The system is composed of a DC motor system, a DSP controller board, a power module,
two current sensors, and a tachogenerator. The DC motor system includes a separately
excited DC motor and a DC generator which is used to simulate variable loads on the
motor. A block diagram representation of the system is shown in Figure 6.1.

The derived feedback controllers are implemented using a digital signal processor
(DSP) card. The algorithm for the controller is coded using the Simulink environment;
then it is downloaded from the computer into the DSP which resides on a controller
board. The control algorithm in the DSP, together with the other peripheral subsystems
on the controller board, will ensure a smooth transition of the motor from the initial
speed to the final speed under various loading conditions. A driver circuit is required to
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Figure 6.2. A photograph of the DC motor.

Table 6.1. Values of the parameters of the DC motor.

Parameter Value

Ra 3.5 Ω

La 0.0432 H

Rf 233 Ω

Lf 25.5 H

Km 1.9469

Bm 0.0025

Jm 0.0017

interface between the controller board and the motor; this is the case because the pe-
ripheral subsystems of the controller board have low current capabilities. Two current
sensors are also used to measure the armature and field currents. A tachogenerator, from
Servo-Tek, with an output of 20.8 Volt/RPM is used for speed feedback.

A separately excited permanent magnet DC motor is used to test the proposed con-
trol algorithm. A photograph of the DC motor is shown in Figure 6.2. The motor (an
MV1042-225 motor) has the specifications shown in Tables 6.1 and 6.2.

In order to study the performance of the system under different loading conditions,
the motor shaft is coupled with a DC generator. The output of the DC generator is then
connected to an adjustable resistive load. A switching arrangement is made to provide a
step change in the load.

The nonlinear region of operation for a DC motor starts above the base speed. A de-
crease in field voltage v f (which, in turn, reduces the field current i f ) increases the motor
speed. To implement such a system, a buck converter is used. The first step is to rectify
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Table 6.2. Ratings of the DC motor.

Parameter Rating

Rated armature voltage 220 Volt

Rated field voltage 220 Volt

Rated power 3 KW

Rated speed 1400 RPM

the AC voltage and to filter out the voltage ripple. The AC-to-DC converter is imple-
mented using a bridge rectifier along with an LC filter. A DC-to-DC chopper is then used
to obtain varying field voltages. Pulse width modulation (PWM) is used with a switching
frequency of 5 KHz. In addition, IGBTs are used as power switches and compatible high-
speed switching diodes to “free wheel” the current during the energy release phase. The
heart of the driver circuitry is an IR2125 chip capable of providing high switching cur-
rent along with overcurrent protection. A high-speed optoisolator is also used to connect
the driver chip to the control board. Such an arrangement is needed to provide ground
isolation and to reduce signal noise.

A real-time interface (RTI) board (the DS1104 Board) is used to program the control
algorithm. This board is manufactured by the dSPACE Company. The software language
used to program the DSP board is Simulink. This tool is a quite powerful combination
of graphic user interface (GUI), in the MATLAB environment, and the digital signal pro-
cessor board with a built-in data acquisition system. The PWM slave module of the con-
troller greatly simplified the hardware implementation. A high-speed analog-to-digital
converter (ADC) made it possible to implement the derived continuous design in the
available digital environment.

7. Implementation results

The developed control schemes are implemented using the hardware setup described in
the previous section.

The DC motor is commanded to speed up from an initial angular velocity of 1500 rpm
to a final speed of 2500 rpm. Note that the rated speed of the motor is 1400 rpm; the mo-
tor is therefore commanded to operate above the rated speed. The gains of the controllers
are

K1 =
⎡

⎣1029 −29 0

0 0 91

⎤

⎦ , K2 =
⎡

⎣2398 8.5 0

0 0 1

⎤

⎦ . (7.1)

The feedback linearization controller given by (3.2) is implemented first. The gain K = K1

was used. The implementation results are shown in Figures 7.1–7.3. Figure 7.1 shows
the speed versus time profile. Figure 7.2 and Figure 7.3 show the field current and the
armature currents, respectively. It is clear from the figures that the motor is regulated to
the desired speed in a very short period of time. However, the speed profile of the motor
exhibits a small steady-state error.
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Figure 7.1. Speed ω when the feedback linearization controller is used.
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Figure 7.2. Field current i f when the feedback linearization controller is used.

The implementation results when the Corless-Leitmann-type controller given by
(4.3)–(4.6) is used are shown in Figures 7.4–7.6. The gain K = K2 was used. Figure 7.4
shows the speed versus time profile. Figure 7.5 and Figure 7.6 show the field current and
the armature currents, respectively. It is clear from the figures that the motor is regulated
to the desired speed in a very short period of time.
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Figure 7.3. Armature current ia when the feedback linearization controller is used.
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Figure 7.4. Speed ω when the Corless-Leitmann-type controller is used.

The implementation results when the first continuous nonlinear controller given by
(5.3)–(5.6) is used are shown in Figures 7.7–7.9. The gain K = K1 was used. Figure 7.7
shows the speed versus time profile. Figure 7.8 and Figure 7.9 show the field current and
the armature currents, respectively. It is clear from the figures that the motor is regulated
to the desired speed in a very short period of time. However, the speed profile of the
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Figure 7.5. Field current i f when the Corless-Leitmann-type controller is used.
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Figure 7.6. Armature current ia when the Corless-Leitmann-type controller is used.

motor exhibits some chattering around the desired speed. This chattering is due to the φc
term given in (5.6).

The implementation results when the second continuous nonlinear controller given
by (5.14)-(5.15) is used are shown in Figures 7.10–7.12. The gain K = K1 was used.
Figure 7.10 shows the speed versus time profile. Figure 7.11 and Figure 7.12 show the
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Figure 7.7. Speed ω when the first continuous nonlinear controller is used.

6050403020100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 7.8. Field current i f when the first continuous nonlinear controller is used.

field current and the armature currents, respectively. It is clear from the figures that the
motor is regulated to the desired speed in a very short period of time.

Comparing the performances of the four proposed controllers, it can be concluded
that the second continuous nonlinear controller given by (5.14)-(5.15) gave the best per-
formance; the Corless-Leitmann-type controller gave the second best performance.

Moreover, it is found that the amplitudes of the control signals for the four different
control schemes are within acceptable ranges. It should be noted that a DC-to-DC chop-
per is used to obtain varying field voltages, and pulse width modulation (PWM) is used
with a switching frequency of 5 KHz.
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Figure 7.9. Armature current ia when the first continuous nonlinear controller is used.
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Figure 7.10. Speed ω when the second continuous nonlinear controller is used.

Also, the robustness of the proposed controllers with respect to changes in the load
attached to the motor is tested. Experimental tests indicate that the feedback linearization
controller is not robust to changes in the load. However, the Corless-Leitmann controller
as well as the other two controllers are found to be robust to changes in the load attached
to the motor.

8. Conclusion

The problem of controlling a separately excited DC motor operating in the field-weak-
ening region using nonlinear controllers is studied in this paper. A feedback linearization
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Figure 7.11. Field current i f when the second continuous nonlinear controller is used.
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Figure 7.12. Armature current ia when the second continuous nonlinear controller is used.

controller, a Corless-Leitmann-type controller and two continuous nonlinear controllers
are designed for the system. Implementation results of the proposed control schemes
show that the proposed controllers work well.

Robustness of the proposed control schemes to changes in the load and to changes in
the parameters of the system will be the topic of future research. Design and implemen-
tation of sliding mode controllers will be another topic of future research.
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