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The application of quadratic optimization and sliding-mode approach is considered for
hybrid position and force control of a robot manipulator. The dynamic model of the
manipulator is transformed into a state-space model to contain two sets of state variables,
where one describes the constrained motion and the other describes the unconstrained
motion. The optimal feedback control law is derived solving matrix differential Riccati
equation, which is obtained using Hamilton Jacobi Bellman optimization. The optimal
feedback control law is shown to be globally exponentially stable using Lyapunov function
approach. The dynamic model uncertainties are compensated with a feedforward neural
network. The neural network requires no preliminary offline training and is trained with
online weight tuning algorithms that guarantee small errors and bounded control signals.
The application of the derived control law is demonstrated through simulation with a 4-
DOF robot manipulator to track an elliptical planar constrained surface while applying
the desired force on the surface.
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1. Introduction

In many robotic applications such as assembly, fine polishing, grasping, grinding, and
deburring, the robot comes in extensive contact with its environment. These tasks are
better dealt with by directly controlling the forces of interaction between the robot and
its environment. The task is to exert a desired profile of force in the constrained degrees of
freedom while following the reference trajectory in the unconstrained degrees of freedom.
This problem is generally referred to as compliant motion control or impedance control or
hybrid position/force control problem.
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At present, many control algorithms have been proposed for hybrid position/force
control. The basic hybrid position/force control scheme was originally proposed by Craig
and Raibert [1]. It neglected the dynamic coupling among each of the robot joints and de-
veloped the control scheme within the framework of robot joint control systems. Khatib
and Burdick [2] subsequently remedied coupling problem by considering the control
problem within the framework of operational space. Exact decoupling of motion and
force equations and system linearization is realized by McClamroch [3] and Yoshikawa
[4]. Generally, constrained robotic systems are modeled as differential equations subject
to the algebraic constraints. McClamroch proposed the dynamic models as singular sys-
tem of differential equations and developed these models for several robot configurations
and presented feedback control schemes for these configurations. Yoshikawa formulated
the constraints on the end effector of the manipulator by the hypersurfaces in the effector
coordinate frame and computed the joint driving force as the sum of the two forces: the
joint driving force for achieving the desired trajectory of the effector position and that
for achieving the desired trajectory of the force. Hogan [5–7] considered the design of
compliant motion which is important when gripping fragile objects or in interacting be-
tween cooperating robots. In [8], Su et al. presented the control algorithm using sliding-
mode approach. Roy and Whitcomb proposed an adaptive force control algorithm for
velocity/position-controlled robot arms in contact with surfaces of unknown linear com-
pliance with exact dynamic considerations [9]. Su along Yury Stepanenko presented an
adaptive variable structure control algorithm for constrained motion of robots. It was
shown that the objective could be achieved without exact knowledge of robot dynamics
and on-line calculation of nonlinear dynamic functions. The other works relating to force
control are also reported in literature [10–13].

The quadratic optimization of robotic motion is well addressed by Johansson [14].
Johansson and Spong [15] considered the case of quadratic optimization for impedance
control of robot manipulators. They showed to minimize an appropriate control effort
and used Hamilton-Jacobi formulation to find optimal control. Recently, the application
of neural networks in closed-loop control has become an intensive area of research. Many
works on closed-loop application of neural networks are reported in the literature. Lewis
et al. have worked extensively in the closed-loop application of neural networks for robot
motion control [16–19]. They derived successfully control algorithms with stable tracking
while approximating the unknown dynamics of the manipulators with neural networks
that are universally considered to be fine approximators and trained them online, remov-
ing any preliminary offline training. The works relating to application of neural networks
in case of impedance control are reported in [20–22]. In [20, 22], neural networks are
used for adaptive compensation of the structured and unstructured uncertainties while
Saadia et al. [21] tried to globally treat the problem of the adaptation of robot behavior
to various classes of tasks. Chen and Chang [23] modified the dynamic model to contain
two sets of state variables and used sliding-mode approach to present the control scheme.
In this paper, we also transform the dynamic model to a model with two sets of vari-
ables, one describing the constrained motion and the other describing the unconstrained
motion. Using Hamilton-Jacobi formulation, an optimal sliding-mode controller is de-
signed. The uncertainties of the model are learned with feedforward neural networks.
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The stability analysis of the resulting system is also carried out. The conventional robust
controllers such as model-based adaptive controllers require the knowledge of the system
dynamics in detail (e.g., in the form of linear in parameters model). Also the fuzzy-rule
learning scheme has stability problems. The use of optimal sliding-mode neural network
based scheme motivates to overcome the shortcomings of existing adaptive schemes. The
proposed control scheme has salient features: (1) it guarantees the stability of the con-
trolled system, (2) it provides an optimal feedback solution to the problem, and (3) the
neural network is able to learn the completely unknown system dynamics.

The paper is organized as follows. In Section 2, through appropriate transformation of
coordinates, the dynamic model for analyzing the constrained robot system is presented.
Section 3 presents the optimal sliding-mode controller design. A review of feedforward
neural networks is given in Section 4. TheNN controller design is presented in Section 5.
Numerical simulation results are included in Section 6. Section 7 gives concluding re-
marks.

2. Dynamic model of constrained robot

Based on the Euler-Lagrangian formulation, in the absence of friction, the motion equa-
tion of an n-link rigid, nonredundant constrained robot can be expressed in joint space
as [24]

M(q)q̈+Cm(q, q̇)q̇+G(q)= τ + JT(q)λ, (2.1)

where q ∈Rn is the joint displacement vector,M(q)∈Rn×n is the inertia matrix, Cm(q, q̇)
∈Rn is the vector characterizing Coriolis and centrifugal forces, G(q)∈Rn is the gravita-
tional force, τ ∈Rn is the joint space torque, JT(q)∈Rn×m is a Jacobian matrix associated
with the contact surface geometry, and λ ∈ Rm (the so-called “Lagrange multiplier”) is
a vector of contact forces exerted normal to surface, described in coordinates relative to
the surface. m is the times of constraints. Due to the stiffness of the environment, it is
assumed that

λ= SΩ(t), (2.2)

where S represents the environment stiffness and is a constant positive definite matrix.
Ω :R1 →Rm is a function. The following properties should be noted about the dynamic
structure in (2.1).

Property 2.1. M(q) is a symmetric positive definite matrix and bounded above and below,
that is, there exists positive constants αM and βM such that

αMIn ≤M(q)≤ βMIn. (2.3)

Property 2.2. The matrix Ṁ(q)− 2Cm(q, q̇) is skew symmetric.
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It is assumed that the generalized contact surface with which the manipulator comes
into contact can be thought of as an intersection of m mutually independent hypersur-
faces. The algebraic equation of the surface can be written as

Φ(q)= 0, (2.4)

where the mappingΦ :Rn→Rm is twice continuously differentiable. Differentiating (2.4)
with respect to time leads to

Φ̇(q)= ∂Φ(q)
∂q

q̇ = J(q)q̇, (2.5)

where J(q)= ∂Φ(q)/∂q is the Jacobian matrix associated with the contact surface geom-
etry.

When the motion of the robot is constrained to be on the surface (2.4), only (n−m)
coordinates of the position vector can be specified independently. To analyze the be-
havior between the robot and contact surface, we define xu = Ψ(q) = [ψ1(q),ψ2(q), . . . ,
ψn−m(q)]T , which depicts the unconstrained motion. Also define xc = Φ(q) = [φ1(q),
φ2(q), . . . ,φm(q)]T as vector of constrained coordinates. Differentiation gives us ẋu
= (∂Ψ(q)/∂q)q̇ = D(q)q̇ and ẋc = (∂Φ(q)/∂q)q̇ = J(q)q̇. Let x ≡ [ xTu xTc ]T ∈ Rn then we

have q̇ = T(q)ẋ where T(q) = [D(q)
J(q)

]−1
; differentiation gives us q̈ = T(q)ẍ + Ṫ(q)ẋ. Sub-

stituting for q̇ and q̈ in (2.1), we obtain

M(q)T(q)ẍ+C1(q, q̇)ẋ+G(q)= τ + JT(q)λ, (2.6)

where C1(q, q̇)= Cm(q, q̇)T(q) +M(q)Ṫ(q). Premultiplying both sides with TT(q), (2.6)
is modified to obtain

M(q)ẍ+C(q, q̇)ẋ+G(q)= τ + J(q)λ, (2.7)

where

M(q)= TT(q)M(q)T(q), C(q, q̇)= TT(q)C1(q, q̇),

G(q)= TT(q)G(q), τ(q)= TT(q)τ(q), J(q)= TT(q)JT(q).
(2.8)

By exploiting the structure of (2.7), two properties could be obtained.

Property 2.3. M(q) is a symmetric positive definite matrix and bounded above and below,
that is, there exists positive constants αM and βM such that

αMIn ≤M(q)≤ βMIn. (2.9)

The proof is given in Appendix A.

Property 2.4. The matrix Ṁ(q)− 2C(q, q̇) is skew symmetric.
The proof is given in Appendix B.
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3. Optimal sliding-mode controller design

In this section, the optimal control algorithm is designed to obtain the desired contact
force λd and the position trajectories xd, where xd = [ψ1d, . . . ,ψ(n−m)d]T . To adopt the
sliding-mode technique, two sets of sliding functions, su ∈ Rn−m for the unconstrained
motion and sc ∈Rm for the constrained motion, are defined. For the unconstrained mo-
tion, the sliding function is chosen as

su = ėu +Λueu, (3.1)

where eu = xd − xu and ėu = ẋd − ẋu. Λu ∈R(n−m)×(n−m) is a positive definite matrix. Since
Λu is a positive definite matrix, su = 0 implies that xu(t)→ xd(t) as t→∞.

The sliding functions for the constrained motion are chosen to be

sc = ėc +Λcec, (3.2)

where ec = xc −Δxc, Λc ∈Rm×m is a positive definite matrix. The force compensator Δxc
is set to as Δxc =

∫
Γ(λd − λ)dt. Due to λ= SΩ(t) and xc =Φ(q), if sc = 0, we have

λ̇+ SΓ
(
λ− λd

)
+Λc

(
λ+
∫

SΓ
(
λd − λ

)
dt
)
= 0. (3.3)

Taking the first derivatives of (3.3) yields

λ̈+
(
SΓ+Λc

)
λ̇+ΛcSΓ

(
λd − λ

)= 0. (3.4)

To analyze the stability of (3.4), the following Lyapunov function is chosen:

Vf = 1
2
λ̇T λ̇+

1
2

(
λ− λd

)T
ΛcSΓ

(
λ− λd

)
. (3.5)

From (3.4) and (3.5), we have

V̇ f =−λ̇T
(
SΓ+Λc

)
λ̇. (3.6)

Therefore, from Lyapunov stability and LaSalle’s theorem [24], we conclude that λ̇(t)→
0 as t →∞. This implies that the force λ will equal the desired value λd no matter the
stiffness K is.

Define e = [ eTu eTc ]T and s= [ sTu sTc ]T . Then error dynamics and robot dynamics can be
written, respectively, as follows:

ė(t)=−Λe(t) + s(t), (3.7)

M(q)ṡ(t)=−C(q, q̇)s(t)− τ(t) +h(y), (3.8)

where Λ = [Λu 0
0 Λc

]
and for instance y(t) = [ eTu ėTu eTc ėTc eTf ėTf xTd ẋTd ẍTd ]T , where e f = λd − λ.

The nonlinear function h(y), capturing the unknown dynamics the robot manipulator is

h(y)=M(q)

[
ẍd +Λuėu
−Γė f +Λcėc

]

+C(q, q̇)

[
ẋd +Λueu
−Γe f +Λcec

]

+G(q)− J(q)λ. (3.9)
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Now, define a new control-input vector as

u(t)= h(y)− τ(t). (3.10)

The new control effort u(t)∈Rn is to be minimized later. The closed-loop robot dynam-
ics becomes

M(q)ṡ(t)=−C(q, q̇)s(t) +u(t). (3.11)

With (3.7) and (3.11), the following augmented system can be obtained:

˙̃x(t)=
[
ė
ṡ

]

=
[−Λ I

0 −M−1C

][
e
s

]

+

[
0

M−1

]

u(t) (3.12)

or

˙̃x(t)= A(q, q̇)x̃(t) +B(q)u(t) (3.13)

with A(q, q̇)∈R2n×2n, B(q)∈R2n×2n, and x̃(t)= [ e(t)T s(t)T ]∈R2n×1. Our control objec-
tive is to find the control input u(t) so that the following quadratic performance index
ζ(u) is minimized:

ζ(u)=
∫∞

t0
L(x̃,u)dt (3.14)

with the Lagrangian

L(x̃,u)= 1
2
x̃T(t)Qx̃(t) +

1
2
uT(t)Ru(t)= 1

2

[
eT sT

]
[
Q11 Q12

Q21 Q22

][
e
s

]

+
1
2
uTRu.

(3.15)

Hamilton-Jacobi-Bellman optimization. Let uo(t) denote the required optimal control. A
necessary and sufficient condition for uo(t) to minimize (3.15) subject to (3.12) is that ∃
a function V =V(x̃, t) satisfying Hamilton-Jacobi-Bellman (HJB) equation [25]

∂V(x̃, t)
∂t

+ min
u

[

H

(

x̃,u,
∂V(x̃, t)
∂x̃

, t

)]

= 0, (3.16)

where the Hamiltonian of optimization is defined as

H

(

x̃,u,
∂V(x̃, t)
∂x̃

, t

)

= L(x̃,u) +
∂V(x̃, t)
∂x̃

˙̃x. (3.17)

The function V(x̃, t) satisfies the following partial differential equation:

−∂V(x̃, t)
∂t

= L(x̃,uo
)

+
∂V(x̃, t)
∂x̃

˙̃x. (3.18)
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The minimum is attained for the optimal control u(t) = uo(t) and the Hamiltonian is
then given by

Ho =min
u

[

L(x̃,u) +
∂V(x̃, t)
∂x̃

˙̃x

]

=H

(

x̃,uo,
∂V(x̃, t)
∂x̃

, t

)

=−∂V(x̃, t)
∂t

. (3.19)

Lemma 3.1. The following function V satisfies the Hamilton-Jacobi-Bellman equation

V = 1
2
x̃TP(q)x̃ = 1

2
x̃T
[
K 0
0 M(q)

]

x̃, (3.20)

where K = KT ∈Rn×n is a positive symmetric matrix. The matrices K and Λ in (3.12) can
be found by solving the matrix differential Riccati equation

Ṗ +PA+ATP +Q−PBR−1BTPT = 0. (3.21)

Now, consider the following relations:

K = KT =−1
2

(
Q12 +Q21

)
,

KΛ+ΛTK =Q11, R−1 =Q22.
(3.22)

With the choice of these relations, the matrix P(q) given by (3.20) satisfies the Riccati equa-
tion (3.21). Then, the optimal control uo(t) that minimizes (3.14) subject to (3.13) is given
by

uo(t)=−R−1BTP(q)x̃. (3.23)

See Appendix C for proof.
With the optimal-feedback control law uo(t) calculated using (3.23), the torques τ(t)

to apply to the robotic system are computed according to the following control input:

τo(t)= h(y)−uo(t). (3.24)

Stability analysis. Suppose that the matrices K and Λ exist that satisfy the hypotheses of
Lemma 3.1 and the matrix P(q) is bounded over (t0,∞). Then using the optimal-feedback
control law in (3.13) and (3.23), the controlled nonlinear system becomes

˙̃x(t)= {A(q, q̇)−B(q)R−1BT(q)P
}
x̃(t). (3.25)

This is globally exponentially stable (GES) with respect to the origin in R2n.

Proof. The quadratic function V(x̃, t) is chosen to be the candidate Lyapunov function as
it is positive radially, increasing with ‖x̃‖. It is continuous and has a unique minimum at
the origin. Now, it remains to show that dV/dt < 0 for all ‖x̃‖ 	= 0. From the solution of
the HJB equation (3.16), we have

dV(x̃, t)
dt

=−L(x̃,uo
)
. (3.26)
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Substituting (3.23) in (3.15), it follows that

dV(x̃, t)
dt

=−1
2

{
x̃TQx̃+

(
R−1BTPx̃

)T
R
(
R−1BTPx̃

)}

=−1
2

{
x̃TQx̃+

(
BTPx̃

)T(
R−1)TRR−1(BTPx̃

)}

=−1
2

{
x̃TQx̃+

(
BTPx̃

)T
R−1(BTPx̃

)}
< 0 ∀t > 0‖x̃‖ 	= 0.

(3.27)

The time derivative of the Lyapunov function is negative definite and from Lyapunov sec-
ond theorem it follows that the nonlinear control system (3.25) is globally exponentially
stable with respect to the origin in R2n. �

4. Feedforward neural networks

A two-layer feedforward neural network (FFNN) with n input units, m output units, and
N units in the hidden layer, is shown in Figure 4.1. The output vector y is determined in
terms of the input vector x by the formula

yi =
N∑

j=1

[

wijσ

( n∑

k=1

vjkxk + θv j

)

+ θwi

]

; i= 1, . . . ,m, (4.1)

where σ(·) are the activation functions of the neurons of the hidden layer. The inputs-to-
hidden-layer interconnection weights are denoted by vjk and the hidden-layer-to-outputs
interconnection weights by wij . The bias weights are denoted by θv j , θwi. There are many
classes of activation functions, for example, sigmoid, hyperbolic tangent, and Gaussian.
The sigmoid activation function used in our work is given by

σ(x)= 1
1 + e−x

. (4.2)

By collecting all theNN weights vjk,wij into matrices of weightsVT ,WT , we can write
the NN equation in terms of vectors as

y =WTσ
(
VTx

)
(4.3)

with the vector of activation functions defined by σ(z) = [σ(z1) ··· σ(zn) ]T for a vector
z ∈ Rn. The bias weights are included as the first column of the weight matrices. To ac-
commodate bias weights, the vectors x and σ(·) need to be augmented by replacing 1 as
their first element, for example, x ≡ [ 1 x1 x2 ··· xn ]T .

Function approximation property. Let f (x) be a smooth function from Rn to Rm. Let
Ux ⊆Rn then for x ∈Ux there exists some number of hidden layer neuronsN and weights
W and V such that [26]

f (x)=WTσ
(
VTx

)
+ ε. (4.4)
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Figure 4.1

The value of ε is called the NN functional approximation error. In fact, for any choice of
a positive number εN , one can find an NN such that ε < εN in Ux. For a specified value of
εN , the ideal approximating NN weights exist. The, an estimate of f (x) can be given by

f̂ (x)= ŴTσ
(
V̂Tx

)
, (4.5)

where Ŵ and V̂ are estimates of the ideal NN weights that are provided by some on-line
weight-tuning algorithms.

Error backpropagation algorithm. This is a common weight tuning algorithm that is based
on gradient descent algorithm. If the NN is training offline to match specified exemplar
pairs (xd, yd), with xd the ideal NN input that yields the desired NN output yd, then the
continuous-time version of the backpropagation algorithm for the two-layer NN is given
by

˙̂W = Fσ(V̂Txd
)
ET , ˙̂V =Gxd

(
σ̂ ′TŴE

)T
, (4.6)

where F, G are positive definite design learning parameter matrices. The backpropagated
error E is selected as the desired NN output minus the actual NN output E = yd − y. For
the scalar sigmoid activation function (4.2), the hidden-layer output gradient σ̂ ′ is

σ̂ ′ ≡ diag
{
σ
(
V̂Txd

)}[
I −diag

{
σ
(
V̂Txd

)}]
, (4.7)

where I denotes the identity matrix, and diag{z}means a diagonal matrix whose diagonal
elements are the components of the vector z. In the next section, design of NN controller
is presented.
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5. NN controller design

We will use a feedforward neural network to approximate the nonlinear function given
in (3.9)

h(y)=WTσ
(
VT y

)
+ ε. (5.1)

The functional approximation error can be made arbitrarily small by selecting appropri-

ate weights of the network. Then a functional estimate ĥ(y) of h(y) can be written as

ĥ(y)= ŴTσ
(
V̂T y

)
, (5.2)

where Ŵ and V̂ are estimated NN weights. Then the external torque is given by

τo(t)= ŴTσ
(
V̂T y

)−uo(t)− v(t), (5.3)

where v(t) is the robustifying term that is given by

v(t)= kx s(t)
Δ
(∥∥s(t)

∥
∥,ρ
) , (5.4)

where

Δ
(∥∥s(t)

∥
∥,ρ
)=
⎧
⎨

⎩

∥
∥s(t)

∥
∥,

∥
∥s(t)

∥
∥ > ρ,

ρ,
∥
∥s(t)

∥
∥≤ ρ. (5.5)

Then (3.11) becomes

M(q)ṡ(t)=−C(q, q̇)s(t) +WTσ
(
VT y

)
+ ε− ŴTσ

(
V̂T y

)
+uo(t) + v(t). (5.6)

In order to proceed further, we need the following definitions [17].

Definition 5.1. The solution of a nonlinear system with state y(t) ∈ Rn is uniformly ul-
timately bounded (UUB) if there exists a compact set Uy ⊂ Rn such that for all y(t0) =
y0 ∈Uy , there exists a δ > 0 and a number T(δ, y0) such that ‖y(t)‖ < δ for all t ≥ t0 +T .

Definition 5.2. Define the norm of a vector y ∈Rn as ‖y‖ =
√
y2

1 + y2
2 + ···+ y2

n and the

norm of a matrix A ∈ Rm×n as ‖A‖ = √λmax[ATA], where λmax[·] and λmin[·] are the
largest and smallest eigenvalues of a matrix. To be specific, denote the p-norm by ‖ · ‖p
and the absolute value as | · |.
Definition 5.3. Given A = [ai j], B ∈ Rm×n, the Frobenius norm is defined by ‖A‖2

F

= tr{ATA} =∑i, j a
2
i j with tr{·} as the trace operator. The associated inner product is

〈A,B〉F = tr{ATB}. The Frobenius norm is compatible with 2-norm so that ‖Ay‖2 ≤
‖A‖F‖y‖2.

Definition 5.4. For notational convenience, define the matrix of all NN weights as Z ≡
diag{W ,V} and the weight estimation errors as W̃ =W − Ŵ , Ṽ = V − V̂ , and Z̃ = Z −
Ẑ. The ideal NN weights bounded so that ‖Z‖F ≤ ZM with known ZM . Also define the
hidden-layer output error for a given y as σ̃ = σ − σ̂ = σ(VT y)− σ(V̂T y).
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Adding and subtracting WTσ(V̂T y) in (5.6), we get

M(q)ṡ(t)=−C(q, q̇)s(t) +WT
(
σ
(
VT y

)− σ(V̂T y
))

+ W̃Tσ
(
V̂T y

)
+uo(t) + v(t) + ε.

(5.7)

Again adding and subtracting ŴTσ̃ in (5.7), we get

M(q)ṡ(t)=−C(q, q̇)s(t) + W̃Tσ̃ + ŴTσ̃ + W̃Tσ̂ +uo(t) + v(t) + ε. (5.8)

The Taylor series expansion of σ(VT y) about given VT y gives us

σ
(
VT y

)= σ(V̂T y
)

+ σ ′
(
V̂T y)ṼT y +O(ṼT y

)2
(5.9)

with σ ′(ẑ)= (dσ(z)/dz)|z=ẑ the Jacobian matrix and O(z)2 denoting terms of second or-
der. Denoting σ̂ ′ = σ ′(V̂T y), we have σ̃ = σ̂ ′ṼT y +O(ṼT y)2. Replacing for σ̃ in (5.8), we
get

M(q)ṡ(t)=−C(q, q̇)s(t) + ŴTσ̂ ′ṼT y + W̃Tσ̂ +uo(t) + v(t) +w1, (5.10)

where the disturbance terms are

w1(t)= W̃Tσ̂ ′ṼT y +WTO
(
ṼT y

)2
+ ε. (5.11)

Finally, adding and subtracting W̃Tσ̂ ′V̂T y (5.10) becomes

M(q)ṡ(t)=−C(q, q̇)s(t) + ŴTσ̂ ′ṼT y + W̃T
(
σ̂ − σ̂ ′V̂T y

)
+uo(t) + v(t) +w, (5.12)

where the disturbance terms are

w(t)= W̃Tσ̂ ′VT y +WTO
(
ṼT y

)2
+ ε. (5.13)

The state-space description of (5.13) can be given by

˙̃x(t)=Ax̃(t) +B
[
u0(t) + W̃T

(
σ̂ − σ̂ ′V̂T y

)
+ ŴTσ̂ ′ṼT y + v+w

]
. (5.14)

Inserting the optimal feedback control law (3.23) into (5.14), we obtain

˙̃x(t)= (A−BR−1BTP
)
x̃(t) +B

[
W̃T
(
σ̂ − σ̂ ′V̂T y

)
+ ŴTσ̂ ′ṼT y + v+w

]
. (5.15)

NN weights update law. With positive definite design parameters F, G, and κ > 0, the
adaptive NN weight update law is given by

˙̂W = Fσ̂(BTPx̃)T −Fσ̂ ′V̂T y
(
BTPx̃

)T − κF∥∥BTPx̃∥∥Ŵ ,

˙̂V =Gy(σ̂ ′ŴBTPx̃
)T − κG∥∥BTPx̃∥∥V̂ .

(5.16)

Then the errors state vector x̃ and W̃ , Ṽ are uniformly ultimately bounded and the errors
x̃ can be made arbitrary small by adjusting the weights.
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Proof. Consider the following Lyapunov function candidate:

L= 1
2
x̃TP(q)x̃+

1
2

tr
(
W̃TF−1W̃

)
+

1
2

tr
(
ṼTG−1Ṽ

)
. (5.17)

The time derivative L̇ of the Lyapunov function becomes

L̇= x̃TP(q) ˙̃x+
1
2
x̃T Ṗ(q)x̃+ tr

(
W̃TF−1 ˙̃W

)
+ tr
(
ṼTG−1 ˙̃V

)
. (5.18)

Evaluating (5.18) along (5.15), we get

L̇= x̃TPAx̃− x̃TPBR−1BTPx̃+ x̃TPB
[
W̃T
(
σ̂ − σ̂ ′V̂T y

)
+ ŴTσ̂ ′ṼT y + v+w

]

+
1
2
x̃T Ṗ(q)x̃+ tr

(
W̃TF−1 ˙̃W

)
+ tr
(
ṼTG−1 ˙̃V

)
.

(5.19)

From Riccati equation, we have

Ṗ +PA+ATP +Q−PBR−1BTP = 0 (5.20)

or we can transform it into the following form:

1
2
PA+

1
2
ATP +

1
2
Ṗ =−1

2
Q+

1
2
PBR−1BTP. (5.21)

Using x̃TPAx̃ = (1/2)x̃T{PA+ATP}x̃ and using (5.21), we obtain

L̇=−1
2
x̃TQx̃− 1

2
x̃TPBR−1BTPx̃+ x̃TPB

[
W̃T
(
σ̂ − σ̂ ′V̂T y

)
+ ŴTσ̂ ′ṼT y + v+w

]

+ tr
(
W̃TF−1 ˙̃W) + tr

(
ṼTG−1 ˙̃V

)
.

(5.22)

Since ˙̃W =− ˙̂W , ˙̃V =− ˙̂V and applying adaptive learning rule (5.16), we have

L̇=−1
2
x̃TQx̃− 1

2
x̃TPBR−1BTPx̃+ x̃TPB(v+w) + x̃TPB

[
W̃T
(
σ̂ − σ̂ ′V̂T y

)
+ ŴTσ̂ ′ṼT y

]

+ tr
(−W̃Tσ̂x̃TPB+ W̃Tσ̂ ′ṼT yx̃TPB+ κW̃T

∥
∥BTPx̃

∥
∥Ŵ
)

+ tr
(−ṼT yx̃TPBŴTσ̂ ′ + κṼT

∥
∥BTPx̃

∥
∥V̂
)

=−1
2
x̃TQx̃− 1

2
x̃TPBR−1BTPx̃+ x̃TPB(v+w)

+ tr
(−W̃Tσ̂x̃TPB+ W̃Tσ̂ ′ṼT yx̃TPB+ W̃T

(
σ̂ − σ̂ ′V̂T y

)
x̃TPB+ κW̃T‖BTPx̃‖Ŵ)

+ tr
(−ṼT yx̃TPBŴTσ̂ ′ + ṼT yx̃TPBŴTσ̂ ′ + κṼT

∥
∥BTPx̃

∥
∥V̂
)

(5.23)
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or

L̇=−1
2
x̃TQx̃− 1

2
x̃TPBR−1BTPx̃+ x̃TPB(v+w)

+ tr
(
κW̃T

∥
∥BTPx̃

∥
∥Ŵ
)

+ tr
(
κṼT

∥
∥BTPx̃

∥
∥V̂
)
.

(5.24)

Since BTP = [ 0 I ], PB = [ 0 I ]T , and assuming v = 0,w = 0 (though v andw can be shown
to be bounded), we get

L̇≤−1
2
‖x̃‖2{λmin(Q) + λmin

(
R−1)}+ κ‖x̃∥∥(‖Z̃∥∥FZM −‖Z̃‖2

M

)
. (5.25)

The following inequality is used in the derivation of (5.25),

tr
(
Z̃T Ẑ

)= tr
(
Z̃T(Z− Z̃)

)= 〈Z̃,Z〉F −‖Z̃‖2
F . (5.26)

Using Cauchy-Schwartz inequality, we have 〈Z̃,Z〉F ≤ ‖Z̃‖FZM , and then (5.25) is de-
rived. Completing the square term, we get

L̇≤−1
2
‖x̃‖
[

‖x̃‖{λmin(Q) + λmin
(
R−1)}+κ

(
‖Z̃‖F − 1

2
ZM

)2

− 1
4
κZ2

M

]

. (5.27)

The expression for L̇ given by (5.27) remains negative as long as the quantity in the
bracket is positive, that is, either (5.28) or (5.29) hold

‖x̃‖ ≥ (1/4)κZ2
M{

λmin(Q) + λmin
(
R−1
)} ≡ Cx̃, (5.28)

‖Z̃‖F ≥
√

1
4
κZ2

M +
1
2
ZM ≡ CZ̃ , (5.29)

where Cx̃ andCZ̃ are the convergence regions. According to Lyapunov theory and LaSalle
extension, the UUB of x̃ and W̃ , Ṽ is proved. �

6. Simulation results

The simulation has been performed for a 4-DOF robotic manipulator (see Figure 6.1) in
contact with a planar environment moving along an ellipse. The mathematical model of
the manipulator is expressed as

⎡

⎢
⎢
⎢
⎣

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

q̈1

q̈2

q̈3

q̈4

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

q̇1

q̇2

q̇3

q̇4

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

g1

g2

g3

g4

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

τ1

τ2

τ3

τ4

⎤

⎥
⎥
⎥
⎦

+ JT(q)λ,

(6.1)
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where the mass matrix and gravity terms are given as follows:

m11 =
(
m2

3
+m3 +m4

)
a2

2c
2
2 +
(
m3

3
+m4

)
a2

3c
2
23 +

m4a
2
4c

2
234

3

+
(
m3 + 2m4

)
a2a3c2c23 +m4a2a4c2c234 +m4a3a4c23c234,

m12 =m21 =m13 =m31 =m14 =m41 = 0,

m22 =
(
m2

3
+m3 +m4

)
a2

2 +
(
m3

3
+m4

)
a2

3 +
m4a

2
4

3

+
(
m3 + 2m4

)
a2a3c3 +m4a2a4c34 +m4a3a4c4,

m23 =m32 =
(
m3

3
+m4

)
a2

3 +
m4a

2
4

3

+
(
m3

2
+m4

)
a2a3c3 +

m4a2a4c34

2
+m4a3a4c4,

m24 =m42 = m4a
2
4

3
+
m4a2a4c34

2
+
m4a3a4c4

2
,

m33 =
(
m3

3
+m4

)
a2

3 +
m4a

2
4

3
+m4a3a4c4,

m34 =m43 = m4a
2
4

3
+
m4a3a4c4

2
, m44 = m4a

2
4

3
,

g1 = 0, g2 =
(
m2a2c2

2
+m3

(
a2c2 +

a3c23

2

)
+m4

(
a2c2 + a3c23 +

a4c234

2

))

g,

g3 =
(
m3a3c23

2
+m4

(
a3c23 +

a4c234

2

))

g, g4 = m4a4c234

2
g,

(6.2)

where

ci = cos
(
qi
)
, c23 = cos

(
q2 + q3

)
, c234 = cos

(
q2 + q3 + q4

)
,

c34 = cos
(
q3 + q4

)
, si = sin

(
qi
)
, s23 = sin

(
q2 + q3

)
,

s234 = sin
(
q2 + q3 + q4

)
, s34 = sin

(
q3 + q4

)
, i= 1,2,3,4.

(6.3)

The parameter values for the manipulator model are set to be

m1 = 12.0, m2 = 9.0, m3 = 7.0, m4 = 6.0,

a1 = 5.0, a2 = 4.0, a3 = 3.0, a4 = 2.0, g = 9.8.
(6.4)

Let (x, y,z,θ) denote the end-effector configuration of the robot manipulator then inter-
acting environment under consideration is described as the intersection of the following
surfaces: b2x2 + a2y2 = a2b2 and z = c, where a, b, and c are constants. The constant val-
ues are taken to be a = 3, b = 4, c = 9. The end-effector configuration and constraint
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q1 vertical axis

q2 horizontal axis

q3 horizontal axis

q4 horizontal axis

λ1

λ2

Figure 6.1

equations can be described in the joint space as

x = (a2c2 + a3c23 + a4c234
)
c1,

y = (a2c2 + a3c23 + a4c234
)
s1,

z = a1 + a2s2 + a3s23 + a4s234,

θ = q2 + q3 + q4,

φ1
(
q1,q2,q3,q4

)≡ (b2c2
1 + a2s21

)(
a2c2 + a3c23 + a4c234

)2− 1= 0,

φ2
(
q1,q2,q3,q4

)≡ a1 + a2s2 + a3s23 + a4s234− c = 0.

(6.5)

Define xu = [ψ1,ψ2]T and xc = [φ1,φ2]T , where ψ1 = q1, ψ2 = q2 + q3 + q4. The weighting
matrices used in defining the performance index are as follows:

Q11 = 10I4, Q12 =−
[

0.5I2 0
0 5I2

]

, Q21 =QT
12, Q22 = R−1 = 30I4. (6.6)

Solving for the matrices K and Λ, we get

K =
[

0.5I2 0
0 5I2

]

, Λ=
[

10I2 0
0 I2

]

. (6.7)

Also we have set Γ= 1. The control objective is to let the end-effector track the elliptical
trajectory on the planar surface while maintaining a desired orientation along the surface.
The joint q1 is desired to track the desired trajectory q1d(t) and desired orientation is θd.
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Figure 6.2. Difference between desired and actual joint 1 motion with exactly known parameters.

The Lagrangian multiplier λ is set to the desired constant vector [λd1 λd2 ]T . In numeri-
cal simulation, we have chosen

ψ1d(t)= q1d(t)= tan−1
(
b

a
tan(ωt)

)
,

ψ2d(t)= θd(t)= (q2 + q3 + q4
)
d = 90◦,

λ1d = 20, λ2d = 20.

(6.8)

With ω = 0.1 and ρ = .001 for the robustifying term, Figures 6.2–6.4 depict the perfor-
mance of the designed optimal sliding-mode controller with perfectly known model pa-
rameter values. In case of unknown parameter values, the FFNN-based controller is used
to learn the unknown robot dynamics. The architecture of the FFNN is composed of
18 input units and 1 bias unit, 24 hidden sigmoidal units and 1 bias unit and 4 output
units. The learning rate in the weight-tuning algorithm is F = 200I25, G = 200I19, and
κ = .0005. The whole system is simulated for 10 seconds. Figures 6.5–6.8 show the abil-
ity of the FFNN controller to learn the unknown dynamical behavior of the system and
produce desired response.

7. Conclusion

In this paper, the design of an optimal hybrid motion and force control scheme is pre-
sented for a constrained robotic manipulator with unknown dynamics. The optimal con-
trol law is derived using HJB optimization. An online adaptive neural network controller,
using a two-layer feedforward neural network, is proposed to compensate for the dynamic
model of the constrained robot. It has been shown that the entire system depends on the
user-specified performance index matrices Q and R. The stability of the overall system
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Figure 6.3. Difference between desired and actual end-effector orientation with exactly known pa-
rameters.
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Figure 6.4. Difference between desired and actual contact forces with exactly known parameters.

is proved using Lyapunov function that is generated by weighting matrices. Simulation
of a 4-DOF robot manipulator has been used to illustrate the control methodology. The
simulation results show that the feedforward neural network with the on-line updating
law can compensate the robot dynamics efficiently.
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Figure 6.5. Difference between desired and actual joint 1 trajectory with NN controller.
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Figure 6.6. Difference between desired and actual joint 1 angular velocity with NN controller.

Appendices

A.

Proof of Property 2.3. M(q) is symmetric and positive definite. Thus

MT(q)= (TT(q)M(q)T(q)
)T = TT(q)MT(q)

(
TT(q)

)T = TT(q)M(q)T(q). (A.1)
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Figure 6.7. Difference between desired and actual end-effector orientation with NN controller.
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Figure 6.8. Difference between desired and actual contact forces with NN controller.

Therefore M(q) is symmetric and positive definite. Also

M(q)= TT(q)M(q)T(q)≥ αMλmin
(
TT(q)T(q)

)
In = αMIn, (A.2)
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where λmin(TT(q)T(q)) is the minimum eigenvalue of the matrix TT(q)T(q) and

αM = αMλmin
(
TT(q)T(q)

)
,

M(q)= TT(q)M(q)T(q)≤ βMλmax
(
TT(q)T(q)

)
In = βMIn,

(A.3)

where λmax(TT(q)T(q)) is the maximum eigenvalue of the matrix TT(q)T(q) and

βM = βMλmax
(
TT(q)T(q)

)
. (A.4)

Thus the matrix M(q) is bounded above and below. �

B.

Proof of Property 2.4.

Ṁ(q)− 2C(q, q̇)= ṪT(q)M(q)T(q) +TT(q)Ṁ(q)T(q) +TT(q)M(q)Ṫ(q)

− 2TT(q)MṪ(q)− 2TT(q)Cm(q, q̇)T(q)

= TT(q)
(
Ṁ(q)− 2Cm(q, q̇)

)
T(q)

+
(
ṪT(q)M(q)T(q)−TT(q)M(q)Ṫ(q)

)
.

(B.1)

Since

(
ṪT(q)M(q)T(q)−TT(q)M(q)Ṫ(q)

)T =−ṪT(q)M(q)T(q) +TT(q)M(q)Ṫ(q)
(B.2)

which is a skew-symmetric matrix. From Property 2.1, Ṁ(q)− 2Cm(q, q̇) is skew-sym-

metric matrix, henceforth Ṁ(q)− 2C(q, q̇) is also skew-symmetric matrix. �

C.

Proof of Lemma 3.1. For the function V = (1/2)x̃TP(q)x̃ = (1/2)x̃T
[K 0

0 M(q)

]
x̃, the partial

derivative of V with respect to the vector x̃ is given by

∂V(x̃, t)
∂x̃

= 1
2
x̃T
[
P(q) +PT(q)

]
+

1
2
x̃T
∂P(q)
∂x̃

x̃ = x̃TP(q) +
1
2
x̃TΔ. (C.1)

Since P(q) is symmetric, that is, P(q)= PT(q), we also have

Δ=
[
∂P(q)
∂e1

x̃,
∂P(q)
∂e2

x̃, . . . ,
∂P(q)
∂en

x̃,02n×1, . . . ,02n×1

]

. (C.2)

The last entries in the matrix Δ are zero vectors 02n×1 as ∂P(q)/∂s1 = ∂P(q)/∂s2 = ··· =
∂P(q)/∂sn = 02n×1.

The Hamiltonian of the optimization for the system is given by

H

(

x̃,u,
∂V(x̃, t)
∂x̃

, t

)

= L(x̃,u) +
∂V(x̃, t)
∂x̃

˙̃x. (C.3)
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The optimal control uo(t) is followed by the partial derivative of the Hamiltonian with
respect to u(t) by setting equal to zero, that is,

∂

∂u

[
1
2
x̃TQx̃+

1
2
uTRu+

∂V(x̃, t)
∂x̃

˙̃x

]

u=uo
= 0. (C.4)

Using ˙̃x =Ax̃+Bu, we get

1
2
uoT
(
R+RT

)
+
∂V

∂x̃
B = 0. (C.5)

Since R= RT , we have u0T =−(∂V/∂x̃)BR−1 or uo =−R−1BT(∂V/∂x̃)T . Using (C.1), we
have

uo =−R−1BTP(q)x̃. (C.6)

Now

Δ ˙̃x =
[
∂P(q)
∂e1

x̃,
∂P(q)
∂e2

x̃, . . . ,
∂P(q)
∂en

x̃,02n×1, . . . ,02n×1

]

×
[
ė1 ė2 ··· ėn ṡ1 ṡ2 ··· ṡn

]T

=
[
∂P(q)
∂e1

ė1x̃+
∂P(q)
∂e2

ė2x̃+ ···+
∂P(q)
∂en

ėnx̃

]

= Ṗ(q)x̃

(

since
∂P(q)
∂t

= 0

)

.

(C.7)

Using ˙̃x =Ax̃+Bu and inserting (C.1), (C.6), and (C.7) in HJB equation, we have

x̃TPAx̃− x̃TPBR−1BTPx̃+
1
2
x̃T Ṗ(q)x̃+

1
2
x̃TQx̃+

1
2

(−R−1BTPx̃
)T
R
(−R−1BTPx̃

)= 0.

(C.8)

Since x̃TPAx̃ = (1/2)x̃T{PA+ATP}x̃ and (1/2)(−R−1BTPx̃)TR(−R−1BTPx̃) = (1/2)x̃T

PBR−1BTPx̃, the equation can be written as

1
2
x̃T
(
Ṗ +ATP +PA+Q−PBR−1BTP

)
x̃ = 0. (C.9)

This leads to the following Riccati equation:

Ṗ +ATP +PA+Q−PBR−1BTP = 0. (C.10)
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Also using

Ṗ =
[

0 0

0 Ṁ

]

, ATP =
[−ΛT 0

I −CTM−1

][
K 0
0 M

]

=
[−ΛTK 0

K −CT
]

,

PA=
[
K 0
0 M

][−Λ I
0 −M−1C

]

=
[−KΛ K

0 −C
]

,

PBR−1BTP =
[

0
I

]

R−1
[

0 I
]
=
[

0 0
0 R−1

]

(C.11)

we get the following relations:

−ΛTK −KΛ+Q11 = 0 or ΛTK +KΛ=Q11,

K +Q12 = 0, K +Q21 = 0 or K =−1
2

(
Q12 +Q21

)
,

Ṁ−CT −C+Q22−R−1 = 0 or
((
Ṁ− 2CT

)− (C−CT))+
(
Q22−R−1)= 0.

(C.12)

Using the robot Property 2.4, we can set R−1 =Q22. Thus the proof is completed. �
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