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A hierarchical panel method for representing vortex sheet surface motion in 3D flow is
presented. Unlike previously employed filament methods, each panel is a leaf of the tree,
so it can be subdivided locally, which allows an efficient adaptive point insertion. In addi-
tion, we developed curvature-based insertion criteria which allow to localize point inser-
tion to the most complicated curved regions of the sheet. The particles representing the
sheet are advected by a regularized Biot-Savart integral with Rosenhead-Moore kernel.
The particle velocities are evaluated by an adaptive treecode algorithm based on Taylor
expansions in Cartesian coordinates due to Lindsay and Krasny (2001). The method al-
lows to consider much later stages of a vortex ring instability, which may shed light on
this complicated flow phase directly leading to the turbulent flow.
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1. Introduction

The behavior and inherent beauty of vortex rings have fascinated researchers for a long
time. The most familiar example of a vortex ring is the smoke ring produced when
cigarette smoke is ejected suddenly through the lips of a smoker. Dolphins produce vortex
rings for play (Marten et al. [1]). They puff out bubbles from their blowholes. The pres-
sure from below overcomes the surface tension of a spherical bubble, punching a hole in
the center to create a ring shape. In a laboratory, the usual method of generating vortex
rings is to eject fluid impulsively through some type of orifice into a fluid at rest. The ring
is made visible by introducing some dye or smoke in or around the orifice. Vortex rings
are also formed when powerful and often hazardous line vortices produced by the wing
tips of a large aircraft begin to reconnect.
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Part of the fascination of vortex rings comes from their compact and persistent nature.
It was this persistence and apparent stability that in 1867 prompted Thomson [2] to pro-
pose the theory of vortex ring atoms to explain spectral lines in terms of different modes
of oscillation of vortex rings. Even though this theory was later superseded by Quantum
Mechanics, it inspired the early analysis of the vortex rings that is still relevant today. In
many types of turbulent flows, coherent vortex structures exist, and therefore represent-
ing turbulence as a superposition of interacting vortices has been actively investigated
(Roshko [3], Browand and Weidman [4]). In addition, accelerating ions in super-fluid
helium create quantized vortex rings (Rayfield and Reif [5]). In fact, the theory of line
vortices and vortex rings is part of the modern macroscopic treatment of liquid helium
II (Roberts and Donnelly [6]). Minota et al. [7] studied the acoustics of mutually inter-
acting vortex rings and rings interacting with sharp edges and bluff bodies.

While many studies of vortex rings have been prompted by scientific curiosity, others
have technological applications in mind. For example, vortex rings have been suggested
as a means for extinguishing gas and oil well fires by Akhmetov et al. [8] and cavitating
vortex rings, produced by exciting cavitating jets, have been used for underwater cleaning
and rock cutting (Chahine and Genoux [9]). Currently, Settles et al. [10, 11] pursue a
project supported by the Transportation Security Agency on using vortex rings to shuffle
a person’s clothes to catch possible microscopic explosive elements.

In theoretical and numerical considerations, vortex rings are often represented by vor-
tex sheets as a model of shear layers. The shear layer is replaced by an idealized jump
discontinuity across the sheet surface. The motion of the layer is represented by the self-
induced motion of the sheet. In this article, we employ the Lagrangian particle method
to track the motion of vortex sheet; for a review see [12–16].

Following Lindsay and Krasny [17], this method results in a large system of nonlin-
ear ordinary differential equations. It describes a collection of N particles with pairwise
interactions—an N-body problem. In our problem, it is necessary to evaluate sums of the
form

N∑

j=1

Kδ
(

xi,x j
)×w j , i= 1, . . . ,N , (1.1)

where xi are particle positions, w j is a vector-valued weight associated with the jth par-
ticle, and δ is a smoothing parameter. Computing these sums directly requires O(N2)
operations. In our simulations, N reaches 106, so direct summation is impractical. To cir-
cumvent this problem we employ the adaptive tree code developed by Lindsay and Krasny
[17] to evaluate the sums to a specified error tolerance with only O(N logN) operations.
Moreover, we parallelized the code to obtain faster execution.

The article makes several contributions described below. Lindsay and Krasny [17] used
a filament representation of the vortex sheet, which was limited by the non local filament
insertion. In the new approach, we use a hierarchical tree-based panel method to rep-
resent and update the vortex sheet surface adaptively and truly locally by using a tree
of panels. Each panel is a leaf of the tree and thus it can be refined independently al-
lowing localization of point insertion. In addtion, we developed a new curvature-based
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point insertion scheme which inserts new particles in regions of higher curvature. Us-
ing this method allowed us to simulate the late stages of a single-ring instability, which
has not been possible with the filament methods before. The ring instability considered
here eventually leads to turbulent behavior, so our simulations could prove useful in ex-
plaining turbulent stages of vortex rings experimentally studied by Maxworthy [18–20].
The method developed is versatile—one only has to change initial conditions for the vor-
tex sheet and many other relevant flows such as wakes and jets can be considered. These
would be interesting projects for the future.

2. Lagrangian parametrization

Our simulations are based on the Lagrangian representation of vortex sheet motion in-
troduced by Kaneda [21] and Caflisch [22]. Following Lindsay and Krasny [17], we repre-
sent vortex rings as rolled-up vortex sheets. Initially a sheet has a form of unit disk. It is a
parameterized surface x(Γ,θ, t) composed of closed material lines, where Γ is circulation
across the lines and θ is 2π-periodic parameter along the lines, as shown in Figure 2.1.
The circulation distribution follows from the bound vortex sheet associated with poten-
tial flow past a circular unit disk and is equal to

Γ=
√

1− r2, (2.1)

where r =
√
x2

1 + x2
2 is the radial coordinate of the point on the sheet measured from the

center r = 0. The distribution (2.1) has a square root singularity in its strength σ ∼ dΓ/dr
at r = 1 which makes edge to roll up into a spiral. The parametrization of vortex sheet is
then

x(Γ,θ)=
√

1−Γ2
(

cos(θ), sin(θ),0
)
, 0≤ Γ≤ 1, 0≤ θ ≤ 2π. (2.2)

The lines of Γ constant correspond to vortex lines (vortex filaments).
Using this parametrization, the equation of motion of vortex sheet become (Lindsay

[23])

∂x
∂t
=
∫ 2π

0

∫ 1

0
Kδ(x− x̃)× ∂x̃

∂θ̃
dΓ̃dθ̃, Kδ(x)= x

(|x|2 + δ2
)3/2 , (2.3)

where x = x(Γ,θ, t), x̃ = x(Γ̃, θ̃, t), and Kδ is the Rosenhead-Moore kernel [24, 25]. The
right-hand side is the regularized Biot-Savart integral. Equation (2.3) with initial con-
dition (2.2) forms an initial value problem and states that the vortex sheet is a material
surface moving in its self-induced velocity field. The Lagrangian method used here in-
volves tracking the vorticity back to time t = 0 through the flow map (Kaneda [21]), so

we do not have to update vorticity at each time step. The term ∂x̃/∂θ̃ accounts for vortex
stretching.

3. Discretization and main difficulties

We compare an older filament representation with a new way to discretize vortex sheet
which is a hierarchical tree panel representation. This is the main result of our work
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Γ= constant

θ

Figure 2.1. Parametrization of circular vortex sheet.

and we look at it in great detail in the subsequent sections. Here, however, we represent
discretization generically as

x(Γ,θ, t)−→ xi(t), i= 1,2, . . . ,N , (3.1)

which leads to the main system of ODEs

dxi

dt
=

N∑

j=1

Kδ
(

xi,x j
)×w j , w j =

(
Dθx

)�Γ j�θj , (3.2)

where (Dθx) is finite difference discretization of the θ-derivative and �Γ j and �θj are
the integration weights. The initial conditions are given on the unit disk as follows:

xi(0)=
√

1−Γ2
i cos

(
θi
)
, yi(0)=

√
1−Γ2

i sin
(
θi
)
, zi(0)= 0. (3.3)

Note that we do not have any boundaries in this setting, so it is pure initial value problem
for a large system of nonlinear ordinary differential equations.

The main difficulties and our contribution are as follows.
(1) The main problem is how to choose Γi,θi,wi. How should we represent the vortex

sheet surface so that insertion is local? Once a representation is chosen, we have
to decide how the quadrature scheme is implemented. We first briefly discuss the
previous filament-based method developed by Lindsay and Krasny [17] and then
concentrate on our hierarchical panel-based method.

(2) Evaluating the right-hand side sum in (3.2) is an N-body problem. A direct
summation approach requires O(N2) operations which quickly becomes pro-
hibitively expensive. We employ a velocity tree code developed by Lindsay and
Krasny [17] to reduce operation count to O(N logN).

4. Filament-based representation

Lindsay and Krasny [17] discretized the vortex sheet by a collection of Lagrangian parti-
cles (vortex blobs) xi(t), i= 1,2, . . . ,N , corresponding to a discretization in the parameter
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Figure 4.1. Discretization of circular vortex sheet into particles; (a) parameter space (Γ,θ), (b) physi-
cal space.
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Figure 4.2. Old particle insertion scheme. (a) Inserting a new particle on a material line. (b) Inserting
new filament.

space Γ,θ, as represented schematically in Figure 4.1. First, the sheet is discretized in cir-
culation Γ to obtain material lines, and then each line is discretized in parameter θ to
obtain particles xi(t). Integration on the right-hand side of (2.3) is done using Fubini
theorem with trapezoidal rule in Γ and θ in that order.

The main problem is the new point insertion. As the sheet rolls up, new particles must
be inserted to maintain resolution. If two adjacent particles on a material line (filament)
get too far apart, then a new point is inserted by cubic interpolation. This point inser-
tion is local. However, if two adjacent filaments get too far apart even locally, then the
whole new filament has to be inserted. This insertion procedure is global. Both insertion
procedures are illustrated in Figure 4.2. In the late stages of development of vortex rings,
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Figure 5.1. New rectangle-based sheet representation.
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Figure 5.2. Numbering on a rectangle in parameter space.

there is big variation of distance between many adjacent filaments and hundreds of thou-
sands of points are wasted to insert only few needed local points and that prompted us to
develop a new hierarchical panel-based approach which allows a truly local insertion.

5. Hierarchical panel-based approach

In this section, we will describe our new approach to vortex sheet surface representation
and integration. The surface is now discretized as a set of nested rectangles (hierarchi-
cal tree) in parameter space (Γ,θ) and corresponding panels in physical space (x, y,z),
see Figure 5.1. We start with one big rectangle in parameter space 0≤ Γ≤ 1, 0≤ θ ≤ 2π,
which is shown on the left of Figure 5.1. Then rectangles are subdivided recursively. The
most important advantage of this approach is that now each panel can be subdivided sep-
arately from all the others based on certain local tests. We do not have filaments anymore
and all insertions are now local.

Let us denote vertices and face middle points by numbers 1–8, and center point by
9—as described in Figure 5.2. In the following discussion, we will use them as indices for
the corresponding Γ, θ parameter values as well as x, y, z coordinates. If in the process
of tree creation or point insertion a rectangle has two points on the opposite sides (like 5
and 7 or 6 and 8), then it is split in two and forms two children. If more than two of the
points 5–8 are present, the rectangle is split into four children.
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Figure 5.3. Choosing temporary point on the left. (a) Left neighbor shares complete boundary.
(b) Two left neighbors. (c) Bigger left neighbor.
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Figure 5.4. Cubic to linear distance test.

During the tree creation, the panels are split based just on the distance test on each
side. The positions of points on the unit disk are known immediately from their Γ and θ
values using the distributions (2.2). At the later time, the panel subdivisions (new point
insertions) are done by the same rules, but the positions of points are found by cubic in-
terpolation using the neighboring points which are obtained by neighbors search. We set
up a simple search from the root of the tree down to the leafs to find a left, right, up, or
down neighbor. If the neighbor is of the same or smaller size, it automatically has a cor-
responding point, but if it is bigger, then a point must be found by linear approximation;
Figure 5.3. There are more efficient methods to find the neighbor (Samet [26, 27]), but
they require particular tree structure (like one-level difference between the neighbors),
while we want to allow any number of neighbors. We found that such recursive searches
are fast enough for our purposes O(logN) especially compared to expensive velocity eval-
uation O(N logN).

We employ two tests to insert point for t > 0. The first one is a simple distance test
between the points on the faces 1-2, 2-3, 3-4, and 4–1. However, as the rings roll up, the
vortex surface becomes very curled and a curvature test is necessary. We used 2D vortex
sheet roll up of the airplane vortices investigated by Krasny [28] to devise a curvature
test. After investigating a number of other possibilities, the best criterion was a distance
between a linear and cubic interpolations between two points as shown schematically in
Figure 5.4.

6. Integration weights

In the previous filament approach, the Biot-Savart integral was approximated using Fu-
bini theorem and discretized on the vortex filaments (material lines). Here, we have to
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Figure 6.1. Basic rectangle with only four points. Point numbers are inside, weight fractions are out-
side.

change to 2D integration on the rectangles Rij in the parameter space (Γ,θ). The set of all
rectangles

⋃
Rij is the set of all the leaves of the tree in the parameter space,

u(x, t)=
∫

Σ
Kδ
(

x, ỹ(Γ̃, θ̃, t)
)× ∂ỹ

∂θ̃
(Γ̃, θ̃, t)dΓ̃dθ̃

=
∑

i, j

∫∫

Rij

Kδ
(

x, ỹ(Γ̃, θ̃, t)
)× ∂ỹ

∂θ̃
(Γ̃, θ̃, t)dθ̃ dΓ̃.

(6.1)

To choose integration weights, consider arbitrary smooth function of two variables
f (x, y). Consider double integral of this function on a rectangle [0,x1]× [0, y1] in xy
plane.

First, we consider a basic rectangle given by only four points, see Figure 6.1. We use
linear approximation in both x and y (linear-linear) to represent the function f (x, y) on
the rectangle,

f (x, y)= c1xy + c2x+ c3y + c4, (6.2)

where the constants c1, . . . ,c4 have to be found by matching to known function values at
points 1, . . . ,4. Solving the resulting system of four linear equations in four unknowns
and integrating the ensuing approximation (6.2), we obtain

∫∫

R
f (x, y)dxdy ≈

(
f1 + f2 + f3 + f4

)
x1y1

4
. (6.3)

Thus the weights at points 1, . . . ,4 are all equal to x1y1/4 which is shown schematically in
Figure 6.1.

For a five-point rectangle with points 1–5 shown in Figure 6.2, we use the following
quadratic polynomial approximation with five coefficients:

f (x, y)= c1 + c2x+ c3x
2 + c4y + c5xy. (6.4)
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Figure 6.2. Diagram of weights of five points rectangle using polynomial approximation with only
five coefficients as in (6.4).
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Figure 6.3. Diagram of weights of six points rectangle using polynomial approximation with only six
coefficients as in (6.5).

Fitting it to points 1–5 and integrating as before, we obtain the integration coefficients
shown in Figure 6.2. We will call this method 456-point polynomial.

Analogously, for a six-point rectangle with points 1–5, 8 shown in Figure 6.3, we use
the following quadratic polynomial approximation with six coefficients:

f (x, y)= c1 + c2x+ c3x
2 + c4y + c5xy + c6y

2. (6.5)

Fitting the points and integrating, we obtain the integration weights shown in Figure 6.3.
The other cases of five- and six-point rectangles are obtained by rotating the cases we

considered here. To calculate all the weights, we create another global parallel array of
weights wj , j = 1, . . . ,N , with the same indexing as the parameter Γ and θ arrays as well as
coordinates (x, y,z). Then we go recursively through the leaves of the tree. For each leaf
rectangle we calculate appropriate weights and add them to the global array of weights.
Thus each point receives weight contribution from two, three, or four rectangles.

The derivatives ∂y/∂θ are calculated by finding (with search) left and right θ-neighbors
for each point and using 3-point finite difference derivatives on unequally spaced points
as shown in Figure 6.4.

Similar to the weights, we have to define global parallel array of derivatives. Obviously,
for each point the derivative has to be calculated only once, so we also define logical global
parallel array which tells for each point if its derivative has been assigned already. Note
that to obtain the closest neighbors of the points we have to be at the lowest leaves level of
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Figure 6.4. Unequally spaced points derivative weights diagram.
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Figure 7.1. Triangle diagram for a four-point rectangle. (a) rectangle in parameter space. (b) panel in
physical space.

the tree. Therefore, we first go recursively through the tree until we get to a leaf. For each
point of a given leaf (rectangle), we first check if its derivative has been already assigned.
If not, find the neighbors as described before and assign the derivative.

7. Triangle-based integration

The integration on a rectangle assumes that the corresponding panel in physical space is
also approximately quadrilateral. However, at the late time of vortex rings collisions, this
is not true—the panels become very distorted. We measure the distortion by the ratio
of diagonals dist13 /dist24. If this ratio is greater than some predefined number (in our
case 2), then we consider panel to consist of two subtriangles which are cut so that they
are most close to equilateral triangles. See Figure 7.1 for the four-point case with two
subtriangles.

Let us consider just one triangle in parameter space as shown in Figure 7.2. By fitting
a linear approximation

f (x, y)= ax+ by + c (7.1)
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Figure 7.2. One triangle diagram in parameter space. Inside: point numbers. Outside: weights (factor
area of rectangle with these sides).

to the three known points at 1, 2, and 3, we obtain integration weights shown in Figure
7.2. This allows us to employ a mixed mesh, there the triangular panels are used in highly
skewed regions.

8. Advantages of hierarchical panel method and review of previous results

Advantages:
(i) adaptive, efficiently resolves local features;

(ii) T-junctions in both directions;
(iii) high density only in curved regions;
(iv) large reduction of N .

Disadvantages:
(i) complex data structure—all recursive.

The local adaptive hierarchical panel-based quadrature and point insertion scheme for
3D vortex sheet motion presented in the previous sections is an original method. How-
ever, we drew upon previous work on adaptive surface representation in computational
geometry. Brady et al. [29] used an advancing front technique and curvature adaptive tri-
angularization to represent rolling up jets. C1 continuity was maintained across triangles
using cubic Bezier triangular interpolants. However, the front technique is quite expen-
sive requiring O(N3/2) operations. Losasso et al. [30] produced a simulation of water and
smoke flow with an unrestricted octree data structure. They proposed new techniques for
creating a symmetric positive definite linear system for Poisson’s equation on the octree
grid. Line and Brown [31] used an octree data structure to produce a high-resolution
wake model behind a helicopter with vorticity transport equation. The flexible nature of
an octree allowed focusing on the most complicated part of the flow near the rotor. Klaas
and Shephard [32] applied the same idea of an octree grid to 3D discretization for par-
tition of unity representation of complicated mechanical engineering junctions. Cristini
et al. [33] developed a curvature-based adaptive mesh algorithm for evolving surfaces
and applied it to simulations of drop break-up and coalescence. They maintained the
local length scale through minimization of a mesh energy function.

As far as surface representation is concerned, probably the most influential for us was
the work of Sederberg et al. [34, 35] who used T-splines to represent the surface more
efficiently than by a tensor grid. The idea of allowing T-junctions in Γ and θ came out of
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that work. Pauly et al. [36] used an efficient simplification of the point-sampled surfaces
to represent complicated artistic shapes. They were able to concentrate more samples
in the regions of high curvature as opposed to inefficient tensor grids. One direction
for future work is to apply computational geometry techniques to vortex sheet surface
representation.

9. Velocity tree code and parallel implementation

As we mentioned in Section 6, the right-hand side of (2.2) would take O(N2) operations
to evaluate directly. We employed a variation of a variable order velocity tree code devel-
oped by Lindsay and Krasny [17], which uses O(N logN) operations. The slight change
we have made was the use of the same accuracy parameter as we descent down the tree,
while they reduced in a way specified in their formula (35). We tried it both ways and
reducing it did not seem to be advantageous.

To improve performance we parallelized the code using MPI (Gropp et al. [37], Mar-
zouk and Ghoniem [38]). The main idea was to tell each processor to apply the tree code
only to a predefined fraction of the points. We divide the number of points N by the num-
ber of available processors minus one (one of them is the master processor)—numproc-1,
and obtain the number of particles per processor—numparproc. Then each slave pro-
cessor i receives all the points and weights from the master, but applies the tree-code to
find the velocity of only its fraction of points. The resultant forces are sent back from
the slaves and are collected in the master processor; then a new time step is taken. With
the exception of the O(N logN) tree code, the rest of the program is fast—O(N) opera-
tions, which are done on the master processor. The parallelized code was successfully run
on University of Michigan AMD Opteron clusters. We would consistently obtained a 3-4
times speedup on 5-6 processors.

10. Motion of a circular vortex filament

Our goal is to investigate the evolution and stability of vortex rings. In the past, a ring
was often modeled by a collection of circular vortex lines called vortex filaments. Here,
we have a vortex sheet represented by a nested tree structure of rectangles, which is obvi-
ously quite different from the filaments. However, the behavior of an individual filament
simulates the behavior of a vortex ring torus. In addition, the motion and stability of such
filaments can be investigated analytically as was done in Lindsay thesis [23]. Here we use
his result on the instability of a particular wavenumber of given value of smoothing pa-
rameter δ and radius of the filament R.

We consider a generic perturbation only in the z-direction:

y(t = 0)=
⎛
⎜⎝
Rcos(λ)
Rsin(λ)
εcos(kλ)

⎞
⎟⎠ . (10.1)

In Figure 10.1, we present the evolution of such a perturbation on a circular vortex fila-
ment of the radius R= 0.75. We consider the solution at times t = 1,2 where interesting
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(a) Stable k = 5 mode at t = 0 (b) Unstable k = 8 mode at t = 0

(c) Stable k = 5 mode at t = 1 (d) Unstable k = 8 mode at t = 1

(e) Stable k = 5 mode at t = 2 (f) Unstable k = 8 mode at t = 2

Figure 10.1. Stable k = 5 versus unstable k = 8 filaments.

nonlinear dynamics starts to develop. On each picture, we show the initial condition per-
turbation at t = 0 and its development at later times t = 1,2. Using Lindsay [23] stability
diagram (2.8), we obtain that for δ = 0.1 and given radius, the wavenumber k = 8 is un-
stable. For the stable k = 5 case, the initial condition is only slightly changed and rotated.
On the other hand, in the unstable k = 8 case, we see the development of a complicated
hairpin structure analogous to the results obtained in Knio and Ghoniem [39] using the
vortex method.

11. Stability of a vortex ring

Wavy instability along the circumference of a vortex ring was experimentally observed by
a number of authors. To list some of them let us note Krutzsch [40], Widnall et al. [41],
Maxworthy [18–20, 42], Liess and Didden [43], Didden [44], Glezer [45], Dazin et al.
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[46–48]. The early investigators, Krutzsch [40] and Maxworthy [18–20, 42], attributed
the instability to a foreign matter or vorticity of the opposite sign being swept into the
ring during the process of formation. However, theoretical works of Widnall [41, 49–53],
Moore and Saffman [54, 55] (see also reviews by Shariff and Leonard [56] and Lim and
Nickels [57]) have shown that the instability is genuine. Using asymptotic expansions
they explained it as the vortex tube instability in local strain field of ring itself. Later
theoretical works of Kop’ev and Chernyshev (2000), Eloy and LeDizes (2001), Kerswell
(2002), Fukomoto (2004) have looked at this instability as parametric resonance of two
Kelvin waves, producing a standing nonrotating and nonoscillating wave.

There have been a number of numerical investigations of a vortex rings stability. To
name just a few Knio and Ghoniem (1991) used vortex vector elements, transported in
Lagrangian coordinates. The elements change vorticity by local stretch, while their di-
rection is governed by the tilting of material lines. Shariff, Verzicco, and Orlandi (1994)
solved Navier-Stokes equations. They observed multiple bands of the wavenumbers am-
plified with higher-order radial modes. Lifschitz et al. [58] used solution of the differential
equation for an exactly propagating ring. Brady et al. [29] employed Lagrangian triangu-
lar mesh with cubic Bezier triangular interpolants and adaptive refinement curvature. At
each time step, an advancing front technique with automatic mesh refinement was used
to remesh the vortex sheet. Their mesh generation is quite expensive—O(N3/2) operation,
but it is based on surface curvature and stretching, which produces good representation
of the surface.

As we discussed before, we apply a hierarchical panel Lagrangian method. The param-
eters for the tree code we used are somewhat different from Lindsay and Krasny [17]. We
determined that we need a higher-order accuracy to go further in time, so the tolerance
for the tree code was ε = 10−5, compared to only ε = 10−3. The maximum number of
particles per node was N0 = 1000, compared to N0 = 500. Finally, the maximum order of
the Taylor expansion—pmax = 8 —same as in Lindsay and Krasny [17].

We present numerical simulations of a perturbed rolling-up vortex sheet. An azi-
muthal perturbation was introduced by perturbing the z-coordinate of a flat circular disk
in the x− y plane. In polar coordinates, the perturbation can be written as

p(r,θ)= ρr2 cos(kθ)ez, (11.1)

where k is the perturbation wavenumber and ρ is the amplitude of the perturbation. The
r2 factor is essential to smooth the perturbation near the origin.

After the ring rolls up, the radius of the ring at the position of the core can be approx-
imately taken as 0.75, δ = 0.1. Similarly to a one-filament analysis, the unstable mode is
k = 8. In our simulation, the vortex ring consists of rolls which are larger than δ; this
should spread the vorticity out away from the core. This is analogous to increasing δ,
which lowers the wavenumber of the unstable mode. Thus, we can expect a band of un-
stable modes around k = 8. Lindsay and Krasny [17] considered a band k = 4 to 11. Here
we were able to extend some of their calculations to longer time.

After testing with finer parameters, we determined that the distance insertion param-
eters can be taken as εdΓ = εdθ = δ = 0.1 and the cubic-to-linear insertion parameters as
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(a) One ring k = 5 at time t = 0 (b) One ring k = 5 at time t = 3

(c) One ring k = 5 at time t = 4 (d) One ring k = 5 at time t = 5

(e) One ring k = 5 at time t = 6 (f) One ring k = 5 at time t = 7

Figure 11.1. One ring k = 5, stable.

εclΓ = εclθ = 5 · 10−3. The time step can be taken as dt = δ/2= 0.05. The value of ρ—the
magnitude of perturbation at the edge of the disk—was 0.1.

We visualize the sheets by plotting translucent pictures for the k = 5 and k = 8 simula-
tions. These two values of k are chosen as representatives of the stable and unstable ring
behavior, respectively. First, consider the vortex sheet for the k = 5 case. The positions are
plotted at times t = 0,1,3,4,5,7,8,9 in Figure 11.1. As can be seen, the sheet is rolling up
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(a) One ring k = 8 at time t = 0 (b) One ring k = 8 at time t = 3

(c) One ring k = 8 at time t = 4 (d) One ring k = 8 at time t = 5

(e) One ring k = 8 at time t = 6 (f) One ring k = 8 at time t = 7

Figure 11.2. One ring k = 8, unstable, hairpins.

smoothly. The perturbation has only a marginal effect on the evolution. Let us compare it
to the corresponding pictures of the case k = 8, Figures 11.2, 11.3. In this case, and other
high wavenumber simulations k = 7,9,10, the outer turns of the sheet are smooth, but
the core is highly distorted. Strong instability is observed and in the late time it leads to
hairpins. Using their filament-based approach Lindsay and Krasny [17] were able to get
only to time t = 6, and even there, only the outer boundary was well resolved, not the
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Figure 11.3. One ring k = 8 at time t = 8.

complicated inner turns. On the contrary, our hierarchical panel vortex sheet representa-
tion allowed us to go further to time t = 8 and resolve the inner details of the complicated
hairpin structure.

The bulging behavior is consistent with the simulations of Knio and Ghoniem [39] and
the experiments of Didden [44]. Bulges were also observed in the experiments and nu-
merical simulations of azimuthal perturbations to a jet by Meiburg et al. [59]. In addition,
our simulations match very well the experiments of Dazin et al. [46–48]. Also to compare
with their results, we take the average centerline of the ring and evaluate FFTs of velocity
components on a set of equally spaced points on this centerline. Moreover, we evaluate
FFTs of the coordinates of a filament which was initially at the rim of the circular disk.
The results for the k = 5 (stable) and k = 8 (unstable) are presented in Figure 11.4. We can
see harmonics and the superharmonics of k = 5; there is no subharmonics growth. On
the other hand, in the case k = 8, we can see a considerable growth of the subharmonics
similar to the one observed by Dazin et al. [46–48].

Finally, note that the vortex sheet surfaces plotted here are surfaces formed by the
material curves which coincided with the vortex lines of the sheet at t = 0. However, since
we are using a δ-smoothed Biot-Savart kernel, they are not the actual vortex lines for
t > 0.

12. Conclusions

A new local, adaptive, higher-order, tree-based quadrature and point insertion method
for 3D vortex sheet motion has been developed. The main ingredient of the method is
a hierarchical tree construction representing the vortex sheet surface. It makes the code
adaptive and permits insertion of the new computational points (vortex blobs) locally. In
addition, we developed a new curvature-based point insertion criteria based on distance
between local linear and cubic approximations.

The method was applied to the motion of vortex rings which are modeled as the rolled-
up vortex sheets. The local hierarchical tree-based representation allowed us to resolve the
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Figure 11.4. FFTs of the coordinates of a filament which was initially at the rim of the circular disk.
Left—k = 5 (stable), right—k = 8 (unstable).

long time details of Widnall’s instability of a single vortex ring including the development
of a complicated nonlinear region with hairpins and many layers of roll-up.

The single biggest challenge we are still facing is how to resolve skewed regions with-
out excessive growth in the number of points. Our hierarchical tree-based panel method
updated a vortex sheet surface effectively and locally as long as the panels remain approx-
imately quadrilateral in physical space. However, initially square panels become severely
skewed. We address this problem partially by the introduction of mixed quad/triangle
panels, but this does not really solve the problem. It appears that local mesh redistribu-
tion must be done.

In terms of enhancing the method, there are several steps which could be taken. Parti-
cle removal in the regions of high particle concentration should be investigated. Chorin
[60, 61] employed the removal of vortex hairpins on the filaments. We are not restricted
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to filaments, so the removal could be even more efficient. Also, our integration is only
2nd order accurate, we could increase the accuracy of integration by considering panels
with more computational points per panel. Another possible area for improvement is a
better cell-dividing technique for the velocity tree code. The current technique for cell
subdivision breaks them by bisecting the cell’s bounding box. This approach just uses the
dimensions of the cell without any regard for the cell’s particle groupings. Investigating
these groupings and breaking cells into more natural clusters could be very beneficial for
the tree-code performance.

Another interesting topic would be to understand the dynamics of vortex rings better.
This would require a more extensive investigation of the parameter space. In particular, it
would be interesting to compile a number of similar runs with the smoothing parameter
δ being continuously reduced to zero. It is quite computationally expensive, but with the
O(N logN) tree code and a parallelization, it is more feasible than before.

In terms of studying different systems, we would like to investigate oblique and head-
on collisions of vortex rings. The algorithm however is far more versatile and can be used
to model other system represented by vortex sheets such as wakes behind airplanes and
jets. In addition, it can be generalized to other particle systems where the interaction
kernel is different from Kδ . The computation of the expansion coefficients would have to
be modified, but recurrence relations similar to the ones derived here could be obtained
so that the Taylor coefficients could be computed rapidly.
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