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A piecewise algebraic curve is defined as the zero contour of a bivariate spline. In this
paper, we present a new method for fitting C' piecewise algebraic curves of degree 2
over type-2 triangulation to the given scattered data. By simultaneously approximating
points, associated normals and tangents, and points constraints, the energy term is also
considered in the method. Moreover, some examples are presented.
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1. Introduction

The curve fitting problem is very important in CAD (computer-aided design) and CAGD
(computer-aided geometric design). The reconstruction of planar shape from data (pos-
sible unorganized or noisy) is a very interesting subject with various applications, for
example, in medical imaging.

When compared to these representations, the use of implicitly defined curves offers a
number of advantages (see [1]). The main advantages of the implicitly defined algebraic
curves over the functional and parametric curves are as follows. (1) The class of algebraic
curves is closed under several geometric operations (intersections, union, offset, etc.), of-
ten required in a solid modeling system. For example, the offset of a parametric curve may
not be parametric but is always algebraic and has an implicit representation. (2) Implicit
algebraic curve segments have more degrees of freedom compared with rational function
and rational parametric curves of the same degree. Then implicit algebraic curve seg-
ments appear to be more flexible to approximate a complicated curve with fewer number
of pieces or to achieve higher order of smoothness.

Various methods for the implicit curves and surfaces approximation and fitting have
been described in the vast literatures (see [1-10]). Carr et al. [3] used the polyharmonic
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radial basis functions to reconstruct smooth, manifold surfaces from point-cloud data
and to repair incomplete meshes. Pratt [7] and Taubin [8] introduced methods for curve
and surface fitting. The methods are based on algebraic distance, combined with suitable
normalization of unknown coefficients. Taubin [8] and Tarel [9] method constrained
the sum of the squared gradients at the data sites. This leads to a geometrically invariant
quadratic normalization. Bajaj et al. [1] and Bajaj and Xu [2] have developed nonproduct
algebraic spline curves and surfaces over triangulations, which are called A-splines, into
a powerful tool for reconstructing curves and surfaces from measurement data. Their
approach focuses on the use of low-degree patches whose coefficients satisfy certain sign
conditions in order to guarantee the desired topology of results.

Juttler [4, 5] described an algorithm for fitting implicit defined tensor-product spline
curves and surfaces to scattered data. Wanget al. [10] and Yang et al. [11] used the implicit
defined tensor-product spline curves and surfaces for fitting and blending . The main
advantage of their methods is being computationally simple, and the main disadvantage
is that the degrees of curves and surfaces are high. For example, the degree is 6 totally, in
fact, of a tensor-product spline of degree 3 .

In this paper, we present a new technique for curve fitting with piecewise algebraic
curves of a lower degree. We consider a set of points

pi= (pn,pn) €R?, i=1,...,N (1.1)

in the plane. The approximation curve is to be described as the zero contour of a
nontensor product C! bivariate spline of degree 2 over type-2 triangulation. This method
is computationally simple.

This paper is organized as follows. In Section 2, the bivariate spline space S(A )
and piecewise algebraic curves are introduced. Furthermore, we present the method for
fitting piecewise algebraic curves to scattered data in Section 3. At last, some examples are
given.

2. Bivariate spline space S}(A %))

In this section, we will introduce the bivariate spline space Si(AEﬁz,) firstly, which is pre-
sented in [12, 13].

The type-2 triangulation AR is yielded by connecting two diagonals at each small
rectangular cell, which are based on rectangular regions. Clearly, if the original rectan-
gular partition is uniform, then the induced type-2 triangulation is a cross-cut partition.
We only discuss uniform type-2 triangulations in this section.

Without loss of generality, let D be a unit square region as follows:

D=10,1]®[0,1]. (2.1)
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FIGURE 2.1. Type-2 triangulation with m =4, n = 4.

(a) Support of B(x, y) (b) B-spline base

FiGuRE 2.2. The support and B-spline base of B(x, y) over Al

The type-2 triangulation AR s yielded by the following partition lines (see Figure 2.1):
mx —i=0, ny—i=0, ny —mx—i=0, ny+mx—i=0, (2.2)

wherei=...,—1,0,1,....
Using the dimension formulae on the cross-cut partition in [12, 13], we have

dimS}(AZ,) = (m+2)(n+2) - 1. (2.3)

We first introduce a locally supported spline in SE(A%) with its support octagon Q
centered at (0,0) as shown in Figure 2.2(a). It is known that a bivariate polynomial of
degree 2 on a triangle can be uniquely determined by the values of three vertices and
three midpoints of the edges. In Figure 2.2(a), the values are given on some triangles,
and other values are obtained by the symmetry of linesx =0,y =0,x+y=0,x—y =0.
Let B(x, y) be a piecewise polynomial defined in R?, that is, zero outside of Q, and let its
representation in the every triangle of D be determined by the values.
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Clearly, B(x,y) € C'(R?), and B(x, y) >0 inside of Q. Hence, B(x, y) is a bivariate B-
spline over the partition as shown in Figure 2.2(b). Making use of conformality condi-
tions at mesh points, we can get that B(x, y) is uniquely determined by the symmetry
oflinesx =0,y =0,x+y =0,x — y = 0, and normalized condition B(0,0) = 1/2. By the
smoothing cofactor-conformality method, we can point out that the support of B(x, y) is
the smallest one [12, 13].

Let
1
Bij(x,y) =B|mx—i+ ,ny ]+ (2.4)
then collection
A={Bjj(x,y):i=0,...,m+1,j=0,...,n+1} (2.5)
is a subspace of S%( 2)). Note that each element of A is a nontrivial element of SZ(A(Z) )

and the number of elements in A is (m+2)(n+2). By using formulae (2.3), A must be a
linearly dependent set. Wang gave the following results in [13].

THEOREM 2.1. The bivariate B-spline functions of A defined by (2.4) satisfy

m+1n+l1 o
> > (-D"Bj=0. (2.6)
i=0 j=0

For any iy, j,, 0 <ip <m+1,0 < jo < n+1, the collection

Aiojo = {Bij(xiy) EA:(i:j)#(iO)jO)} (2.7)

is a basis ofSé(A%E,).
THEOREM 2.2. Bivariate B-spline functions in A have the properties

m+1n+1

Z Z l+]Bl] X5 )’) ZBl](x )/ =L (2.8)
i=0 j=0 ij
By Theorem 2.1, for each bivariate spline s(x,y) € Si(A ) there must exist ¢;; €
R,i=0,...,m+1,j=0,...,n+1 such that
m+1n+1
sC6ay) =D > cijBij(x,y). (2.9)
i=0 j=0
The curve
Z(s) := {(x,y) €D |s(x,y)=0,s(x,y) € Si(AEﬁﬁ,)} (2.10)

is called a C! piecewise algebraic curve of degree 2. For convenience, it is also called a piece-
wise algebraic curve. It is obvious that the piecewise algebraic curve is a generalization of
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the classical algebraic curve [13]. The recent researches on the piecewise algebraic curves
can be referred to [13—-16]. In this paper, we use the piecewise algebraic curves for fitting
the given points.

3. Fitting piecewise algebraic curves to data

Let IT = {p;}, € Q be the point set for fitting, where Q is a square region. First, we
partition the region Q) to the uniform type-2 triangulation A3) as described in Section 2.
Then, we get the B-spline basis of S%(A%)q) by (2.4), and a spline s(x, y) € s;(Aﬁ,%L) can

be expressed as

m+1n+1

s(x,y) = Z Zc,jBij(x,y) (3.1)

i=0 j=0

with real coefficients c;;.

Let ¢ = (cij); j)er be the vector obtained by gathering all coefficients of the fitting piece-
wise algebraic curve, in a suitable order, where I = {(i,j) | i=0,...,m+1,j=0,...,n+
1}. Its components will be computed by minimizing a quadratic objective function, which
is formed as a certain linear combination of 2 terms, and the points constraints.

3.1. Approximation of data. The first term deals with the point set IT. The given data are
approximated by minimizing the sum of squared “algebraic distances” (see [7, 8]),

N

L(c) = ZSz (pi> pi2)- (3.2)

i=1

The sum L is a homogeneous quadratic form of the unknown coefficients vector c.
Hence it is minimized by the null vector ¢ = 0, leading to the spline s(x, y) = 0. In order
to avoid this result, one has to add other terms or normalizations. Various normaliza-
tions have been presented in the literature [7, 8, 11]. Most of them are based on a suitable
norm in the coefficient space. Jiittler [4, 5] used the method based on the simultaneous
approximation of the data and the associated normal vectors. For being computationally
simple and controlling the shape of the fitting curve, our approach is based on the asso-
ciated normals, tangents, and the points constraints which will be introduced in the next
sections.

3.2. Fitting curves to associated normals and tangents. As the first step of this sec-
tion, we generate the unit normal vectors {n; = (n;,n,2), i = 1,...,N} and tangent vectors
{si = (si1»si2), i = 1,...,N}, which are associated with the given dataset {p; = (pi1, pnn), i =
1,...,N}. The estimation of normal and tangent vectors from scattered data is a standard
problem in curve and surface approximation. In this paper, we use the method presented
in [6] and summarize it as follows. More details can be found in [5, 6].
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F1GUre 3.1. The estimated normal vectors of the dataset.

Take normal vectors for example. Firstly, for a point p; = (pi1, pi2), a local regression
line L; : y = ax+ b can be computed by minimizing a quadratic function

N
D= (apu+b— pn)’wi, (3.3)
i-1

where w; is a nonnegative weight for each point p; computed by an appropriate weighting
function. We can choose any weighting function which generates larger penalties for the
points far from p;. One of our choices is w; = e ™/H where r = llp; — pjll, and H is
a suitable real constant. From this weighted regression, we can compute the local best
regression line L; for p; by minimizing the objective function subject to the quadratic
equality constraint |[n*|| = 1, where n* is the unit normal vector of L,.

Secondly, choose a new Cartesian coordinate system whose x axis is parallel to the
line L;, and p; is a new origin. Then we fit a local quadratic regression curve Q;: ) =
ax? + bx + ¢ to the dataset {p;,i = 1,...,N}. Its coefficients are computed by minimizing
the weighted sum

N
~ —~ (2
Dy=2. (apn” +bpa +c— pn) wi. (3.4)
i=1

The direction +n; of the unit normal vector which is associated with p; is chosen such
that it is parallel to the normal of the quadratic polynomial Q;. In order to get the use-
ful results, we have to guarantee that the neighboring normal vectors n;, n; have same
orientations, that is, n;-n; > 0. The unit tangent vector s; associated with p; can be com-
puted by n;-s; = 0, and the neighboring tangent vectors also have the same orientations.
Figure 3.1 shows the estimated normal vectors of the dataset for example.

In addition to the algebraic distance L(c), the following term:

z

N

M(c) = ‘ (VS(Pilapiz)'ni)2+Z (Vs(pit> pi2) -si — 1)2 (3.5)

i=1

Il
—_
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can lead to the nonzero result ¢ by minimizing the sum, where Vs(pi1, pi2) = (sx,5y) pinopia)
is the gradient of the spline s(x, y) at the point p; = (pi1, pi2), and n;, s; are the unit esti-
mated normal vector and tangent vector at p; by above method.

3.3. Points constraints. In order to get results more useful and pleasant, we need to add
some constraints to the object function. Our approach adds some point restrictions as an
auxiliary means.

A piecewise algebraic curve Z(s) divides Q) into three parts: the curve itself s(x, y) = 0,
the interior of the surface s(x, y) < 0, and the exterior of the surface s(x, y) > 0.

For some points in IT are accurate by the measurements, the fitting curve is required to
pass through them. On the other hand, for obtaining a desirable shape of the fitting curve,
we impose the constraint that a point set is inside (or outside) the piecewise algebraic
curve. Thus we need to add the following constraints to the objective function:

s(p)) =0, i=ip,...,i, s(di)) <0, i=1,...,k, s(gi) =0, i=1,..,r
(3.6)

Wang gave the following result in [13].

THEOREM 3.1. A point set is the interpolation set for SHAED if and only if there is no

nonzero spline h € SY AW such that the point set lies on the piecewise algebraic curve Z(h).

i
i=iy

By using the above result, the point set {p;},_; in (3.6) must be chosen properly such

that it does not include an interpolation set for S%(A%Z;) or its subspace. The point sets d;
and g; can be chosen interactively.

3.4. Energy term. In some cases, the minimizing of the algebraic distances L with the
points constraints may produce the fitting piecewise algebraic curve that splits into sev-
eral disconnected components. There are several possibilities to solve this problem of
curve fitting. For example, basing on the signs of the coefficients, one may derive a crite-
ria which can guarantee the desired topology of the result (see [2]).

Since we wish to compute the solution by solving a system of linear equations, we use
the simpler approach of adding a suitable energy term that pulls the approximation of
the curve towards a simpler shape as described in [5]. If the energy term has a sufficient
strong influence, then the fitting curve has the desired topology.

An energy term is given by the quadratic function

E(c) = JD <5§x+25§y+s§,},>dxdy, (3.7)

which measures the deviation of the spline s(x, y) from a linear function. Hence, by in-
creasing the influence of this term, the resulting curve gets closer to a straight line [5].
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(a) The point set (b) Fitting with y = 0.1 (c) Fittingwith = 0.1,4 = 0.01

(d) Fitting with py = 0.3 (e) Fitting with y=0.1,1=0.02
and points interpolation and points interpolation

FiGure 4.1. Fitting with piecewise algebraic curves.

3.5. Computing the solution. By the above subsections, we compute the fitting piece-
wise algebraic curve by solving the following optimization problem:

minL(c) +uM(c) + AE(c) s.t.
s(pi) =0, i=iy,...,i,
s(d) =0, i=1,..k (3.8)
s(g) =0, i=1,...,7,

where y, A are nonnegative weights.

As this leads to a quadratic objective function of the unknown coefficients vector ¢
with the constraints, the solution can be found by solving the quadratic optimization
problem. It is easy to prove that the objective function of (3.8) is convex and the s(-) = 0
is the linear function of c¢. Then the optimization problem (3.8) has the nonzero ideal
solution [17]. There are a lot of methods [17] and mathematical softwares (e.g., Matlab,
Maple) to solve this problem. The weights y, A control the influences of the terms M, E.

4. Examples

In this section, we present two examples with different data constraints and the weights
U, A
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(c) Fitting with y = 0.1

(d) Fitting with g = 0.1, = (e) Fitting with y = 0.15 (f) Fitting with g = 0.1,1 =
0.01 and points interpolation 0.01 and points interpola-
tion

FiGure 4.2. Fitting with piecewise algebraic curves.

Example 4.1. As the first example, we approximate the points set (see Figure 4.1(a), boxed
points to be interpolated) with the piecewise algebraic curves. We use the type-2 triangu-
lation with m = 4, n = 4 in this example. The weights of the objective function are cho-
sen as A = 0.0,y = 0.1,0.3 in Figures 4.1(b) and 4.1(d), respectively, whereas the points
interpolation are included in Figure 4.1(d). The resulting piecewise algebraic curves are
shown in Figures 4.1(c) and 4.1(e) with weights g = 0.1, A = 0.1,0.2, respectively, whereas
the points interpolation is included in Figure 4.1(e).

Example 4.2. In this example, we approximate the points set (see Figure 4.2(a), boxed
points to be interpolated) with the piecewise algebraic curves. We use the type-2 triangu-
lation with m = 5, n = 5 in this example. The weights of the objective function are chosen
as A = 0.0, 4 = 0.05,0.1,0.15 in Figures 4.2(b), 4.2(c), and 4.2(e), respectively, whereas
the points interpolation are included in Figure 4.2(e). The resulting piecewise algebraic
curves are shown in Figures 4.2(d) and 4.2(f) with weights y = 0.1, A = 0.01, whereas the
points interpolation are included in Figure 4.2(f).

5. Summary and conclusions

In this paper, we present a new method for fitting C! piecewise algebraic curves of degree
2 over type-2 triangulation to the given scattered data. By simultaneously approximating
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points, associated normals and tangents, and points constraints, the energy term is also
considered in the method. This method is computationally simple. We can extend the
method to the spline spaces S3( A and Sé(AS,lZ,) directly. For the large number of the
scattered data, we can refine the triangulation to approximate the data better.

The objective function can be updated with the weighted least square and adding other
terms such as data-dependent term. Future researches will focus on updating the objec-
tive function and fitting the piecewise algebraic curves to more complex objects over

other partitions.
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