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We have implemented an operational amplifier inductorless realization of the Chua’s cir-
cuit. We have registered time series from its dynamical variables with the resistor R as the
control parameter and varying from 1300Ω to 2000Ω. Experimental time series at fixed
R were used to reconstruct attractors by the delay vector technique. The flow attractors
and their Poincaré maps considering parameters such as the Lyapunov spectrum, its sub-
product the Kaplan-Yorke dimension, and the information dimension are also analyzed
here. The results for a typical double scroll attractor indicate a chaotic behavior character-
ized by a positive Lyapunov exponent and with a Kaplan-Yorke dimension of 2.14. The
occurrence of chaos was also investigated through numerical simulations of the Chua’s
circuit set of differential equations.

Copyright © 2007 R. M. Rubinger et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Chaotic electronic circuits [1] have been widely studied during the last few decades due to
their easy implementation, robustness, reproducibility of results, and also as a test plat-
form for synchronization [2–4], chaos control [4–6], signal encryption [7], and secure
communications [8, 9]. Also it is easy, through Kirchhoff ’s laws, to obtain the circuit de-
scribed by a set of differential equations and carry on simulations which in most times,
present good agreement with experimental data. The Chua’s circuit [1, 10] is one of the
most famous circuits on the literature and the reasons, among others, are:

(1) Chua’s circuit has a quite simple construction characterized by four passive linear
elements and one of them with nonlinear i(V) characteristic represented by a
piecewise linear equation, as shown in Figure 1.1;
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Figure 1.1. Chua’s circuit. The dynamical variables are x, y, and z corresponding to the voltage across
capacitor C1, the voltage across capacitor C2, and the current through the inductor, respectively. The
nonlinear element is the Chua’s diode and the nonlinearity is presented through id(x) characteristics.

(2) it exhibits a number of distinct routes to chaos and multistructural chaotic at-
tractors [11];

(3) attractors that occur in Chua’s circuit arise from very complex homoclinic tan-
gencies and loops of a saddle focus [11];

(4) many opened questions on the system’s behavior and the lack of a possibility to
fully describe Chua’s circuit from its equations [11].

The Chua’s circuit has been the object of study of hundreds of papers, where its topo-
logical, numerical, physical, and dynamical characterizations are deeply investigated. See
[12–15] and references therein.

Point (4) suggests that numerical analysis such as that carried on this work could pro-
vide some contributions to understand Chua’s circuit dynamical behavior. Chua’s circuit
dynamical equations are given by
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(1.1)

where R,C1,C2, and L are passive linear elements, rL is the inductor’s resistance, id is the
current through Chua’s diode with m0,m1 and Bp as parameters.



R. M. Rubinger et al. 3

Chua’s diode and the active component “inductor” were implemented according to
Tôrres and Aguirre [16]. This inductor implementation turns easy and compact to con-
struct the Chua’s circuit. It has another advantage since it can be designed as resistance
free as have been carried on this work.

This paper is organized as follows: Section 2 is devoted to a detailed description of
the parameters used to build and analyze Chua’s circuit. A brief study of the equilibrium
points of Chua’s differential equations and the existence of a homoclinic loop is presented
in Section 3. This was carried in order to identify the possible dynamical behavior for
the chosen parameters of the circuit and to support the analyses carried in Section 4. In
Section 4, we present the time series analysis of some illustrative experimental time series
obtained from the Chua’s circuit implementation. This section is the core of our work.
Our aim is to characterize attractors obtained from this particular implementation of
Chua’s circuit with respect to its sensitivity to initial conditions and its dimension on the
state space. Finally, concluding remarks are presented in Section 5.

2. Experimental details

Chua’s circuit was constructed in a single face circuit board with the same scheme of
[16] but with all capacitors 1000 times lower. This way C1 = 23.5nF, C2 = 235nF, and
L = 42.3mH. These values were obtained from the combination of passive components
and measured with a digital multimeter with a 3% precision. We evaluate the oscillation
main frequency as a rough approximation by 1/(2π(LC2)1/2) which gives about 1600 Hz.
This oscillation frequency allowed us to store large time series for data analysis. Other pa-
rameters were experimentally determined. From Chua’s diode i(V) characteristics linear
fittings as Bp = 1.8 V, m1 = −0.758 mS, and m0 = −0.409 mS with the significant digits
limited by the fitting accuracy. Here S stands for inverse resistance unity. The resistor R,
used as the control parameter, was a precision multiturn potentiometer and kept in the
range of 1300Ω to 2000Ω.

A data acquisition (DAQ) interface with 16 bit resolution, maximum sampling rate of
200 k samples/s, and adjustable voltage range of maximal peak voltage of 10 V was applied
for data storage. The Chua’s circuit oscillations were measured at the x point depicted in
Figure 1.1 after passing through an active buffer. Also Labview r© was used to develop
data acquisition software and analysis [17, 18]. A Keithley 237 voltage/current source in
series with the Chua’s diode was applied to obtain the i(V) data. For each time series the
potentiometer R was detached from the circuit for resistance measurements with a 3(1/2)
digit multimeter.

Four representative attractors obtained with R as 1480Ω, 1560Ω, 1670Ω, and 1792Ω
will be presented in Section 4 with the respective analyses. Particular attention will be
given to the double scroll attractor.

3. Differential equation analysis

Considering a resistance free inductor, that is, rL = 0, we have determined the operating
points which coincide with the equilibrium points of (1.1), that is, its solution for

ẋ = ẏ = ż = 0. (3.1)
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Here the dot over the variables stands for time derivatives. The solutions correspond to
the state space points (−Rid(x),0, id(x)), which coincide with the interception of the load
line with the graph of id in the plane y = 0. The load line is a straight line with slope−1/R
determined by the Kirchhoff ’s laws applied to the circuit composed by R and the Chua’s
diode. One of these equilibrium points will always be the origin (0,0,0).

For

1300Ω≤ R <− 1
m1

≈ 1319.26Ω, (3.2)

(1.1) presents only the equilibrium point at the origin. The origin is a saddle focus point,
since the Jacobian matrix of (1.1) at (0,0,0) has one negative real eigenvalue and two com-
plex eigenvalues with positive real parts. Here f (x, y,z)= ( f1(x, y,z), f2(x, y,z), f3(x, y,z))
is defined by (1.1). For 1318.93Ω < R < 1319.26Ω, the origin is a (1-2)-saddle point, that
is, the Jacobian matrix J f (0,0,0) has three real eigenvalues, being one negative and two
positives.

For R = 1319.26Ω, (1.1) presents a line segment of equilibrium points. In fact, all
points (x,0,m1x), −Bp ≤ x ≤ Bp, are equilibrium points of (1.1).

For

1319.26Ω < R≤ 2000Ω <− 1
m0

≈ 2444.99Ω, (3.3)

(1.1) presents three equilibrium points
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(
R
(
m0−m1

)
Bp
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)
Bp
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)
Bp
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)
.

(3.4)

For 1319.26Ω < R < 1323.93Ω, p0 is a (2-1)-saddle point, and for 1323.93Ω ≤ R ≤
2000Ω, the equilibrium point p0 is of saddle-focus type, since the Jacobian matrix J f (p0)
has one real positive eigenvalue λ00 and two complex eigenvalues, λ01 and λ02, with nega-
tive real parts. Therefore, p0 has a 1-dimensional unstable manifold and a 2-dimensional
stable manifold. The equilibrium points p1 and p2 are of saddle-focus type too, but their
stable manifolds are 1-dimensional and their unstable manifolds are 2-dimensional, since
the Jacobian matrix J f (p1) = J f (p2) has one real negative eigenvalue and two complex
eigenvalues with positive real parts.

The presence of homoclinic loops connecting p0 to itself, that is, p0 possesses a 2-
dimensional stable manifold and a 1-dimensional unstable manifold which intersect non-
transversely, for some value of the parameter R, plays a fundamental role in the existence
of chaos in (1.1).
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The existence of a homoclinic loop at p0 is now outlined, according to [19]. Equation
(1.1) can be written in dimensionless form

dx

dτ
= α(x− y) + i(x),

d y

dτ
= 0.1

(
α(y− x)

)− z,

dz

dτ
= 3.321y,

(3.5)

where

i(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x− 0.853 if x ≤−1(region I),

1.853x if |x| ≤ 1(region II),

x+ 0.853 if x ≥ 1(region III),

(3.6)

and the dimensionless variables and parameters are given by

x = 1
Bp

x, y = 1
Bp

y, z = 1
m0Bp

z,

τ = m0

C1
t, i(x)= 1

m0Bp
id(x), α= 1

m0R
.

(3.7)

For α=−1.64042 (R= 1490.46Ω), (3.5) has the equilibrium points

q0 = (0,0,0), q1 = (−1.33193,0,−2.18493),

q2 = (1.33193,0,2.18493).
(3.8)

The eigenvalues of the Jacobian matrix of (3.5) at q0 are 0.406522 and −0.178994±
i0.376325, with the respective eigenvectors

e0 = (0.716695,0.0847343,0.69222),

f0 = (−0.32928,0.0500556,−0.928716),

g0 = (0.124423,−0.105239,0).

(3.9)

It follows that the unstable line at q0 is generated by e0 while the stable plane π0 is gener-
ated by { f0,g0}. Let N1 be the intersection of the plane x = 1 and the unstable line at q0.
Thus N1 = (1,0.118229,0.96585). Let X(τ)= (x(τ), y(τ),z(τ)) be the solution of (3.5) in
the region III with the initial condition N1. If τ = 8.2870398 then N2 = X(8.2870398)=
(1,−0.249007,2.42616) belongs to intersection of the plane x = 1 and the stable plane π0

since det[N2, f0,g0] = 0. Therefore a homoclinic loop at q0 can be defined by the trajec-
tory along the unstable eigenvector e0. By symmetry of (3.5), there is another homoclinic
loop at q0 defined by the trajectory of the unstable eigenvector −e0.

The chaotic nature of the Chua’s (1.1) was proved by establishing the existence of a
homoclinic loop of the saddle focus at the origin and by applying the Shil’nikov condition
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Figure 3.1. Homoclinic loops. They were obtained solving (3.5) with initial conditions N1 =
(1,0.118229,0.96585) and M1 = (−1,−0.118229,−0.96585) and τ ∈ [−10,30].

λ00 > −Re(λ01) > 0 [11]. In this work, Shil’nikov saddle-focus condition is satisfied by
1334.94Ω≤ R≤ 2000Ω. Figure 3.1 presents a draft of the homoclinic loop found at α=
−1.64042 corresponding to R= 1490.46Ω.

In Figure 3.1 it is possible to identify the stable and unstable manifolds associated with
it. The value of R for the homoclinic loops is near of the value found for the experimental
measurements of the cycle-one attractor obtained with R= 1480Ω as will be presented in
the next section. It should be pointed out that the nominal values of capacitors and resis-
tors used in this implementation were selected by measurements with digital multimeters
which are subjected to experimental errors between 1% and 3%. Thus the value of R for
the occurrence of the homoclinic loops is compatible with our experimental results.

4. Experimental results and discussion

For this work we have carried out time series measurements of the variable x(t) for some
R values and proceeded as described in Section 2. Figures 4.1 and 4.2 present the four se-
lected attractors obtained from time series with R as 1480Ω, 1560Ω, 1670Ω, and 1792Ω.
They correspond to a cycle one, cycle two, chaotic-like in one region and the double scroll,
respectively. For attractor reconstruction (see Figures 4.1 and 4.2) proper time delay [20]
and the embedding dimension [21] were determined.

Figure 4.3 presents the mutual information for attractor 4. The first minimum corre-
sponds to the optimal time delay for the delayed vectors. For the double scroll attractor it
is of 7-time steps of 33 μs.

The false nearest neighbors algorithm was applied to verify if the time series is sensitive
to noise [22]. Since Chua’s system is a three-variable system, it turns out that false nearest
neighbors should indicate the embedding dimensions as three. A higher than three em-
bedding dimension for this system would mean significant noise contamination [17, 18].
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Figure 4.1. Periodic attractors obtained from delayed coordinates of the x variable. (a) Was obtained
from a time series with R= 1480Ω and is a cycle one attractor. (b) Was obtained from a time series
with R= 1560Ω and is a cycle two attractor.

Since our results indicate no false nearest neighbors for embedding dimensions above 3,
we can neglect noise contribution for the geometric invariants that will be presented in
the following.

Figure 4.4 presents the false nearest neighbor plot for attractor 4. As can be seen, the
proper embedding dimension is 3. In Figure 4.5, we present the Poincaré section for the
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Figure 4.2. Chaotic attractors obtained from delayed coordinates of the x variable. (a) Was obtained
from a time series with R= 1670Ω and occupies one state space region. (b) Was obtained from a time
series with R= 1792Ω and is the double scroll attractor.

periodic attractors presented in Figure 4.1. In Figure 4.5(a) we have a fixed point obtained
from attractor 1. In Figure 4.5(b) we have a period two pair of points obtained from
attractor 2.

In Figure 4.6 we present the Poincaré section for the chaotic attractors presented in
Figure 4.2. In Figure 4.6(a) we have the Poincaré section for attractor 3 represented by a
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Figure 4.4. False nearest neighbor ratio as a function of the embedding dimension. The false nearest
neighbors become negligible after dE = 3. This confirms that the Chua’s circuit is a 3-variable system.

continuous curve crossing the y = x line. In Figure 4.6(b) we have a more complex pat-
tern obtained for attractor 4. It is basically composed by two curves, one corresponding
to each side of the “scroll” of the flow attractor.

Time series analyses were carried for all attractors. The estimated parameters were the
Lyapunov spectrum [23] with its subproduct the Kaplan-Yorke dimension (DKY) [24] and
the information dimension (D1) [25]. D1 was measured for both flow and map represen-
tations. We will present detailed analysis for attractor 4 and summarize the information
for all attractors in a table that will follow.
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Figure 4.5. Poincaré section obtained from the extrema sequence of the attractors 1(a) and 2(b) pre-
sented in Figure 4.1. The dashed line is y = x, which shows that in (a) we have a fixed point and in (b)
a period 2 points.

Figure 4.7 presents the Lyapunov spectrum for the attractor 4, obtained by using the
method described in [23] and implemented in [17, 18]. It is characterized by a positive, a
null, and a negative Lyapunov exponent. This configuration is a characteristic of chaotic
attractors. The Kaplan-Yorke dimension for this attractor is evaluated as DKY = 2.14.
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Figure 4.6. Poincaré section obtained from the extrema sequence of the attractors 3(a) and 4(b) pre-
sented in Figure 4.3. The dashed line is y = x, which shows that in both cases the attractors resemble
chaotic.

Dimension analysis gives complementary information since it is common to find strange
attractors with fractal shape.

DKY is considered as equivalent to D1 [26]. Considering this we present in Figure 4.8
the D1 for attractor 4. In Figure 4.8(a) we present the results for the D1 measured for the
flow attractor and in Figure 4.8(b) for its Poincaré map. D1 is characterized by a region
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Figure 4.7. Lyapunov spectrum for attractor 4. Each Lyapunov exponent corresponds to a state space
direction. The positive Lyapunov exponent is an evidence of chaotic behavior. DKY is evaluated as
DKY = 2.14.

of zero slope independent of the embedding dimensions above the proper one (i.e., 3 for
Chua’s circuit). In Figure 4.8(a) D1 is estimated as 1.8± 0.1 and in Figure 4.8(b) 1.2± 0.1.

According to [26] the dimension of a map attractor is related to the dimension of
its flow attractor by a difference of one unity. This occurs because the map is obtained
by eliminating the flow direction which is related to the null Lyapunov exponent. Since
the null Lyapunov exponent is associated to a dimension of one, the map information
dimension (D1M) must be related to the flow information dimension (D1F) by D1M =
D1F − 1.

Considering that DKY ∼ D1F we can infer that our measurements of D1F are underesti-
mated and that D1M + 1 is compatible with the corresponding values of DKY. The reason
for the low value of D1F is yet unknown but certainly it is related to the direction of the
flow and thus to the null Lyapunov exponent.

Table 4.1 summarizes the results for the four presented attractors. The first column,
assigned as #, indicates the number of the attractor as defined in the text. 1, 2, 3, and 4
correspond to the attractors obtained with R in ohms defined in column 2. The third col-
umn is D1M , measured for the Poincaré maps and the fourth column presents D1F , mea-
sured for the flow attractor. The fifth column is the Kaplan-Yorke dimension. The sixth
column is the minimal embedding dimension obtained from the false nearest neighbor
algorithm. The last column lists the three Lyapunov exponents in decreasing order.

Both periodic attractors presented three negative Lyapunov exponents, but the first
two can be considered as null when compared with the third value. Considering this,
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Figure 4.8. Information dimensionD1 for attractor 4. In (a) we present the result for the flow attractor
and in (b) for its Poincaré map. In (a) the straight line is a guide that indicates that the dimension is
below 2.0. In (b) the dimension is evaluated at 1.2.

DKY is estimated as 1.0 for attractors 1 and 2. This is in agreement with the value of 1.0
obtained for D1F .

Attractors 3 and 4 presented one positive, one null, and one negative Lyapunov expo-
nent. The sum of the exponents is negative, which means that attractors contract volume
in state space. The Kaplan-Yorke dimension for them is above 2.0, whilst the D1 was de-
termined as 1.8 for the flow representation of the attractors.
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Table 4.1. Analysis results for the four presented attractors.

# RΩ D1M D1F DKY FNN Lyap. Exp.

1 1480 0.0 1.0 1.0 2

−0.01

−0.02

−0.15

2 1560 0.0 1.0 1.0 3

−0.02

−0.02

−0.15

3 1670 1.3 1.8 2.19 3

0.01

0.00

−0.08

4 1792 1.2 1.8 2.14 3

0.01

0.00

−0.07

As discussed above the latter value is underestimated. Two facts corroborate for this
assumption. One is that D1 measured for the Poincaré maps of the attractors does not
differ by one unity from the measurement carried on the flow attractors, but they do
differ by approximately one unity from the Kaplan-Yorke dimension.

The other fact is also related to the Poincaré map of the attractors. The visual inspec-
tion of the Poincaré maps presented in Figure 4.6 indicates that they are objects with
dimension greater than 1. Thus, the flow attractor must be an object with a dimension
greater than 2, since by adding 1 to a number between 1 and 2 the resulting number must
be between 2 and 3.

5. Summary

We have implemented experimentally an operational amplifier inductorless realization of
the Chua’s circuit.

A homoclinic loop was found by numerical analysis of normalized Chua’s differen-
tial equations at a parameter corresponding to R= 1490.46Ω. Indeed, bifurcations were
observed experimentally in the vicinity of R for the homoclinic loop.

We selected four representative attractors obtained with R as 1480Ω, 1560Ω, 1670Ω,
and 1792Ω to present in this work. They correspond to a cycle one, cycle two, chaotic-like
in one region, and the double scroll, respectively.

Considering the double scroll, that is, for R= 1792Ω, the information dimension of a
three-dimensional delay vector reconstruction of the attractor (D1F) and of its Poincaré
map (D1M) are 1.8 and 1.2, respectively. Also the Lyapunov spectrum gives positive, null,
and negative exponents with a Kaplan-Yorke dimension as 2.14 characterizing the attrac-
tor as chaotic. This indicates that the flow attractor dimension has been underestimated
and that the Kaplan-Yorke dimension is better suited for this attractor.
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Email address: lfmelo@unifei.edu.br

C. P. L. Rubinger: Instituto de Ciências Exatas, Universidade Federal de Itajubá,
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