
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2007, Article ID 94035, 8 pages
doi:10.1155/2007/94035

Research Article
Love and Rayleigh Correction Terms and Padé Approximants

I. Andrianov and J. Awrejcewicz

Received 29 September 2006; Accepted 16 October 2006

Recommended by Semyon M. Meerkov

Simplified theories governing behavior of beams and plates keeping the fundamental
characteristics of the being modeled objects are proposed and discussed. By simplifica-
tion, we mean decrease of order of partial differential equations (PDEs) with respect to
spatial coordinates. Our approach is used for both discrete and continuous models. An
advantage of Padé approximation is addressed. First part of this report deals with approx-
imation of a beam equation by string-like one, and plate equation by membrane-like one.
Second part is devoted to the construction of Love-type theory for rods vibrations and
Rayleigh-type theory for beams vibrations.

Copyright © 2007 I. Andrianov and J. Awrejcewicz. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

The classical equations governing longitudinal and bending vibrations of rods and bend-
ing vibrations of beams as well as vibrations of plates and shells are nothing but the ap-
proximations to the classical equations of the theory of elasticity. Note that classical the-
ories of rods and beams are associated with a flat cross-section hypothesis, whereas those
of plates (shells) are matched with the hypotheses of Kirchhoff (Kirchhoff-Love). On the
other hand, in the theory of thin-walled structures, the so-called improved theories are
applied. By the improved theories, one means these which include some additional terms
in comparison to the classical theories that give an extension of the validity domain of
the latter ones. In particular, Love [3] and Rayleigh [1, 2] proposed to include the iner-
tia of normal motion in equation of longitudinal vibrations of rods and rotary inertia in
equation of transverse vibrations of beams. (In fact, an analogous way for accounting of
rotary inertia has been proposed by Bresse [4].) Then, Rayleigh theory was generalized
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for plates and shells [5, 6] and widely used in the analysis of vibrations of thin-walled
structures. It is worth noting that these theories are not asymptotically accurate [7], that
is, they cannot be derived from the equations of elasticity using a successive asymptotic
approximation. In particular, the terms including mixed derivatives of the form wxxtt ap-
pear. In this paper, we show that such terms can be obtained in a natural way with the
help of Padé approximants (PA). In addition, we also study vibrations of both plates and
a discrete system of masses. It is shown that the present approach can be generalized to
nonlinear problems.

Our paper consists of two parts. In the first one, transitions from a beam dynamical
equation to a string-like one as well as from a plate dynamical equation to a membrane-
like one are discussed. Second part is focused on obtaining a Love-type theory of rods’ vi-
brations and Rayleigh-type theory for beams vibrations using discrete governing models.

2. Reducing of continuous systems order

2.1. Beam and string-like models. In the theory related to suspended systems, usually
the suspended construction members are substituted by simple models of beams or plates
[8, 9]. However, the bending stiffness of the construction members is neglected, so a
proper estimation of high frequencies and associated vibration modes is not provided.
As an example of vibrations, a conveyor belt is considered, being treated as a 1D spatial
variables object for which the belt speed is small with respect to the wave speed. In the
simplest approximation, one gets a stretched beam equation

ρFwtt −Twxx +EIwxxxx = 0, (2.1)

where ρ is the belt material density; T is the stretching force (see Figure 2.1); E is the
Young modulus; F, I are the area and second moment of the transverse belt cross section,
respectively; w is the normal displacement.

The following boundary conditions are applied:

w =wxx = 0 for x = 0,L. (2.2)

Equations (2.1) and (2.2) can be transformed to the following nondimensional form:

wττ −wξξ + εwξξξξ = 0; (2.3)

w =wξξ = 0 for ξ = 0,1, (2.4)

where ξ = x/L, ε= EI/(TL2), and τ = (t/L)
√
T/ρF.

In the above, ε is a small parameter. A string-like model is obtained from (2.1) for
ε = 0 [8, 9],

wττ −wξξ = 0; (2.5)

w = 0 for ξ = 0,1. (2.6)

One may observe that the solution to (2.5) satisfies both of the boundary conditions (2.4),
and hence BVP (2.3), (2.4) is regular perturbated. However, if instead of the conditions
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Figure 2.1. Conveyor belt model.

of a simple support (2.4) clamping is taken, then in the vicinity of rod ends boundary
layers appear.

Note that now an extremely simplified PDE is obtained. Namely, one has a PDE of
second order which essentially simplifies our considerations. It is possible to keep the
second order of the approximating equation and to increase the approximation accuracy
by Padé approximants [10, 11].

Let us briefly describe the PA using as an example the following series:

ϕ(p)=
∞∑

i=0

ci p
i. (2.7)

The PA is defined via the following rational function:

ϕ[m/n] =
∑m

i=0 ai p
i

∑n
j=0 bj p j , (2.8)

where the coefficients ai and bi are determined from the following conditions. The first
(m+n) components of the expansion of the rational function ϕ[m/n] in a Maclaurin series
coincide with the first (m+n+ 1) components of the series ϕ(p).

Namely, in (2.3) instead of the differential operator

− ∂2

∂ξ2
+
ε∂4

∂ξ4
, (2.9)

one can use the following PA:

−∂2
/
∂ξ2

(
1 + ε∂2

/
∂ξ2
) . (2.10)

It gives the following approximation to (2.3):

(
1 + ε

∂2

∂ξ2

)
wττ −wξξ = 0. (2.11)

The associated boundary conditions have the form (2.6). Solution to (2.11) satisfies
both boundary conditions of (2.4). If one takes clamping instead of the boundary condi-
tions (2.4), then boundary layer occurs in neighborhood of the rod faces.

Observe that BVP (2.5), (2.6) approximates eigenvalues of the governing BVP up to
the order of ε, but BVP (2.11), (2.6) includes the second-order approximation of ε2 pre-
serving the equation order.
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Figure 2.2. Stretched square plate.

The proposed approach can be also applied to nonlinear problems. In what follows,
we consider a stretched rod on a nonlinear elastic foundation governed by the following
equation:

wττ −wξξ +dw3 + εwξξξξ = 0, (2.12)

where d is a constant coefficient.
The boundary conditions have the form (2.4), whereas the reduced nonlinear equation

has the form

wττ −wξξ +dw3 = 0 (2.13)

with the boundary conditions (2.6).
On the other hand, the modified nonlinear equation has the following form:

(
1 + ε

∂2

∂ξ2

)(
wττ +dw3)−wξξ = 0 (2.14)

also with the boundary conditions (2.6).

2.2. Plate and membrane-like models. Now vibrations of a stretched square plate with
side lengths L (see Figure 2.2) are under consideration. The governing equations read

D∇4
1w−T∇2

1w+ ρ1h1wtt = 0,

w =∇2
1w = 0 for x, y = L,

(2.15)

where D = Eh3
1/(12(1− ν2)); ∇4

1 =∇2
1∇2

1; ∇2
1 = ∂2/∂x2 + ∂2/∂y2; ν is the Poisson coeffi-

cient; h1 is the plate thickness; and ρ1 is the plate material density.
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In nondimensional form, one has

ε1∇4w−∇2w+wτ1τ1 = 0, (2.16)

w =∇2w = 0 for ξ,η = 0,1, (2.17)

where ∇4 = ∇2∇2; ∇2 = ∂2/∂ξ2 + ∂2/∂η2; ξ = x/L; η = y/L; ε1 = D/(TL2); τ1 =
(t/L)

√
T/ρ1h1; and T is stretched stress.

For small values of ε, the membrane model is obtained from (2.16) for ε= 0,

wτ1τ1 −∇2w = 0, (2.18)

w = 0 for ξ,η = 0,1. (2.19)

One may observe that a solution to (2.18) satisfies both boundary conditions (2.16),
and BVP (2.16), (2.17) is a regular perturbated problem. If one takes boundary conditions
of clamping instead of (2.17), then in vicinity the plate edges boundary layers appear.

Owing to the PA

−∇2 + ε∇4 ≈ −∇2

1 + ε∇2
, (2.20)

the following improved membrane model is obtained from (2.16):

(
1 + ε1∇2)wτ1τ1 −∇2w = 0. (2.21)

Associated boundary conditions have the form (2.19). Solution to (2.21) satisfies both
boundary conditions (2.16). If one takes clamping instead of the boundary condition
(2.17), then in the neighborhood of plate edges, boundary layers appear.

3. Continualization of discrete models

3.1. Love model. Consider now a discrete model. Observe that usually, in order to take
into account rotary inertia, rather artificial physical assumptions are applied. Now, we
show how the Padé approximants can be applied. The key steps and methodology of our
approach are illustrated owing to the analysis of vibrations of a mass chain shown in
Figure 3.1.

m
d2yi
dt2

+ c
(
yi+1− 2yi− yi−1

)= 0, i= 1,2,3, . . . ,n; (3.1)

y0 = yn+1 = 0, (3.2)

where m is the mass of the chain particle; c is the spring stiffness; and h is the distance
between particles.
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Figure 3.1. Mass chain.

The system of difference-differential equations (3.1) can be given in the following
form:

m
d2yi
dt2

+ cB
(
yi
)= 0, (3.3)

where B is the difference operator.
A classical continuous BVP yields

m
∂2y(x, t)

∂t2
+ ch2 ∂

2y(x, t)
∂x2

= 0, y = 0 for x = 0,L, (3.4)

where L= (n+ 1)h.
This approximation can be improved [12, 13]. Note that the system of ODEs (3.1)

can be reduced to one pseudodifferential equation using the following pseudodifferential
operator [14]:

B = sin2
(
− ih

2
∂

∂x

)
. (3.5)

Hence, with the help of this operator, the system of (3.1) is transformed into the fol-
lowing pseudodifferential equation:

m
∂2y

∂t2
+ 4c sin2

(
− ih

2
∂

∂x

)
y = 0. (3.6)

The pseudodifferential operator B can be developed into the Maclaurin series of the
form

sin2
(
− ih

2
∂

∂x

)
=−

(
h2

4
∂2

∂x2
+
h4

48
∂4

∂x4
+

h6

1440
∂6

∂x6
+ ···

)
. (3.7)

A transformation of the first two terms of series (3.7) by PA gives the following result:

−0.25h2 ∂2

∂x2

(
1 +

h2

6
∂2

∂x2

)
∼−0.25h2 ∂2

∂x2

1
1− (h2

/
12
)(
∂2
/
∂x2
) . (3.8)

Hence, a continuous approximation is

ch2 ∂
2y

∂x2
+m

(
1− h2

12
∂2

∂x2

)
∂2y

∂t2
= 0. (3.9)
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Following [15], let us introduce Young modulus E = c/h and the density ρ = m/h3.
Then one obtains the Love-type equation of the form

E
∂2y

∂x2
+ ρ
(

1− h2

12
∂2

∂x2

)
∂2y

∂t2
= 0, (3.10)

which takes into account a microstructure of the governing material.

3.2. Rayleigh model. Let us study transversal vibrations. The governing equations follow

m
d2yi
dt2

+ c
(
6yi− 4yi+1− 4yi−1 + yi+2 + yi−2

)= 0, i= 1,2,3, . . . ,n; (3.11)

y0 = yn+1 = 0; y−1 =−y1; yn+2 =−yn. (3.12)

The system of difference-differential equations (3.11) can be cast into the following
form:

m
∂2y

∂t2
+ 16c sin4

(
− ih

2
∂

∂x

)
y = 0. (3.13)

The classical continuous BVP yields

m
∂2y(x, t)

∂t2
+ ch4 ∂

4y(x, t)
∂x4

= 0, (3.14)

y = ∂2y

∂x2
= 0 for x = 0,L. (3.15)

The pseudodifferential operator can be developed into the Maclaurin series of the form

16sin4
(
− ih

2
∂

∂x

)
= h4∂4

∂x4
+
h6

6
∂6

∂x6
+
h8

80
∂8

∂x8
+ ··· . (3.16)

A transformation of the first two terms of series (3.16) by PA gives the following result:

h4 ∂4

∂x4

(
1 +

h2

6
∂2

∂x2

)
∼ h4 ∂4

∂x4

1
1− (h2

/
6
)(
∂2
/
∂x2
) . (3.17)

Hence, a continuous approximation is

ch4 ∂
4y

∂x4
+m

(
1− h2

6
∂2

∂x2

)
∂2y

∂t2
= 0, (3.18)

and the boundary conditions have the form of (3.15).
Note that the derived equation (3.18) belongs to the class of hyperbolic PDEs, but it is

not purely hyperbolic [5].
Finally, following [16], one may obtain the following Rayleigh equation:

EI
∂4y

∂x4
+ ρF

(
1− h2

6
∂2

∂x2

)
∂2y

∂t2
= 0. (3.19)



8 Mathematical Problems in Engineering

4. Concluding remarks

The procedure described illustrates how the PA can serve as an effective tool for the con-
struction of Love- and Rayleigh-type theories. It is shown that Love and Rayleigh models
can be obtained as hyperbolic approximations of the governing discrete models. Further-
more, using the mentioned approach, two improved string (2.11) and membrane (2.21)
models have been also derived.
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