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A mathematical model is described to investigate the damping moment of weakly non-
linear roll and yaw motions of a floating body in time domain under the action of si-
nusoidal waves. The mathematical formulation for added mass moment of inertia and
damping is presented by approximating time-dependent coefficients and forcing mo-
ments when small distortion holds. Using perturbation technique, we obtain orderwise
equations wherein the closed-form solution is obtained for zeroth-order case, and for
higher-order cases we resort to numerical integration using Runge-Kutta method with
adaptive step-size algorithm. In order to analyze the model result, we perform numerical
experiment for a vessel of 19190 tons under the beam wave of 1 m height and frequency
0.74 rad/s. Closer inspection in damping analysis reveals that viscous effect becomes sig-
nificant for roll damping; whereas for yaw damping, contribution from added mass vari-
ation becomes significant.

Copyright © 2007 S. K. Das and S. N. Das. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Understanding of roll and associated damping is important for the safety of a ship. Con-
siderable attention has been paid by various researchers to investigate roll-damping mo-
ment since the pioneering work of Froude [1]. The oldest roll-damping formulation of
Froude was based on linear-plus-quadratic velocity-dependent form to account for en-
ergy dissipation mechanism during roll motion. The important research work carried
out in this direction during last century can be obtained from Kerwin [2], Haddara [3],
Dalzell [4], Haddara [5], and Nayfeh and Khdeir [6]. Haddara [3] first introduced the
linear-plus-cubic velocity-dependent roll-damping moment to improve analytical model
arising from the classical linear-plus-quadratic form. Dalzell [4] performed a detailed
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study on the cubic and quadratic models by using the method of slowly varying param-
eters and a least-square technique. Haddara [5] further suggested different roll-damping
models by using the same roll decay data. A stochastic version of Haddara’s technique was
adopted later by Dalzell [4] to investigate various models. Though this method is accurate
and included angle-dependent forms, yet it could not separate the influence of the angle-
dependent components of the same order of magnitude. Cardo et al. [7] introduced two
types of damping moments containing linear-quadratic and linear-cubic forms in the
angular velocity of rolling equation. Mathisen and Price [8] identified the roll-damping
parameters by perturbation technique. Spouge [9] compared various methods for the
analysis of forced roll and roll decrement experiments in calm water from which nonlin-
ear roll-damping coefficients may be determined. Roberts [10] related the roll-damping
moment to a loss function using a stochastic approach. His analysis estimates nonlin-
ear damping by using a cubic spline interpolation of peak amplitudes. Bass and Haddara
[11] separated the influence of all the different components of the roll-damping moment
through energy approach, which provide an insight into the damping mechanism. Had-
dara and Bennett [12] studied the angular dependence roll damping by using experimen-
tally obtained free roll decay curves for an R-class icebreaker model and an arctic-class
cargo model. Haddara and Bass [13] also investigated the form of roll-damping moment
for small fishing vessels to gain better understanding of the energy dissipating mechanism
for these vessels. Chun et al. [14] investigated the roll-damping characteristics of a 3-ton
class fishing vessel experimentally and numerically.

In the present work, we propose a new form of damping moment for coupled roll and
yaw motions of a floating body which is excited by unidirectional sinusoidal wave. The
nonlinearity in roll damping is realized by considering the variation of added mass in
the damping moment formulation and also analyzing (i) the change in time-dependent
virtual mass, (ii) linear roll angle, (iii) quadratic roll angle, and (iv) viscous effects. Us-
ing perturbation technique, we derive zeroth-order and other higher-order equations,
wherein for zeroth-order solution we adopt the procedure described by Das and Das [15]
and Salvesen et al. [16] to obtain integrated sectional added mass and damping over the
length of the body. We seek analytical solution in time domain by applying Laplace trans-
form technique for a given frequency. For higher-order perturbed equations, an adaptive
Runge-Kutta method with step-size adjustment algorithm is employed to reveal damping
characteristics for coupled system.

2. Mathematical formulation

Usually, frequency response analysis corresponding to a Fourier approach can be con-
veniently applied in ship motion studies [17]. Owing to complex interactions between
the hull- and ship-generated waves, the governing equations are represented in the form
of integrodifferential equations, posing enormous difficulty in solving [18]. Such diffi-
culty can be conveniently avoided by considering the ship motion in regular waves. This
reduces the integrodifferential equation into ordinary differential equation with coeffi-
cients corresponding to the frequency of the encountering wave. We consider a Cartesian
coordinate system (x, y,z) fixed with respect to the mean position of the ship with z-axis
acting in the vertical upward direction. In Figure 2.1, the motion responses represented
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Figure 2.1. Motion definition of a floating body.

by η1, η2, η3, η4, η5, and η6 indicate surge, sway, heave, roll, pitch, and yaw, respectively.
Following the approach suggested by Tick [17] for linearly coupled system in two degrees
of freedom, one can obtain

∑

k=4,6

[−ω2Mjk(ω)Xk(ω)eiωt + iωBjk(ω)Xk(ω)eiωt +Cjk(ω)Xk(ω)eiωt
]

=Dj(ω)F(ω)eiωt, j = 4,6,
(2.1)

where Xk(ω) is the displacement, F(ω) is the wave force with amplitude Dj(ω), Mjk(ω),
Bjk(ω), and Cjk(ω) are the frequency-dependent virtual mass, damping, and restoring
coefficients, respectively. Defining

ηk(t)= Xk(ω)eiωt, f (t)= F(ω)eiωt, k = 4,6, (2.2)

we obtain

∑

k=4,6

[
Mjk(ω)η̈k(t) +Bjk(ω)η̇k(t) +Cjk(ω)ηk(t)

]=Dj(ω) f (t), j = 4,6. (2.3)

Equation (2.3) provides time-dependent formulation of motion response expressed as
ordinary differential equation. It is apparent that the motion variables (ηi), exciting force
f (t), and wave frequency (ω) described in (2.3) are complex quantities and can be ex-
pressed as algebraic sum of real and imaginary parts. Accordingly, the forcing function
f (t) becomes

f (t)= F(ω)ei(ωR+iωI )t = F(ω)eiωRte−ωI t. (2.4)

For simplicity, we assume the imaginary part of wave frequency (ωI) is equal to zero,
yielding

f (t)= F(ω)eiωRt. (2.5)
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The motion responses and forcing functions are sum of real and imaginary parts,

ηj = ηjR +ηjI , Fj = FjR +FjI , j = 4,6. (2.6)

Considering only the real part of motion response and exciting moment for a given wave
frequency, the equation of motion for coupled roll and yaw can be described using the
notation of operator [19] as

[
di4η4(t) +di6η6(t)

]= Fi(t), i= 4,6, (2.7)

where the operator di j is given by

di j = Δi j(t)
d2

dt2
+Bij(t)

d

dt
+Cij(t), i, j = 4,6, (2.8)

Fi(t), i = 4,6, are the exciting wave moments, Δi j(t) =Mij +Aij(t) is the virtual mass
moment of inertia, Aij(t), Bij(t), and Cij(t) are the cross-coupled coefficients like added
mass, damping, and restoring in the direction i due to any motion in the direction j.
Using (2.7) and (2.8), the governing equation can be written in time domain as [20]

{[
Mij
]

+
[
Aij(t)

]}[
η̈i
]

+
[
Bij(t)

][
η̇i
]

+
[
Cij(t)

][
ηi
]= [Fj(t)

]
. (2.9)

The coefficient matrices can be expressed as

[
Mij

]=
[
I4 −I46

−I64 I6

]
,

[
Aij(t)

]=
[
A44(t) A46(t)
A64(t) A66(t)

]
,

[
Bij(t)

]=
[
B44(t) B46(t)
B64(t) B66(t)

]
,

[
Cij(t)

]=
[
C44(t) 0

0 0

]
,

[
η̈i
]=

[
η̈4

η̈6

]
,

[
η̇i
]=

[
η̇4

η̇6

]
,

[
ηi
]=

[
η4

η6

]
,

[
Fi(t)

]=
[
F4(t)
F6(t)

]
,

(2.10)

where the components in the matrices [η̇i] and [η̈i] indicate time derivatives. Introducing
dimensionless analysis (given in the appendix (A.1)) and substituting (2.10) in (2.9), and
after dropping the bars, we obtain

a1(t)η̈4 + a2(t)η̇4 + a3(t)η4 + b1(t)η̈6 + b2(t)η̇6 = F4(t), (2.11)

a4(t)η̈4 + a5(t)η̇4 + b3(t)η̈6 + b4(t)η̇6 = F6(t). (2.12)

The coefficients {(a1(t),a4(t));(a2(t),a5(t))} and {(b1(t),b3(t));(b2(t),b4(t))} represent
the time-dependent virtual mass moment of inertia and damping moments for roll and
yaw, respectively and a3(t) is the roll restoring moment. F4(t) and F6(t) are the forcing
moments for roll and yaw. I j is the moment of inertia in the jth mode, and I jk is the
product of inertia.
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3. Approximation of hydrodynamic coefficients and forcing moments

As waves pass through any floating body, the mass moment of inertia of the displaced vol-
ume of water may undergo changes with time. Hence, the virtual mass moment of inertia
and the damping coefficients are assumed to vary with time [19]. We approximate these
coefficients by using series expansions where the nonlinearity is weak but the assumption
of small distortion still holds. Accordingly, the added mass terms appearing in (2.11) and
(2.12) are expressed in generalized vector form as

{χ(t)} =
∞∑

i=0

εi
{
χi
}

, (3.1)

where

{
χ(t)

}= {a1,b1,a4,b3
}T

,
{
χi
}= {a1i,b1i,a4i,b3i

}T
, i= 0,1,2,3, . . . , (3.2)

and χi = χi(t) when i �= 0. The superscript T indicates transpose. The series expansion
(3.1) is performed with respect to the small dimensionless parameter ε, which is a mea-
sure of nonlinearity; arises due to the ratio of roll-damping coefficient (B44) and the
product of virtual mass moment of inertia (I4 +A44) and reference wave frequency (ω0)
[13, 14]. As ε → 0, the hydrodynamic coefficients are no longer nonlinear leading to
{χ(t)} = {χ0} = {a10,b10,a40,b30}T ; and (3.1) reaches to a fundamental form. The damp-
ing coefficients are formulated by considering linear, quadratic, and viscous angular de-
pendencies [20, 21],

ψ(t)= ψ0 + ε
{
χ̇(t) +ψ1(t)

∣∣ηk(t)
∣∣+ψ2(t)η2

k(t) +ψ3(t)
∣∣η̇k(t)

∣∣}

+ ε2{χ̇(t) +ψ4(t)
∣∣ηk(t)

∣∣+ψ5(t)η2
k(t) +ψ6(t)

∣∣η̇k(t)
∣∣}+ ··· ,

(3.3)

where

ψ = {ψ(t)} = {a2,b2,a5,b4
}T

,
{
ψi
}= {a2i,b2i,a5i,b4i

}T
, i= 0,1,2, . . . ,n, (3.4)

and ε = B44/(I4 +A44)ω0 � 1. Here ψi = ψi(t) when i �= 0 and (3.3) has been written in
generalized form to express the various components of damping coefficients in vector
form. The motion variables appearing in the damping coefficient representation (3.3)
assume the following form:

ηk =
{
ηk
}= {η4,η6,η4,η6

}
. (3.5)

The detailed expressions for added mass and damping coefficients ((3.2) and (3.4)) are
given in the appendix ((A.2) and (A.3)). As ε→ 0, ψ(t)→ ψ0, representing linear damping
case. The roll restoring coefficient a3(t) arising in (2.11) can be written as

a3(t)= a30 + εa31
(
η4
)

+ ε2a32
(
η4
)

+ ··· , (3.6)

where

a30 = ρg∇GM, a31
(
η4
)= κ1ω

2η4, a32
(
η4
)= κ2ω

2η3
4, (3.7)
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∇ is the displaced volume of the floating body,GM is the metacentric height, ρ is the mass
density of water, and κ1, κ2 are the restoring coefficients for first-order and second-order
terms, respectively. For simplicity, we consider roll-restoring coefficient as constant, that
is, κ1 = κ2 = 0. The external forcing moments Fi(t), i= 4,6, can be approximated as

Fi(t)= F0
i (t) + εF1

i (t) + ε2F2
i (t) + ··· , (3.8)

where the zeroth-order term in (3.8) is expressed as

F0
i (t)= Fa0

i Sin(ωt+ θ), i= 4,6, (3.9)

Fa0
4 and Fa0

6 are the amplitudes of the roll and yaw exciting moments, respectively, θ is the
phase angle. The amplitudes of roll and yaw exciting moments for zero forward speed of
the body can be expressed in the following form [16]:

Fa0
4 = αρ

∫ (
f4 +h4

)
dξ, Fa0

6 = αρ
∫
ξ
(
f2 +h2

)
dξ, (3.10)

where α is the amplitude of the incident wave with θ = 0, ρ is the density of water, fi and
hi represent the sectional Froude-Kriloff force and sectional diffraction force, respectively.
The integration has been performed over the length of the vessel.

4. Solution procedure

Applying perturbation technique to the nonlinear terms of the angular variables corre-
sponding to roll and yaw [19, 22] yields

ηk(t)= ηk0(t) + εηk1(t) + ε2ηk2(t) + ··· . (4.1)

Substituting (4.1) and (3.8) to (2.11) and (2.12), and separating the powers of ε, we obtain
the orderwise equations for roll and yaw as follows:

(i) roll equations:

a10
{
η̈4i(t)

}
+ a20

{
η̇4i(t)

}
+ a30

{
η4i(t)

}
+ b10

{
η̈6i(t)

}
+ b20

{
η̇6i(t)

}= {Fi4(t)
}

, i= 0,1,2;
(4.2)

(ii) yaw equations:

a40
{
η̈4i(t)

}
+ a50

{
η̇4i(t)

}
+ b30

{
η̈6i(t)

}
+ b40

{
η̇6i(t)

}= {Fi6(t)
}

, i= 0,1,2, (4.3)

where {η4i}={η40,η41,η42}T , {η6i}={η60,η61,η62}T , {Fi4(t)}={F0
4 (t),F1

4 (t),F2
4 (t)}T , and

{Fi6(t)} = {F0
6 (t),F1

6 (t),F2
6 (t)}T for i= 0,1,2.

The expression for first-order and second-order forcing functions Fi4(t) and Fi6(t) is
mentioned in the appendix (A.4).

4.1. Analytical solution. On applying Laplace transform to (4.2) and (4.3), we obtain
zeroth-order solution in transformed domain,

αi f40(s) +βi f60(s)= γi, i= 1,2, (4.4)
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where f40(s) and f60(s) are the angular displacements and αi, βi, and γi are the corre-
sponding coefficients. The detailed solution procedure can be obtained from the investi-
gations of Das and Das [23]. After solving two equations of (4.4), we obtain

f40(s)= 1
δ3

[
c1

1

s+ λ1
+

c1
2(s+ σβ)

(s+ σβ)2 +
(
β
√

1− σ2
)2 +

c1
3 − c1

2σβ

(s+ σβ)2 +
(
β
√

1− σ2
)2

+
c1

4s

s2 + (2πω)2
+

c1
5

s2 + (2πω)2

]
,

f60(s)= 1
δ3

[
c2

1

s
+

c2
2

s+ λ1
+

c2
3(s+ σβ)

(s+ σβ)2 +
(
β
√

1− σ2
)2 +

c2
4 − c2

3σβ

(s+ σβ)2 +
(
β
√

1− σ2
)2

+
c2

5s

s2 + (2πω)2
+

c2
6

s2 + (2πω)2

]
,

(4.5)

where σ is the damping factor and β is the undamped natural frequency of the system.
c1
i and c2

j are the unknown coefficients, determined by equating like powers of s resulting
in a set of linear algebraic equations. These unknown coefficients were obtained by using
Gauss elimination method. The corresponding time-domain solution can be obtained as

η40(t)= 1
δ3

[
c1

1e
−λ1t + c1

2e
−σβt cos

(
β
√

1− σ2t
)

+
c1

3 − c1
2σβ

β
√

1− σ2
e−σβt sin

(
β
√

1− σ2t
)

+ c1
4 cos(2πωt) +

c1
5

2π
sin(2πωt)

]
,

η60(t)= 1
δ3

[
c2

1 + c2
2e
−λ1t + c2

3e
−σβt cos

(
β
√

1− σ2t
)

+
c2

4 − c2
3σβ

β
√

1− σ2
e−σβt sin

(
β
√

1− σ2t
)

+ c2
5 cos(2πωt) +

c2
6

2π
sin(2πωt)

]
.

(4.6)

We notice that the terms appearing in (4.6) and can be grouped into three parts: (i)
constant term, indicating positional shift (only in yaw); (ii) oscillatory term, indicating
harmonic behavior; and (iii) decay term. The terms having factors e−λi1t and e−σβt indicate
damping and as t→∞, the effect of damping ceases to zero.

4.2. Numerical solution. Owing to the complexity in obtaining the analytical solution
for higher-order equations involved in (4.2) and (4.3), we seek numerical solution and
reduce the governing equations into a set of first-order equations with appropriate initial
and boundary conditions,

η̇4(t)= φ4, η̇6(t)= φ6,

φ̇4 = η̈4(t)=
[
F4(t)− {a2(t)η̇4 + a3(t)η4 + b1(t)η̈6 + b2(t)η̇6

}]

a1(t)
,

φ̇6 = η̈6(t)=
[
F6(t)− {a4(t)η̈4 + a5(t)η̇4 + b4(t)η̇6

}]

b3(t)
.

(4.7)
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Table 5.1. Sectional coefficients of the floating body.

Wave Sectional coefficients

Frequency
(dimen-
sionless)

Sway
added
mass

Roll
added
mass

Sway-
roll
added
mass

Sway
damping

Roll
damping

Sway-roll
damping

Sway
exciting
force

Roll
exciting
moment

1.18 0.65 0.055 −0.13 1.0 0.02 −0.16 1.5 1.2

The system of (4.7) is solved by applying step-by-step integration procedure based on the
Runge-Kutta-Gill method [24] with adaptive step-size adjustment algorithm to achieve
desired accuracy. This scheme controls the growth of rounding errors efficiently and is
stable with respect to the nonlinearity. The detailed description of model development
and its validation are given in [23]. A computer program “SHIPMOT-RY-N” consist-
ing of three main modules and several submodules is developed to implement detailed
computational procedures of roll and yaw motions. These three main modules SHIP-D,
SHIP-A, and SHIP-N deal with the relevant ship data, analytical, and numerical compu-
tations, respectively.

5. Numerical experiment and discussions

In order to perform numerical experiment, a vessel of length 150 m, beam 20.06 m,
draught 9.88 m, and of mass 19 190 tons is considered. Further, we consider a sinusoidal
wave of period 8.5 seconds (frequency 0.74 rad/s) with 1 m wave height and zero phase
angle acting perpendicularly to the hull of the vessel. The sectional coefficients for added
mass, damping, Froude-Krylov, and diffraction force are obtained (Table 5.1) on the basis
of experimental study conducted by Vugts [25], and illustrated by Salvesen et al. [16].

It may be noticed that setting b1(t) = b2(t) = a4(t) = a5(t) = 0 in (2.11) and (2.12),
uncoupled motion corresponding to roll and yaw can be derived. Prior to solving higher-
order equations, we validate numerical scheme by comparing analytical solution with
numerical solution for uncoupled zeroth-order roll motion and observed close agree-
ment between them (Figure 5.1). We focus our analysis on damping sensitivity and the
effects of exciting forces on uncoupled and coupled roll and yaw motions. It is appar-
ent from (A.4) that the nonlinear forcing functions are having implicit dependence on
angular motions; added mass and damping coefficients of roll and yaw. For simplifica-
tion, we consider first- and second-order coefficients of virtual mass, a1i, b1i, a4i, and b3i

(i = 1,2, . . .) are in phase. The variations of roll and yaw amplitudes with frequency are
plotted in Figures 5.2 and 5.3, and it is interesting to note that as frequency increases, roll
amplitude decreases asymptotically whereas yaw decreases very fast while changing its
direction to attain stationary state after a critical frequency ωc = 100. The nonlinearity in
damping could be realized after analyzing the terms appearing in (3.3), which essentially
consists of four parts: (i) damping due to the change in time-dependent virtual added
mass; (ii) damping due to the product with linear angle; (iii) damping due to the product
with quadratic angle; and (iv) damping due to viscous effect. The numerical contribu-
tion of each component showing first- and second-order approximations is plotted in
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Figure 5.1. Comparison of analytical and numerical approaches for zeroth-order uncoupled roll mo-
tion.
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Figure 5.2. Variation of roll amplitude with frequency.

Figures 5.4–5.7, assigning the variable name as NLRDA (nonlinear roll-damping ampli-
tude). We notice that the contribution due to change in added mass induces sinusoidal
oscillation, whereas contribution from (ii), (iii), and (iv) shows decay with harmonic be-
havior as time increases. While accessing orderwise contributions, it may be noticed that
the amplitude of viscous roll damping is dominant in comparison to other components
for t < 50 seconds (Figure 5.7). Figure 5.8 shows combined contribution of orderwise roll
damping. Using the above analysis, we access the contribution of first-order yaw damping
and its components NLYDA (nonlinear yaw damping amplitude), and notice the dom-
inance of yaw added mass variation over viscous and other damping terms in contrast
to roll damping (Figures 5.9 and 5.10). However, the magnitudes of yaw damping terms
are smaller than the corresponding roll-damping counterpart (Figures 5.8 and 5.11). In
foregoing analysis, the all damping terms appear to be very small due to dimensionless
formulation with respect to constant reference added mass coefficient a0 ≈ O(107). In
spite of having nonlinear dependence on angular motions, added mass and damping co-
efficients, the forcing moments manifest harmonic oscillations (Figures 5.12 and 5.13).
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Figure 5.3. Variation of yaw amplitude with frequency.
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Figure 5.4. Contribution of first- and second-order roll damping.
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Figure 5.5. Comparison of linear roll damping: first-order versus second-order.

We access the effect of coupling for zeroth-order case where closed-form solution re-
veals higher roll amplitudes with phase lag for uncoupled case (Figure 5.14). The reduc-
tion in degrees of freedom from two to one enhances phase lag and exhibits artificial
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Figure 5.6. Comparison of quadratic roll damping: first-order versus second-order.
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Figure 5.7. Comparison of viscous roll damping: first-order versus second-order.
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Figure 5.8. Comparison of combined roll damping: first-order versus second-order.

increase in amplitude due to the imbalance caused in the absence of yaw (Figure 5.14).
This is also apparent from Table 5.2 where the effects of NLRDA are shown while com-
paring the nonlinear roll damping (after 125 seconds) for coupled and uncoupled cases.
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Figure 5.9. Comparison of yaw damping amplitudes due to variation of added mass: first-order versus
second-order.
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Figure 5.10. Comparison of viscous yaw damping: first-order versus second-order.
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Figure 5.11. Comparison of yaw damping: first-order versus second-order.

However, the amplitudes of coupled yaw motion are found to be greater than the cor-
responding amplitude of uncoupled yaw motion except in first-order case as shown in
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Figure 5.12. First-order wave forcing function on roll.
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Figure 5.13. Second-order wave forcing function on roll.
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Figure 5.14. Comparison of zeroth-order roll motion solved analytically: uncoupled against coupled
motions.

Table 5.3 (NLYDA). Figure 5.15 shows significant increase in oscillations in yaw angle for
zeroth-order coupled motion in contrast to the uncoupled one when solved analytically.

6. Conclusion

We have presented analytical and computational approaches to study the nonlinear de-
pendence of added mass and damping for roll and yaw motions while external wave force
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Figure 5.15. Comparison of zeroth-order yaw motions solved analytically: uncoupled against coupled
motions.

Table 5.2. Contribution of nonlinear roll damping after 125 seconds (NLRDA).

Uncoupled roll motion Coupled roll motion

Zeroth order First order Second order Zeroth order First order Second order

±4.0× 10−1 ±1.0× 10−6 −1.3× 10−7 ±2.0× 10−1 ±5.0× 10−8 ±5.0× 10−9

Table 5.3. Contribution of nonlinear yaw damping after 125 seconds (NLYDA).

Uncoupled yaw motion Coupled yaw motion

Zeroth order First order Second order Zeroth order First order Second order

±8.0× 10−3 ±5.0× 10−8 ±1.0× 10−9 ±2.0× 10−2 ±5.0× 10−8 ±4.0× 10−9

is harmonic. Using the perturbation analysis, we are able to access the nonlinear form
and implicit functional dependence of angular motions in added mass and damping co-
efficients. Using these theoretical and computational techniques, one can also estimate
the system stability, damping, and their interrelationship for a known wave frequency.
The finding of the model result shows that the viscous effect becomes significant for roll
damping; whereas for yaw damping, the effect of added mass becomes significant.

Appendix

Expressions for dimensionless quantities appeared in (2.11) and (2.12),

η4 =
η4

η0
, η6 =

η6

η0
, a1(t)=

[
I4 +A44(t)

]

a0
, a2(t)= B44(t)t0

a0
,

a3(t)= C44(t)t20
a0

, a4(t)=
[− I46 +A64(t)

]

a0
, a5(t)= B64(t)t0

a0
,
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b1(t)=
[− I46 +A64(t)

]

a0
, b2(t)= B46(t)t0

a0
, b3(t)=

[
I6 +A66(t)

]

a0
,

b4(t)= B66(t)t0
a0

, F4(t)= F4(t)t20
a0η0

, F6(t)= F6(t)t20
a0η0

, ω = ωe
ω0

, (A.1)

where a0 is the reference virtual mass moment of inertia and ω0 is reference frequency
corresponding to the wave periodicity t0 seconds.

The detailed expressions for a1i, b1i, a4i, and b3i appeared in (3.2),

a1i(t)= σCos(ωt), i= 1,2, . . . , b1i(t)= σCos(ωt), i= 1,2, . . . ,

a4i(t)= σCos(ωt), i= 1,2, . . . , b3i(t)= σCos(ωt), i= 1,2, . . . .
(A.2)

The detailed expressions for a2i, b2i, a5i, and b4i appeared in (3.4),

a2i(t)= σe−σβt, i= 1,2, . . . , b2i(t)= σe−σβt, i= 1,2, . . . , σ = 1
a0

,

a5i(t)= σe−σβt, i= 1,2, . . . , b4i(t)= σe−σβt, i= 1,2, . . . .
(A.3)

Expressions for Fi4(t) and Fi6(t), i= 1,2, appeared in (4.2) and (4.3),

F0
4 (t)= Fa0

4 Sin(ωt+ θ), F0
6 (t)= Fa0

6 Sin(ωt+ θ),

F1
4 (t)=−[a11(t)η̈40(t) +

{
a21(t)

∣∣η40(t)
∣∣+ a22(t)η2

40(t) + a23(t)
∣∣η̇40(t)

∣∣}η̇40(t)
]

− [b11(t)η̈60(t) +
{
b21(t)

∣∣η60(t)
∣∣+ b22(t)η2

60(t) + b23(t)
∣∣η̇60(t)

∣∣}η̇60(t)
]
,

F1
6 (t)=−[a41(t)η̈40(t) +

{
a51(t)

∣∣η40(t)
∣∣+ a52(t)η2

40(t) + a53(t)
∣∣η̇40(t)

∣∣}η̇40(t)
]

− [b31(t)η̈60(t) +
{
b41(t)

∣∣η60(t)
∣∣+ b42(t)η2

60(t) + b43(t)
∣∣η̇60(t)

∣∣}η̇60(t)
]
,

F2
4 (t)=−[a12(t)η̈40(t) +

{
ȧ11(t) + a24(t)

∣∣η40(t)
∣∣+ a21(t)

∣∣η41(t)
∣∣+ 2a22(t)η40(t)η41(t)

+ a25(t)η2
40(t) + a26(t)

∣∣η̇40(t)
∣∣+ a23(t)

∣∣η̇41(t)
∣∣}η̇40(t)

]

− [a11(t)η̈41(t) + {a21(t)
∣∣η40(t)

∣∣+ a22(t)η2
40(t) + a23(t)

∣∣η̇40(t)
∣∣}η̇41(t)

]

− [b12(t)η̈60(t) +
{
ḃ11(t) + b24(t)

∣∣η60(t)
∣∣+ b21(t)

∣∣η61(t)
∣∣+ 2b22(t)η60(t)η61(t)

+ b25(t)η2
60(t) + b26(t)

∣∣η̇60(t)
∣∣+ b23(t)

∣∣η̇61(t)
∣∣}η̇60(t)

]

− [b11(t)η̈61(t) + {b21(t)
∣∣η60(t)

∣∣+ b22(t)η2
60(t) + b23(t)

∣∣η̇60(t)
∣∣}η̇61(t)

]
,

F2
6 (t)=−[a42(t)η̈40(t) +

{
ȧ41(t) + a54(t)

∣∣η40(t)
∣∣+ a51(t)

∣∣η41(t)
∣∣+ 2a52(t)η40(t)η41(t)

+ a55(t)η2
40(t) + a56(t)

∣∣η̇40(t)
∣∣+ a53(t)

∣∣η̇41(t)
∣∣}η̇40(t)

]

− [a41(t)η̈41(t) +
{
a51(t)

∣∣η40(t)
∣∣+ a52(t)η2

40(t) + a53(t)
∣∣η̇40(t)

∣∣}η̇41(t)
]

− [b32(t)η̈60(t) +
{
ḃ31(t) + b44(t)

∣∣η60(t)
∣∣+ b41(t)

∣∣η61(t)
∣∣+ 2b42(t)η60(t)η61(t)

+ b45(t)η2
60(t) + b46(t)

∣∣η̇60(t)
∣∣+ b43(t)

∣∣η̇61(t)
∣∣}η̇60(t)

]

− [b31(t)η̈61(t) + {b41(t)
∣∣η60(t)

∣∣+ b42(t)η2
60(t) + b43(t)

∣∣η̇60(t)
∣∣}η̇61(t)

]
.

(A.4)
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