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Oscillator networks have been developed in order to perform specific tasks related to image
processing. Here we analytically investigate the existence of synchronism in a pair of phase
oscillators that are short-range dynamically coupled. Then, we use these analytical results to design
a network able of detecting border of black-and-white figures. Each unit composing this network
is a pair of such phase oscillators and is assigned to a pixel in the image. The couplings among the
units forming the network are also dynamical. Border detection emerges from the network activity.
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reproduction in any medium, provided the original work is properly cited.

1. Introduction

The synchronous firing of neurons seems to be important for accomplishing cognitive tasks
such as attention (e.g., [1]), comprehension (e.g., [2]), coordination (e.g., [3]), perception (e.g.,
[4]), and sensory segmentation (e.g., [5]). Such experimental findings have inspired works
about image processing (e.g., recognition, segmentation, symmetry detection) based on the
synchronism of coupled oscillators (e.g., [6–11]). In addition, several neural systems, such
as spinal cord (e.g., [12, 13]), hippocampus (e.g., [14, 15]), and visual cortex (e.g., [16, 17]),
have been modelled by phase oscillators—one of the simplest oscillator models. In spite of
its simplicity, this approach is suitable because more complex models for neurons like pulse-
coupled and Hodgkin-Huxley-type models can be transformed into a phase oscillator model
through coordinate changes [18]. Networks of phase oscillators can be electronically built
using phase-locked loops (PLLs) (e.g., [19–22]).

Here we analytically study a phase oscillator model with dynamical coupling, and then
use it in order to form a network capable of successfully detecting border of black-and-white
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figures. Each oscillator of our network corresponds to a first-order PLL (e.g., [8, 11, 17, 23]),
which is equivalent to an overdamped pendulum.

The aim of any border detection process is to capture the main structural properties
of an image, which can be useful, for instance, for image compression or diagnosis in
echocardiography (e.g., [24]). Usually, this kind of image processing involves the use of partial
derivatives (gradient, Laplacian; e.g., [25]), which are discretized in the space domain and in
the time domain. Here we propose a scheme based on a network where each unit is formed
by a pair of dynamically coupled PLLs corresponding to a pixel of the image. Border detection
is obtained from the network activity. Notice that such a model can be transformed into a
dedicated hardware for executing this image processing task. Also it naturally presents space
discretization, because it is composed of a finite number of PLLs. This feature plus the fact that
the time domain does need to be discretized can reduce the stability problems related to the
algorithms employed for numerically calculating partial derivatives.

2. Model of a single unit

Consider that the temporal activities of two first-order PLLs with dynamical coupling are
described by the following equations:

dθ1

dt
= ω1 + k12 sin

(
θ2 − θ1

)
,

dθ2

dt
= ω2 + k21 sin

(
θ1 − θ2

)
,

dk12

dt
= μα1cos

(
θ1 − θ2

)
− μk12,

dk21

dt
= μα2cos

(
θ2 − θ1

)
− μk21,

(2.1)

where θj and ωj(j = 1, 2) are the phase and the natural frequency of the oscillator j,
respectively; kij (i, j = 1, 2 with i /= j) is the connection strength from the oscillator j to the
oscillator i; αj (j = 1, 2) is the coefficient related to the Hebbian connection modification; and
μ represents a natural (exponential) decay. The parameters ωj , αj , and μ are positive numbers.
Thus, the connection strengths are enhanced when the oscillators are in phase, and they are
weakened when they are out of phase. This kind of (synaptic) modification between two
oscillators (neurons) was suggested by Hebb [26].

By defining q ≡ θ2 − θ1; ω ≡ ω2 −ω1; α0 ≡ (α1 + α2)/2; k ≡ (k12 + k21)/2, system (2.1) can
be rewritten as

dq

dt
= f1(q, k) = ω − 2k sin q,

dk

dt
= f2(q, k) = μα0 cos q − μk.

(2.2)

The variables q and k represent the phase difference and the average connection strength,
respectively. Notice that fj(q, k) = fj(q + 2π, k) (j = 1, 2). The formation of synchronized
clusters in networks of phase oscillators described by system (2.2) was investigated by Seliger
et al. [27]. In this section we study the asymptotic behaviors of this model.
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Synchronism occurs when both nodes oscillate in a common frequency, which means
that dθ2/dt = dθ1/dt or θ2 − θ1 = q = constant. Thus, synchronism can happen if there
are constants (q∗, k∗) so that if (q(t), k(t)) = (q∗, k∗) then dq/dt = 0 and dk/dt = 0 for all
time t. Notice that a synchronous solution is an equilibrium point (q∗, k∗) of the dynamical
system (2.2). Such a solution corresponds to an intersection point of the nullclines f1 = 0
(k = ω/(2 sin q)) and f2 = 0 (k = α0 cos q).

The stability of an equilibrium point (q∗, k∗) can usually be determined by calculating
the eigenvalues λ of the Jacobian matrix corresponding to system (2.2) linearized around this
point. It is asymptotically stable when all eigenvalues have negative real parts (e.g., [28]). For
system (2.2), the eigenvalues λ are the roots of the polynomial

λ2 +
(
μ + 2k∗ cos q∗

)
λ + 2μk∗ cos q∗ − 2μα0

(
sin q∗

)2 = 0. (2.3)

According to the Routh-Hurwitz criterion, both roots of the polynomial λ2 + a1λ + a2 = 0 have
negative real parts if a1 > 0 and a2 > 0 (e.g., [29]).

When ω = 0, the equilibrium points are P1 = (0, α0), P2 = (π/2, 0), P3 = (π,−α0), P4 =
(3π/2, 0), where P1 and P3 are asymptotically stable, and P2 and P4 are unstable.

When ω /= 0, there are also four equilibrium solutions if ω < α0. The points with

k∗ = ± α0√
2

√√√
√

1 +

√

1 −
(
ω

α0

)2

(2.4)

are asymptotically stable; the ones with

k∗ = ± α0√
2

√√√
√

1 −

√

1 −
(
ω

α0

)2

(2.5)

are unstable. When ω = α0, there are only two equilibrium points because two saddle-node
bifurcations (e.g., [28]) occur. When ω > α0, there is not synchronism; however, there is a limit
cycle, which corresponds to a closed and isolated trajectory in the state space q × k.

For an autonomous two-dimensional system, Poincaré-Bendixson theorem (e.g., [28])
ensures that there is an asymptotically stable limit cycle in a region of the state space if the
vector field (f1, f2) points inward everywhere on the boundary of this region, which must
not contain any equilibrium point. For system (2.2), it is easy to verify that if ω > α0, then
there is such an attracting trajectory inside the region R, where R is the rectangle given by
R = {(q, k) : 0 ≤ q < 2π, α0 +(ε/μ) < k < −α0 − (ε/μ)} for ε → 0+. In this case, k oscillates and q
grows as the time goes by, as shown in Figure 2. Figure 1 illustrates the case with synchronous
(equilibrium) asymptotic solution.

In order to analytically characterize the limit cycle, suppose that the asymptotic behavior
of q(t) in this case is given by qasymp(t) � Bt. By inserting this approximated (linear) solution
in the equation for dk/dt and integrating it, the asymptotic solution of k(t) is

kasymp(t) � A cos(Bt − ϕ), (2.6)

where A = μα0/
√
μ2 + B2 and sinϕ = B/

√
μ2 + B2. By substituting this expression in the

equation for dq/dt in (2.2), an equation for calculating B is found. In fact, B is the root of
the polynomial

B3 −ωB2 +
(
μ2 + μα0

)
B −ωμ2 = 0. (2.7)
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Figure 1: Temporal evolution of q(t) and k(t) obtained by numerically integrating system (2.2). Parameter
values: ω = 1, α = 2, μ = 1. Initial conditions: q(0) = 0, k(0) = 5. In this case, the asymptotic solution
corresponds to the equilibrium point (q∗, k∗) = (0.26, 1.93).
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Figure 2: Temporal evolution of q(t) and k(t) obtained by numerically integrating system (2.2). Parameter
values: ω = 10, α = 2, μ = 1. Initial conditions: q(0) = 0, k(0) = 5. In this case, the asymptotic solution
corresponds to the limit cycle, where k(t) oscillates with frequency B � 9.8 and amplitude A � 0.20, and
q(t) linearly grows with slope A.
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(a) (b)

Figure 3: (a) At t = 0, this is the image presented to the network with 9 × 9 units. (b) At t = 40, the border
of the image is dynamically determined.

Observe that when ω � 1, then the angular velocity B can be written as B � ω + Δ, with
|Δ| 	 1. The value of Δ is estimated by

Δ � −
μα0ω

ω2 + μ2 + μα0
. (2.8)

Consequently, the oscillation amplitude A of kasymp(t) when ω � 1 is

A �
μα0

ω
. (2.9)

For instance, for ω = 10, α0 = 2, and μ = 1, these approximated expressions give B � 9.8
andA � 0.20, which are in good agreement with the numerical solutions of system (2.2) shown
in Figure 2.

3. Network for detecting figure border

Our two-dimensional network for detecting figure border is composed of units consisting of a
pair of phase oscillators forced by an external input I. In this network, the coefficients α1 and
α2 can vary with the time. Thus, system (2.2) is rewritten as

dq

dt
= I +ω − 2k sin q,

dk

dt
= μα(t)cos q − μk.

(3.1)

Assume that a black-and-white figure will be presented to this network, as illustrated in
Figure 3(a). The variable I represents the input for each unit according to the following rules:
I = 0 corresponds to a white part of the figure; I = 9 corresponds to a black part. Notice that
the input can be translated into a new natural frequency Ω by defining I +ω ≡ Ω. Thus, system
(3.1) is reduced to system (2.2) if α(t) is a constant.

Each unit is coupled with its four closest neighbors (left, right, up, and down), which
is usually known as four-neighborhood in image processing literature (e.g., [30]) or von
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Neumann neighborhood in cellular automaton literature (e.g., [31]). As a consequence of this
coupling, the value of α(t) for each cell is given by

α(t) =

⎧
⎨

⎩

α0 if 0 ≤ t ≤ T,

pα0 if t > T.
(3.2)

The parameter T is a settling time; p ≡ 1 + qx where q is a positive number (here q = 14);
x = G(y) where G(y) = 0 if y = 0; and G(y) = 1 if y /= 0. The value of y is obtained by

y =
4∏

i=1

[
ki(T) − ki(T − δT)

]
, (3.3)

where δT is the time step (here δT = 0.01) of the integration method (here fourth-order
Runge-Kutta method) used for numerically solving the dynamical system. The variable ki(t)
corresponds to the average connection strength of the closest neighbor i (i = 1, 2, 3, 4). If the
neighbor j does not exist, then kj(t) ≡ 0.

An image is presented to the network at t = 0. For 0 ≤ t ≤ T , all the units behave as if
they were isolated, because the value of α(= α0) for each unit is independent of the neighbor
activity. By taking for all units ω = 1, α0 = 2, μ = 1, T = 20, q(0) = 0, and k(0) = 5, the units
with I = 0 will tend to a stationary solution and the units with I = 9 will tend to a limit cycle,
as explained in the last section. For these parameter values, the permanent regime was already
reached when t = T , as shown in Figures 1 and 2.

At t = T , the value of α for each unit can be changed. Expressions (3.2) and (3.3) imply
what follows. If all of its four neighbors are in a limit cycle (y /= 0), then the value of α is
increased from 2 to 30; if at least one neighbor is in a stationary state or if the unit does not
have a complete von Neumann neighborhood (y = 0), then the value of α is kept equal to 2.
The limit cycle is characterized by k(t) oscillating with frequency B and amplitude A, and q(t)
linearly growing with slope A, as presented in the last section.

For α = 30 and Ω = 10, q(t) and k(t) tend to a stationary activity, which in our model
corresponds to the white color. Thus, at t = 2T = 40, the unique units remaining in oscillatory
activity (the black color) are the ones in the figure border. Figure 3(b) shows the contour of
Figure 3(a), after the units have reached the (new) permanent regime.

The higher the value of μ is, the shorter the transitory phase will be. Hence, border
detection can be made faster by increasing the value of this parameter.

4. Conclusion

Networks governed by differential (e.g., [6–8, 10, 11]) or difference equations (e.g., [9, 32])
have been employed for image processing. Here we used a network with local and dynamical
coupling for identifying contour of black-and-white images. The unit of such a network is
the variant of the Kuramoto model [33] for two oscillators (neurons), which was proposed by
Seliger et al. [27]. In our scheme, after applying the input corresponding to the figure, the value
of α for each unit is switched or not, depending on the neighborhood activity. This scheme
could be implemented using first-order PLLs. This investigation could be extended for higher-
order PLLs, which could be designed in order to shorten the transient.
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