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1. Introduction

Recently, it has been recognised in industrial and technological applications that non-
Newtonian fluids are more appropriate than viscous fluids. However, there is no model which
can alone predict the behaviour of all non-Newtonian fluids. The governing equations of non-
Newtonian fluids are of higher order than the Navier-Stokes equations. Therefore, the adhering
boundary conditions are not sufficient, and one needs additional boundary conditions for a
unique solution. Excellent critical reviews in this direction have been given by Rajagopal [1, 2],
Rajagopal et al. [3], and Rajagopal and Kaloni [4]. Amongst the several non-Newtonian fluid
models, much attention has been paid to the simplest subclass of viscoelastic fluids known
as the second grade. However, this model is not capable of describing the shear thinning
and thickening phenomena for steady flow over a rigid boundary. The third-grade fluid
model represents a further, although inconclusive, attempt towards a more comprehensive
description of the behaviour of viscoelastic fluids. Also, the flows of such fluids in porous
medium are quite prevalent in many engineering fields such as enhanced oil recovery, paper
and textile coating, and composite manufacturing processes. Some important studies dealing
with the flows of non-Newtonian fluids are made by Rajagopal and Na [5, 6], Rajagopal and
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Gupta [7], Hayat et al. [8–11], Hayat and Ali [12], Ariel et al. [13], Hayat and Kara [14], Abdel-
Malek et al. [15], Wafo Soh [16] and Chen et al. [17], and Fetecau and Fetecau [18–20].

Recently, Tan and Masuoka [21] analysed the Stokes’ first problem for a second-grade
fluid in a porous medium. In another paper, Tan and Masuoka [22] studied the Stokes’ first
problem for an Oldroyd-B fluid in a porous medium. In these investigations, the authors have
used the modified Darcy’s law.

The main goal of this paper is to determine analytical solutions for an unsteady flow of
a third-grade fluid over a moved plate. The relevant problem is formulated using modified
Darcy’s law of a third-grade fluid. Two types of analytical solutions are presented and
discussed. A numerical solution is also presented.

2. Problem formulation

Let us introduce a Cartesian coordinate system OXYZ with y-axis in the upward direction. The
third-grade fluid fills the porous space y > 0 and is in contact with an infinite moved plate at
y = 0. For unidirectional flow, the velocity field is

V =
(
u(y, t), 0, 0

)
, (2.1)

where the above definition of velocity automatically satisfies the incompressibility condition.
The equation of motion in a porous medium without body forces is

ρ
dV
dt

= divT + r, (2.2)

where ρ is the fluid density, d/dt is the material time differentiation, T is the Cauchy stress
tensor, and r is the Darcy’s resistance in a porous space. The Cauchy stress tensor of an
incompressible third-grade fluid has the form [23]

T = −pI + μA1 + α1A2 + α2A2
1 + β1A3 + β2

(
A1A2 +A2A1

)
+ β3

(
trA2

1

)
A1, (2.3)

in which p is the pressure, I is the identity tensor, αi (i = 1, 2) and βi (i = 1 − 3) are the material
constants, and Ai (i = 1 − 3) are the first Rivlin-Ericksen tensors [24] which may be defined
through the following equations:

A1 = (gradV) + (gradV)T ,

An =
dAn−1

dt
+An−1(gradV) + (gradV)TAn−1; n > 1.

(2.4)

In studying fluid dynamics, it is assumed that the flow meets the Clausius-Duhem inequality
and that the specific Helmholtz free energy of the fluid is a minimum at equilibrium when [25]

μ ≥ 0, α1 ≥ 0, β1 = β2 = 0, β3 ≥ 0,
∣
∣α1 + α2

∣
∣ ≤

√
24μβ3.

(2.5)

On the basis of constitutive equation in an Oldroyd-B fluid, the following expression in a
porous medium has been proposed [26]:

(
1 + λ

∂

∂t

)
∇p = −

μφ

k

(
1 + λr

∂

∂t

)
V, (2.6)
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where λ and λr are the relaxation and retardation times, and φ and k are the porosity and
permeability of the porous medium, respectively. It should be pointed out that for λr = 0, (2.6)
reduces to the expression which holds for a Maxwell fluid [26] and when λ = 0, it reduces to
that of second-grade fluid [22].

Keeping the analogy of (2.6) with the constitutive equation of an extra stress tensor in
an Oldroyd-B fluid, the following expression in the present problem has been suggested:

∂p

∂x
= −

φ

k

[
μ + α1

∂

∂t
+ 2β3

(
∂u

∂y

)2]
u. (2.7)

Since the pressure gradient in (2.7) can also be interpreted as a measure of the flow resistance
in the bulk of the porous medium, and rx is the measure of the flow resistance offered by the
solid matrix in x-direction, then

rx = −
φ

k

[
μ + α1

∂

∂t
+ 2β3

(
∂u

∂y

)2]
u. (2.8)

From (2.1) to (2.5) and (2.8), we have

ρ
∂u

∂t
= μ

∂2u

∂y2
+ α1

∂3u

∂y2∂t
+ 6β3

(
∂u

∂y

)2 ∂2u

∂y2
−
[
μ + α1

∂

∂t
+ 2β3

(
∂u

∂y

)2]φu
k
. (2.9)

The relevant boundary and initial conditions are

u(0, t) = u0V (t), t > 0, (2.10)

u(∞, t) = 0, t > 0, (2.11)

u(y, 0) = g(y), y > 0, (2.12)

in which u0 is the reference velocity.

3. Solutions of the problem

We rewrite (2.9) as

∂u

∂t
= μ∗

∂2u

∂y2
+ α

∂3u

∂y2∂t
+ γ1

(
∂u

∂y

)2 ∂2u

∂y2
− γ2u

(
∂u

∂y

)2

− φ1u, (3.1)

where

μ∗ =
μ

ρ + α1(φ/k)
, α =

α1

ρ + α1(φ/k)
, γ1 =

6β3

ρ + α1(φ/k)
,

γ2 =
2β3(φ/k)
ρ + α1(φ/k)

, φ1 =
μ(φ/k)

ρ + α1(φ/k)
.

(3.2)
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3.1. Lie symmetry analysis

The Lie symmetry analysis reveals that (3.1) admits two sets of symmetry generators
depending on the value of φ1. The appendix provides details of the symmetry analysis of (3.1).
Case 1 (φ1/=μ∗/α). We obtain a two-dimensional Lie algebra generated by

X1 =
∂

∂y
, X2 =

∂

∂t
. (3.3)

Case 2 (φ1 = μ∗/α). We find a three-dimensional Lie algebra generated by

X1 =
∂

∂y
, X2 =

∂

∂t
, X3 = e(2μ∗/α)t

∂

∂t
−
μ∗
α
e(2μ∗/α)tu

∂

∂u
. (3.4)

3.2. Travelling wave solutions

We now look for invariant solutions under the operator X1−cX2, which represents wave-front-
type travelling wave solutions with constant wave speed c. The invariant is given by

u(y, t) = U
(
x1
)
, where x1 = y + ct. (3.5)

Substituting (3.5) into (3.1) yields a third-order ordinary differential equation for U(x1),

φ1U
(
x1
)
= −c dU

dx1
− γ2U

(
x1
)
(
dU

dx1

)2

+ μ
d2U

dx2
1

+ γ1

(
dU

dx1

)2d2U

dx2
1

+ cα
d3U

dx3
1

. (3.6)

It can be seen that this equation admits the solution

U
(
x1
)
= u0 exp

(√
γ2x1

−√γ1

)

(3.7)

provided that

γ2

γ1

(

μ − cα
√
γ2

γ1

)

+

(

cα

√
γ2

γ1
− φ1

)

= 0, (3.8)

and hence (3.1) subject to (2.10)–(2.12) admits the solution

u(y, t) = u0 exp

(√
γ2(y + ct)
−√γ1

)

. (3.9)

This solution is plotted in Figures 1 and 4 for various values of the emerging parameters.
On the other hand, we find group-invariant solutions corresponding to operators which

give meaningful physical solutions of the initial and boundary value problems (2.9) to (2.12).
This means X2 and X3.

3.3. Group-invariant solutions corresponding to X2

The invariant solution admitted by X2 is the steady-state solution

u(y, t) = F(y). (3.10)

The substitution of (3.10) into (3.1) yields the second-order ordinary differential equation for
F(y):

γ1
(
F ′(y)

)2
F ′′(y) + μ∗F ′′(y) − γ2F(y)

(
F ′(y)

)2 − φ1F(y) = 0, (3.11)
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Figure 1: Travelling wave solutions varying t.
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Figure 2: Travelling wave solutions varying c.

subject to boundary conditions

F(0) = v0 , (3.12)

F(l) = 0, l > 0, (3.13)
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Figure 3: Travelling wave solutions varying γ1.
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Figure 4: Travelling wave solutions varying γ2.

where l is sufficiently large, and u0V = v0 is a constant (V is taken to be a constant). Let

K(F) =
dF

dy
, (3.14)
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Figure 5: Numerical solution of (3.11) or (3.17) subject to the boundary conditions (3.12) and (3.13).

then (3.11) transforms to

γ1K(F)3K′(F) + μ∗K(F)K′(F) − γ2FK(F)2 − φ1F = 0. (3.15)

The integration of (3.15) gives

γ1

γ2
K(F) +

μ∗γ2 − γ1φ1

γ2
√
γ2φ1

, Arctan

[√
γ2

γ1
K(F)

]

=
1
2
y2 + C, (3.16)

where C is a constant. Equation (3.16) is equivalent to the following first-order ODE in F:

γ1

γ2
F ′(y) +

μ∗γ2 − γ1φ1

γ2
√
γ2φ1

, Arctan

[√
γ2

γ1
F ′(x)

]

=
1
2
y2 + C. (3.17)

One can solve this numerically subject to the boundary conditions (3.12) and (3.13). This
solution is plotted in Figure 5.

3.4. Group-invariant solutions corresponding to X3

The invariant solution admitted by X3 is

u = u0 exp
(−μ∗

α
t

)
B(y), (3.18)

where B(y) as yet is an undetermined function of y. Substituting (3.18) into (3.1) yields the
linear second-order ordinary differential equation

B′′ −
γ2

γ1
B = 0. (3.19)
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Figure 6: Analytical solutions for μ∗ = 1, u0 = 1.

From (2.10) to (2.11), the appropriate boundary conditions for (3.19) are

B(0) = 1, B(l) = 0, l→∞, (3.20)

where

V (t) = u0 exp
(−μ∗

α
t

)
. (3.21)

We solve (3.19) subject to the boundary conditions (3.20) for positive γ2/γ1 and obtain

B = exp

(

−
√
γ2

γ1
y

)

. (3.22)

The solutions (3.18) are plotted for positive γ2/γ1 in Figure 6. This solution is similar to
(3.9) except that we do not have a condition like (3.8) here.

3.5. Numerical solution

We present the numerical solution of (3.1) subject to the initial and boundary conditions:

u(0, t) = u0V (t), u(∞, t) = 0, t > 0,

u(y, 0) = g(y), y > 0,
(3.23)

where g(y) is an arbitrary function of y.
This solution is plotted using Mathematica’s solver NDSolve.
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Figure 7: Numerical solution of (3.1), with V (t) = e−t, g(y) = e−y
2
, μ∗ = 2.5, u0 = 1, α = 2, γ1 = 1.5, γ2 = 2.6,

φ1 = 0.8.

4. Results and discussion

In order to see the variation of various physical parameters on the velocity, Figures 1–7 have
been plotted.

The effect of unsteadiness on the velocity profile is shown in Figure 1. This figure depicts
that velocity decreases for large values of time. Clearly, the variation of velocity is observed for
0 ≤ t < 3.8. For t ≥ 3.8, the velocity profile remains the same. In other words, one can say that
steady-state behaviour is achieved for t ≥ 3.8.

The influence of the wave speed c on the velocity profile has been presented in Figure 2.
It is revealed that velocity decreases by increasing c. Moreover, the effects of the fluid
parameters γ1 and γ2 are given in Figures 3 and 4, respectively. These figures depict that γ1

and γ2 have opposite roles on the velocity. These figures show that velocity increases for large
values of γ1 whereas it decreases for increasing γ2. In Figure 5, the steady-state solution is
plotted, and the velocity profile is the same as observed in the case of travelling wave solution.

Further, the analytical solutions (3.19) for μ∗/α > 0 is plotted in Figure 6. Here as
indicated in Figure 6, the velocity profile decreases for large values of t. Ultimately when
t ≥ 3.8, there is almost no variation in velocity.

Finally in Figure 7, we have plotted numerically the velocity profile for small variations
of time, and it is observed that the velocity decreases as time increases, which is the the same
observation made previously for the analytical solutions.

Appendix

The operator

X = τ(t, y, u)
∂

∂t
+ ξ(t, y, u)

∂

∂y
+ η(t, y, u)

∂

∂u
(A.1)

is a generator of Lie point symmetry of (3.1) if

X[3](ut − μ∗uyy − αutyy − γ1
(
uy

)2
uyy + γ2u

(
uy

)2 + φ1u
)
|(14) = 0, (A.2)
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where

X[3] = X + ηt
∂

∂ut
+ ηy

∂

∂uy
+ ηyy

∂

∂uyy
+ ηtyy

∂

∂utyy
(A.3)

in which

ηt = Dtη − utDtτ − uyDtξ,

ηy = Dyη − utDyτ − uyDyξ,

ηyy = Dyη
y − utyDyτ − uyyDyξ,

ηtyy = Dtη
yy − utyyDtτ − uyyyDtξ

(A.4)

and the total derivative operators are

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ · · · ,

Dy =
∂

∂y
+ uy

∂

∂u
+ uyy

∂

∂uy
+ · · · .

(A.5)

Substituting the expansion of (A.4) into the symmetry condition (A.2) and separating them by
powers of the derivatives of u, since τ , ξ, and η are independent of the derivatives of u, lead to
the overdetermined system of linear partial differential equations (note that γ1 and γ2 are not
zero):

τy = τu = 0,

ξt = ξy = ξu = 0,

ηx = ηuu = 0,

τtμ∗ + αηtu = 0,

uηu + τtu + η = 0,

ηt + φ1η + φ1u
(
τt − ηu

)
= 0.

(A.6)

The solution of this linear system (A.6) gives rise to two cases φ1/=μ∗/α and φ1 = μ∗/α. In the
former, we obtain

ξ = a1, τ = a2, η = 0, (A.7)

and for the second case

ξ = a1, τ = −a2

φ1
exp

(
2φ1t

)
+ a3, η = a2u exp

(
2φ1t

)
. (A.8)

In both (A.7) and (A.8), the ai are constants. Setting one of the constants ai equal to one and
the rest of the constants to zero results in the generators given in Section 3.1.
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