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The main aim of our study is to use some general results from the general theory of elliptic
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In fact, we will prove the existence and uniqueness of the generalized solutions for the boundary
value problems in elasticity of initially stressed bodies with voids (porous materials).
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1. Introduction

The theories of porous materials represent a material length scale and are quite sufficient for
a large number of the solid mechanics applications.

In the following, we restrict our attention to the behavior of the porous solids in
which the matrix material is elastic and the interstices are voids of material. The intended
applications of this theory are to the geological materials, like rocks and soils and to the
manufactured porous materials.

The plane of the paper is the following one. In the beginning, we write down the
basic equations and conditions of the mixed boundary value problemwithin context of linear
theory of initially stressed bodies with voids, as in the papers of [1, 2]. Then, we accommodate
some general results from the paper [3], and the book [4], in order to obtain the existence and
uniqueness of a weak solution of the formulated problem. For convenience, the notations
chosen are almost identical to those of [2, 5].

2. Basic equations

Let B be an open region of three-dimensional Euclidean space R3 occupied by our porous
material at time t = 0. We assume that the boundary of the domain B, denoted by ∂B,
is a closed, bounded and pice-wise smooth surface which allows us the application of the
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divergence theorem. A fixed system of rectangular Cartesian axes is used and we adopt the
Cartesian tensor notations. The points in B are denoted by (xi) or (x). The variable t is the
time and t ∈ [0, t0). We will employ the usual summation over repeated subscripts while
subscripts preceded by a comma denote the partial differentiation with respect to the spatial
argument. We also use a superposed dot to denote the partial differentiation with respect to
t. The Latin indices are understood to range over the integers (1, 2, 3).

In the following, we designate by ni the components of the outward unit normal to the
surface ∂B. The closure of domain B, denoted by B, means B = B ∪ ∂B.

Also, the spatial argument and the time argument of a function will be omitted when
there is no likelihood of confusion.

The behavior of initially stressed bodies with voids is characterized by the following
kinematic variables:

ui = ui(x, t), ϕjk = ϕjk(x, t), σ = σ(x, t), (x, t) ∈ B × [
0, t0

)
. (2.1)

In our study, we analyze an anisotropic and homogeneous initially stressed elastic
solid with voids. We restrict our considerations to the Elastostatics, so that the basic equations
become as follows.

(i) The equations of equilibrium is as follows:

(
τij + ηij

)
,j
+ ρFi = 0,

μijk,i + ηjk + uj,iMik + ϕkiMji − ϕkr,iNijr + ρGjk = 0;
(2.2)

(ii) the balance of the equilibrated forces is as follows:

hi,i + g + ρL = 0; (2.3)

(iii) the constitutive equations are as follows:

τij = uj,kPki + Cijmnεmn +Gmnijκmn + Fmnrijχmnr + aijσ + dijkσ,k,

ηij = −ϕjkMik + ϕjk,rNrik +Gijmnεmn + Bijmnκmn +Dijmnrχmnr + bijσ + eijkσ,k,

μijk = uj,rNirk + Fijkmnεmn +Dmnijkκmn +Aijkmnrχmnr + cijkσ + fijkmσ,m,

hi = dmniεmn + emniκmn + fmnriχmnr + diσ + gijσ,j ,

g = −amnεmn − bmnκmn − cmnrχmnr − ξσ + diσ,i;

(2.4)

(iv) the geometric equations are

εij =
1
2
(
uj,i + ui,j

)
, κij = uj,i − ϕij ,

χijk = ϕjk,i, σ = ν − ν0.
(2.5)

In the above equations we have used the following notations:

(i) ρ—the constant mass density;

(ii) ui—the components of the displacement field;
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(iii) ϕjk—the components of the dipolar displacement field;

(iv) ν—the volume distribution function which in the reference state is ν0;

(v) σ—a measure of volume change of the bulk material resulting from void
compaction or distension;

(vi) τij , ηij , μij—the components of the stress tensors;

(vii) hi—the components of the equilibrated stress;

(viii) Fi—the components of body force per unit mass;

(ix) Gjk—the components of dipolar body force per unit mass;

(x) L—the extrinsic equilibrated body force;

(xi) g—the intrinsic equilibrated body force;

(xii) εij , κij , χijk—the kinematic characteristics of the strain tensors;

(xiii) Cijmn, Bijmn, . . . , Dijm, Eijm, . . . , aij , bij , cijk, di, ξ represent the characteristic functions
of the material (the constitutive coefficients) and they obey to the following
symmetry relations

Cijmn = Cmnij = Cijnm, Bijmn = Bmnij ,

Gijmn = Gijnm, Fijkmn = Fijknm, Aijkmnr = Amnrijk,

aij = aji, Pij = Pji, gij = gji.

(2.6)

The physical significances of the functions L and hi are presented in the works [6, 7].
The prescribed functions Pij , Mij and Nijk from (2.2) and (2.3) satisfy the following

equations:
(
Pij +Mij

)
,j
= 0, Nijk,i + Pjk = 0. (2.7)

3. Existence and uniqueness theorems

In the main section of our paper, we will accommodate some theoretical results from
the theory of elliptic equations in order to derive the existence and the uniqueness of a
generalized solution of the mixed boundary-value problem in the context of initially stressed
bodies with voids.

Throughout this section, we assume that B is a Lipschitz region of the Euclidian three-
dimensional space R3. We use the following notations:

W =
[
W1,2(B)

]13
, W0 =

[
W1,2

0 (B)
]13
, (3.1)

with the convention that A13 = A × A × · · · × A, the Cartesian product is considered to be
of 13-times. Also, Wk,m is the familiar Sobolev space. With other words, W is defined as the
space of all u = (ui, ϕij , σ), where ui, ϕij , σ ∈W1,2(B)with the norm

|u|2W = |σ|2
W1,2(B) +

3∑

i=1

∣∣ui
∣∣2
W1,2(B) +

3∑

j=1

( 3∑

i=1

∣∣ϕij
∣∣2
W1,2(B)

)
. (3.2)

For clarity and simplification in presentation, we consider the following regularity
hypotheses on the considered functions:
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(i) all the constitutive coefficients are functions of class C2 on B;

(ii) the body loads Fi, Gjk, andH are continuous functions on B.

The ordered array (ui, ϕjk, σ) is an admissible process on B = B ∪ ∂B provided ui, ϕjk,
σ ∈ C1(B) ∩ C2(B). Also, the ordered array of functions (τij , ηij , μijk, hi) is an admissible
system of stress on B if τij , ηij , μijk, hi ∈ C1(B) ∩ C0(B) and τij,i, ηij,i, μijk,k, hk,k, h ∈ C0(B).

Let ∂B = Su ∪ St ∪ C be a disjunct decomposition of ∂B, where C is a set of surface
measure and Su and St are either empty or open in ∂B. Assume the following boundary
conditions:

ui = ũi, ϕjk = ϕ̃jk σ = σ̃ on Su,

ti ≡
(
τij + ηij

)
nj = t̃i, μjk ≡ μijkni = μ̃jk, h ≡ hini = h̃ on St,

(3.3)

where the functions ũi, ϕ̃jk, σ̃, t̃i, μ̃jk, and h̃ are prescribed, ũi, ϕ̃jk, σ̃ ∈ W1,2(Su), and t̃i, μ̃jk,
h̃ ∈ L2(St). Also, we define V as a subspace of the space W of all functions u = (ui, ϕij , σ)
which satisfy the boundary conditions:

ui = 0, ϕij = 0, σ = 0 on Su. (3.4)

On the product space W ×W, we consider a bilinear form A(v,u), defined by

A(v,u) =
∫

B

{
Cijmnεmn(u)εij(v) +Gmnij

[
εij(v)κmn(u) + εij(u)κmn(v)

]

+ Fmnrij
[
εij(v)χmnr(u) + εij(u)χmn(v)

]
+ Bijmnκij(v)κmn(u)

+Dijmnr

[
κij(v)χmnr(u) + κij(u)χmn(v)

]
+Aijkmnrχijk(v)χmnr(u)

+ Pkiuj,kvj,i −Mik(uj,iψjk + vj,iϕjk) +Nrik(uj,kψjk,r + vj,kϕjk,r)

+ aij
[
εij(v)σ + εij(u)γ)

]
+ bij

[
κij(v)σ + κij(u)γ)

]

+ cijk
[
χijk(v)σ + χij(u)γ)

]
+ dijk

[
εij(v)σ,k + εij(u)γ,k)

]

+ eijk
[
κij(v)σ,k + κij(u)γ,k)

]
+ fijkm

[
χijk(v)σ,m + χijk(u)γ,m)

]

+ di
[
σγ,i + γσ,i

]
+ gijσ,iγ,j + ξσγ

}
dV,

(3.5)

where

u =
(
ui, ϕij , σ

)
, v =

(
vi, ψij , γ

)
, εij(u) =

1
2
(
uj,i + ui,j

)
,

εij(v) =
1
2
(
vj,i + vi,j

)
, κij(u) = uj,i − ϕij , κij(v) = vj,i − ψij ,

χijk(u) = ϕjk,i, χijk(v) = ψjk,i.

(3.6)

We assume that the constitutive coefficients are bounded measurable functions in B which
satisfy the symmetries (2.6). Then, by using relations (3.5) and (2.6) it is easy to deduce that

A(v,u) = A(u,v). (3.7)
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Also, by using symmetries (2.6) into (3.5), it results in

A(u,u) =
∫

B

[
Cijmnεmn(u)εij(v) + 2Gmnijεij(u)κmn(u)

+ Bijmnκij(u)κmn(u) + 2Fmnrijεij(u)χmnr(u) + 2Dijmnrκij(u)χmnr(u)

+Aijkmnrχijk(u)χmnr(u) + Pkiuj,kuj,i − 2Mikuj,iϕjk

+ 2Nrikuj,iϕjk,r + 2aijεij(u)σ + 2bijκij(u)σ + 2cijkχijk(u)σ

+ 2dijkεij(u)σ,k + 2eijkκij(u)σ,k + 2fijkmχijk(u)σ,m

+ 2diσγ,i + gijσ,iσ,j + ξσ2]dV,

(3.8)

and thus

A(u,u) = 2
∫

B

UdV, (3.9)

whereU = ρe is the internal energy density associated to u.
We suppose that U is a positive definite quadratic form, that is, there exists a positive

constant c such that

Cijmnxijxmn + 2Gijmnxijymn + 2Fijmnrxijzmnr

+ Bijmnyijymn + 2Dijmnryijzmnr +Aijkmnrzijkzmn

+ Pkixjixjk − 2Mikxjiyjk + 2Nrikxjizjkr + 2aijxijw

+ 2bijyijw + 2cijkzijw + 2dijkxijωk + 2eijkyijωk

+ 2fijkmzijkωm + 2diwωi + gijkωiωj + ξw2

≥ c(xijxij + yijxij + zijkzijk +ωiωi +w2),

(3.10)

for all xij , yij , zijk, ωi, and w.
Now, we introduce the functionals f(v) and g(v) by

f(v) =
∫

B

ρ
(
Fivi +Gjkψjk + Lγ

)
dV, v ∈ W,

g(v) =
∫

St

(
t̃ivi + μ̃jkψjk + h̃γ

)
dA, v ∈ W,

(3.11)

where v = (vi, ψjk, γ) ∈ W and ρ, Fi, Gjk, L ∈ L2(B).
Let v = (ũi, ϕ̃jk, γ̃) ∈ W be such that ũi, ϕ̃jk, γ̃ on Su may by obtained by means of

embedding the spaceW1,2 into the space L2(Su).
The element v = (ui, ϕjk, σ) ∈ W is called weak (or generalized) solution of the boundary

value problem, if

u − ũ ∈ V,

A(u,u) = f(u) + g(v)
(3.12)
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hold for each v ∈ V. In the above relations, we used the spaces L2(B) and L2(Su) which
represent, as it is well known, the space of real functions which are square-integrable on B,
respectively, on Su ⊂ ∂B.

It follows from (3.10) and (3.8) that

A(v,v) ≥ 2c
∫

B

[
εij(v)εij(v) + κij(v)κij(v) + χijk(v)χijk(v) + γiγi + γ2

]
dV, (3.13)

for any v = (vi, ψjk, γ) ∈ W.
Let us consider the operatorsNkv, k = 1, 2, . . . , 49, mapping the spaceW into the space

L2(B), defined by

Niv = ε1i(v), N3+iv = ε2i(v), N6+iv = ε2i(v),

N9+iv = κ1i(v), N12+iv = κ1i(v), N15+iv = κ1i(v),

N18+iv = χ11i(v), N21+iv = χ12i(v), N24+iv = χ13i(v),

N27+iv = χ21i(v), N30+iv = χ22i(v), N33+iv = χ23i(v),

N36+iv = χ31i(v), N39+iv = χ32i(v), N42+iv = χ33i(v),

N45+iv = σ,i(v), N49v = σ(v) (i = 1, 2, 3).

(3.14)

It is easy to see that, in fact, the operatorsNkv, k = 1, 2, . . . , 49, defined above, have the
following general form:

Nkv =
m∑

r=1

∑

|α|≤kr
nkrαD

αvr, p = |α|, (3.15)

where nkrα are bounded and measurable functions on B. Also, we have used the notation Dα

for the multi-indices derivative, that is,

Dα =
∂|α|

∂xα11 ∂x
α2
2 ∂x

α3
3

. (3.16)

By definition, the operatorsNkv, (k = 1, 2, . . . , 49) form a coercive system of operators
on Wif for each v ∈ W the following inequality takes place:

49∑

k=1

∣∣Nkv
∣∣2
L2(B)

+
13∑

r=1

∣∣vr
∣∣2
L2(B)

≥ c1|v|2W, c1 > 0. (3.17)

In this inequality, the constant c1 does not depend on v and the norms |·|L2
and |·|W

represent the usual norms in the spaces L2(B) and W, respectively.
In the following theorem, we indicate a necessary and sufficient condition for a system

of operators to be a coercive system.

Theorem 3.1. Let npsα be constant for |α| = ks. Then the system of operatorsNpv is coercive onW if
and only if the rank of the matrix

(
Npsξ

)
=
( ∑

|α|=ks
npsαξα

)
(3.18)

is equal tom for each ξ ∈ C3, ξ /= 0, where C3 is the notation for the complex three-dimensional space,
and

ξα = ξα11 ξ
α2
2 ξ

α3
3 . (3.19)
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The demonstration of this result can be find in [4].
In the following, we assume that for each v ∈ W, we have

A(v,v) ≥ c2
49∑

k=1

∣∣Nkv
∣∣2
L2
, c2 > 0, (3.20)

where the constant c2 does not depend on v.
We denote by P the following set:

P =

{

v ∈ V :
49∑

k=1

∣∣Nkv
∣∣2
L2

= 0

}

, (3.21)

and by V/P the factor-space of classes ṽ, where

ṽ =
{
v + p, v ∈ V, p ∈ P}

, (3.22)

having the norm

∣∣ṽ
∣∣
V/P = inf

p∈P
|v + p|W. (3.23)

In the following theorem, it is indicated a necessary and sufficient condition for the
existence of a weak solution of the boundary-value problem.

Theorem 3.2. Let A(v,u) = [ṽ, ũ] define a bilinear form for each ṽ, ũ ∈ W/P, where u ∈ ũ and
v ∈ ṽ. If it is supposed that the inequalities (3.17) and (3.20) hold, then a necessary and sufficient
condition for the existence of a weak solution of the boundary value problem is

p ∈ P =⇒ f(p) + g(p) = 0. (3.24)

Moreover, the weak solution, u ∈ W, satisfies the following inequality:

|u|W/P ≤ c3
[
∣∣ũ
∣∣
W +

(
m∑

i=1

∣∣fi
∣∣
L2(B)

)1/2

+

(
m∑

i=1

∣∣gi
∣∣
L2(S)

)1/2]

, (3.25)

where c3 is a real positive constant.
Further, one has

A
(
ṽ, ṽ

) ≥ c4
∣∣ṽ
∣∣
W/P, c4 > 0, (3.26)

for each ṽ ∈ W/P.

For the prove of this result, see [3].
In the following, we intend to apply the above two results in order to obtain the

existence of a weak solution for the boundary value problem formulated in the context of
theory of initially stressed elastic solids with voids.

Theorem 3.3. LetP = {0}. Then there exists one and only one weak solution u ∈ W of our boundary-
value problem.
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Proof. Clearly, from (3.13) and (3.14)we immediately obtain (3.20). The matrix (3.20) has the
rank 13 for each ξ ∈ C3, ξ /= 0. Thus by Theorem 3.1 we conclude that the system of Nk

operators, defined in (3.14), is coercive on the space W.
According to definition (3.21) of P, we have that εij(v) = 0, κij(v) = 0, χijk(v) = 0,

γi(v) = 0, ψ = 0 for each v ∈ P, v = (vi, ψjk, ψ).
So, we deduce that P reduces to

P =
{
v = (vi, ψjk, γ) ∈ V : vi = ai + εijkbjxk, ψjk = εjksbs, γ = c

}
, (3.27)

where ai and bi and c are arbitrary constants and εijk is the alternating symbol.
Wewill consider two distinct cases. First, we suppose that the set Su is nonempty. Then

the setP reduces toP = {0}, and therefore, condition (3.24) is satisfied. By using Theorem 3.2,
we immediately obtain the desired result.

In the second case, we assume that Su is an empty set. Then we have the following
result.

Theorem 3.4. The necessary and sufficient conditions for the existence of a weak solution u ∈ W of
the boundary-value problem for elastic dipolar bodies with stretch, are given by

∫

B

ρFidV +
∫

∂B

t̃i dA = 0,

∫

B

ρεijk
(
xjFk +Gjk

)
dV +

∫

∂B

εijk
(
xj t̃k + μ̃jk

)
dA = 0,

(3.28)

where εijk is the alternating symbol.

Proof. In this case, the boundary value problem P is given by (3.27), where ai, bi, and c are
arbitrary constants such that we can apply, once again, Theorem 3.2 to obtain the above result.

4. Conclusion

For the considered initial-boundary value problem the basic results still valid. Now, for
different particular cases, the solution can be found because it exists and is unique.
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Rendus de l’Académie des Sciences. Serie II, vol. 321, no. 12, pp. 475–480, 1995.
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