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Uncertainties in damping estimates can significantly affect the dynamic response of a given flexible
structure. A common practice in linear structural dynamics is to consider a linear viscous damping
model as the major energy dissipation mechanism. However, it is well known that different forms
of energy dissipation can affect the structure’s dynamic response. The major goal of this paper is
to address the effects of the turbulent frictional damping force, also known as drag force on the
dynamic behavior of a typical flexible structure composed of a slender cantilever beam carrying a
lumped-mass on the tip. First, the system’s analytical equation is obtained and solved by employing
a perturbation technique. The solution process considers variations of the drag force coefficient and
its effects on the system’s response. Then, experimental results are presented to demonstrate the
effects of the nonlinear quadratic damping due to the turbulent frictional force on the system’s
dynamic response. In particular, the effects of the quadratic damping on the frequency-response
and amplitude-response curves are investigated. Numerically simulated as well as experimental
results indicate that variations on the drag force coefficient significantly alter the dynamics of the
structure under investigation.

Copyright q 2008 D. G. Silva and P. S. Varoto. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Characterization and quantification of uncertainties have been a topic of major importance in
the context of structural dynamics. Generally speaking, the term uncertainty can be associated
to variations of the system’s physical parameters due to inaccuracies present either in the
system’s model or experimental data. In a broad view, the sources of uncertainties can be
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(a) (b)

Figure 1: Physical system under investigation: (a) frontal view, (b) lateral view [19, 21, 23].

grouped into two main categories, namely statistical and nonstatistical [1], where the former
is associated to fluctuations in the system’s parameter mostly due to variations in material
and/or geometry, and the later reflects inaccuracies present in the system’s model caused by
adoption of inappropriate assumptions or variations in numerical errors, for instance. More
recently, a new terminology has been used to this classification by employing the words aleatory
or aleatoric and epistemic [2, 3] to refer to these two groups of uncertainties, respectively. Several
statistical and fuzzy theory-based procedures have been recently proposed (see [4–8]) to
characterize and quantify uncertainties in complex structural systems. Similarly, uncertainties
have also been subject of investigation in wave propagations and vibroacoustics (see [9–11])
as well as aerospace structures (see [3, 12, 13]). In the field of nonlinear structural dynamics,
a reduced number of works have been reported. Nichols et al. [14] has developed a procedure
for the detection of quadratic nonlinearities while Adhikari [2] has discussed uncertainties in
damping models.

Parametrically excited cantilever beams have been extensively investigated in the last
two decades, specially in the case of the principal parametric resonance [15–18]. Although
most of these investigations have dealt with various aspects of the parametric resonance
phenomenon, the majority of analysis was done by neglecting the effects of fluid medium.
In this work, we perform an experimental and theoretical investigation on the effects of the
viscous quadratic damping on the dynamic response of a cantilever beam with tip mass to
a principal parametric resonance [19, 20]. To investigate the quadratic damping effect, the
structure shown in Figure 1 was built. It is composed of a slender stainless steel ASTM A240
beam, with dimensions of 100 mm in length, 20 mm in width, and 1 mm in thickness. The
lumped mass is composed of carbon steel ASTM A36, with dimensions of 10 mm in length,
40 mm in width, and 20 mm in height. The opposite beam’s end is clamped to a rigid base built
from carbon ASTM A36 steel.

Figure 2 depicts the results of an experiment that was carried out by using the
system shown in Figure 1. The experiment consisted of driving the structure into a principal
parametric resonance condition through an input base sinusoidal signal. The structure’s
vibration and interaction with the surrounding fluid medium could be observed through
the smoke-wire arrangement [19] as shown in the sequence of pictures of Figure 2. This
experiment qualitatively indicates that the drag force plays an important role on the dynamics
of the structure under investigation. Thus, this paper is concerned in studying theoretically
and experimentally the effects of variations in the quadratic damping coefficients on the lateral
vibration of a cantilever beam undergoing a principal parametric excitation.
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Figure 2: Qualitative effects of quadratic damping on the lateral vibration of the system [19].
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Figure 3: Physical model of the structure under investigation, combined acoustic, and base excitations [19].

2. Mathematical modeling

In a previous work by the authors [21], a general mathematical model for the structure shown
in Figure 1 was developed by using the model shown in Figure 3. According to this model,
the OXYZ orthogonal coordinates system is fixed at the base of the beam at its unstressed
position and directed such that the X axis is taken as the centerline of the beam. The origin O
of the coordinate system may be subject to a dynamic displacement UB(t) in the X direction
that represents the external driving signal.
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2.1. Energy relationships

The beam is modeled as a continuum solid with displacement field described by ui (i = 1, 2, 3)
and uo

i (i = 1, 2, 3). The kinetic energy of the lumped-mass system can be described by

T =
1
2

∫
V

ρu̇iu̇idV +
1
2
mou̇

o
i u̇

o
i (2.1)

in which the dot denotes time derivative, ρ and V are, respectively, the material density and
volume of the beam, and mo is the value of the lumped mass. In order to simplify (2.1), the
contribution of the distributed mass of the beam will be ignored as well as the rotatory energy
of the lumped mass. Hence, the kinetic energy is simplified to

T =
1
2
mo

[(
u̇o

1

)2 +
(
u̇o

3

)2
]
. (2.2)

The task to find T consists in performing several steps. First, the time derivative of the
displacement field must be computed which results in expressions for (u̇1)

2 and (u̇3)
2. Second,

the terms in the right-hand side of the expressions of (u̇1)
2 and (u̇3)

2 are described as functions
of the w(x, t) and its spatial derivatives. Third, a spatial reduction is necessary so that the
deflection on the center of the lumped mass can be obtained. This can be done by using an
expression of the form

w(x, t) = φ(x)wo(t) (2.3)

in which φ(x) represents the first linear natural mode of the structure and wo(t) represents the
modal coordinate associated with this natural mode. As a final result, the expressions for (u̇o

1)
2

and (u̇o
3)

2 are found and truncated to result in nonlinearities of third order as follows:

(
u̇o

1

)2 =
(
A1

)2
w2

oẇ
2
o − 2A1woẇoU̇B +

8
3
A2w

3
oẇoU̇B +

(
U̇B

)2
,

(
u̇o

3

)2 = ẇ2
o.

(2.4)

Substituting the expressions of (u̇o
1)

2 and (u̇o
3)

2 described above into (2.2), the kinetic
energy is then given as

T =
1
2
moẇ

2
o +

1
2
mo

[(
A1

)2
w2

oẇ
2
o − 2A1woẇoU̇B +

8
3
A2w

3
oẇoU̇B +

(
U̇B

)2
]
, (2.5)

in which A1 and A2 are geometrical constants given as

A1 =
∫L

0

(
∂φ

∂x

)2

dx,

A2 =
∫L

0

(
∂φ

∂x

)4

dx,

(2.6)
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and the first linear mode shape function φ(x) is given as

φ(x) = 1 − cos
(
πx

2L

)
. (2.7)

Once the final expression for the kinetic energy is known, the next step towards the
derivation of equation of motion is obtaining the system’s strain or potential energy which
may be written as function of the stress and strain in the X direction as

U =
1
2

∫∫∫
V

σxxεxxdV. (2.8)

By using the assumption that the material follows the constitutive Hooke law, and ignoring
Poisson’s effects, (2.8) reduces to

U =
1
2

∫∫∫
V

Eε2
xxdV =

1
2

∫L

0

∫
A

Eε2
xxdAdx. (2.9)

However, uc is very small when compared to ur . Therefore, to simplify the analysis, the
contributions of uc and of the gravitational field to the strain energy are ignored, thus giving

U =
1
2

∫L

0

∫
A

E
[
z2(w′′)2 − z2(w′′)2(

w
′)2]

dAdx. (2.10)

By writing w(x, t) as a function of φ(x) and wo(t) (see (2.3)), the final expression for the strain
energy truncated cubic terms in the system’s equation of motion is given by

U =
1
2
EIyB1w

2
o −

3
2
EIyB2w

4
o + · · · , (2.11)

where Iy is the area moment of inertial about the Y axis, and the geometrical constants B1 and
B2 are given as

B1 =
∫L

0

(
φ′′

)2
dx,

B2 =
∫L

0

(
φ′′

)2(
φ′
)2
dx.

(2.12)

The last step before deriving the system’s equation of motion consists in obtaining the
expression for the nonconservative forces acting on the system. Herein, it will be considered
the action of two nonconservative forces. The first is the structural damping force which is
modeled in terms of the generalized coordinates as c1ẇo. The second is the aerodynamic drag
damping force acting on the system (when in motion) and is proportional to the squared of
the generalized velocity c2ẇo|ẇo|. Both damping forces act in the negative direction of the
virtual transversal displacement δwo. Therefore, the nonconservative virtual work δWnc which
is done on the system is given by

δWnc =
(
− c1ẇo − c2ẇo

∣∣ẇo

∣∣)δwo. (2.13)

Since the nonconservative virtual work is defined as a function of the nonconservative
generalized force Qnc as δWnc = Qncδwo, the generalized force Qnc is obtained as

Qnc =
δWnc

δwo
= −c1ẇo − c2ẇo

∣∣ẇo

∣∣. (2.14)
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2.2. Equation of motion

In the earlier section, the expressions for the kinetic energy T , strain energy U, and
nonconservative generalized force Qnc were obtained. From these results, it is possible to
derive the system’s equation of motion by using the well-known Lagrange equation [22]
which, in turn, for the system under investigation is written as

d

dt

(
∂T

∂ẇo

)
− ∂T

∂wo
+

∂U

∂ẇo
= Qnc. (2.15)

Through the computation of each term of Lagrange’s equation and substitution of the
result (2.15), the following result is obtained:

(
1 +A2

1w
2
o

)
ẅo +

(
c1

mo
+

c2

mo

∣∣ẇo

∣∣)ẇo +
(
A2

1ẇ
2
o −A1ÜB +

EIyB1

mo

)
wo

+

[
4
3
A2ÜB −

(6EIyB2

mo

)]
w3

o =
F(t)
mo

.

(2.16)

Equation (2.16) represents an ordinary inhomogeneous nonlinear time-dependent
differential equation. In addition, this equation holds both the axial contraction and the
curvature nonlinear effects. If both the underlined and double underlined terms are ignored,
this equation reduces to a classical linear damped forced model. On the other hand, if only the
double underlined terms are ignored, this equation reduces to the same equation obtained in
[23] plus a forced term. Still, if the double underlined terms plus the nonlinear damping were
ignored, this equation reduces to the same model obtained in [24] plus a forced term.

Since the present work is focused on the dynamic response of a structure under
parametric sinusoidal excitation, it is considered that this excitation can be written as

ÜB(t) = −Qλ2 cos(λt + ϕ) = −Qo cos(λt + ϕ) (2.17)

in which Qo is the magnitude of the input base acceleration, λ is the parametric excitation
frequency, and ϕ is a phase shift. Then, (2.16) can be rewritten in the dimensional final form as

(
1 +A2

1w
2
o

)
ẅo +

(
c1

mo
+

c2

mo

∣∣ẇo

∣∣)ẇo +
(
A2

1ẇ
2
o +A1Qo cos(λt + ϕ) +

EIyB1

mo

)
wo

+
[
− 4

3
A2Qo cos(λt + ϕ) −

6EIyB2

mo

]
w3

o = 0.

(2.18)

From the numerical viewpoint, it is interesting to work with the differential equation
in dimensionless form. Therefore, by setting new dimensionless variables w∗o = A1wo and
t∗ = t/Tn in which Tn is the period of free vibration, the system’s equation of motion is given
by

(
1+w∗2o

)
ẅ∗o+H1ẇ

∗
o+H2ẇ

∗
o

∣∣ẇ∗o∣∣+[1+ẇ∗2o +H3 cos
(
Θt∗+ϕ

)]
w∗o−

[
H5+H4 cos

(
Θt∗+ϕ

)]
w∗3o = 0

(2.19)
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in which

H1 =
c1Tn
mo

, H2 =
c2

moA1
, H3 = QoA1T

2
n,

H4 =
4A2QoT

2
n

3A2
1

, H5 =
6B2EIyT

2
n

moA
2
1

,

Θ = λTn, Ψ = ΩTn.

(2.20)

Further, we will discuss the effects of variations of the dimensionless quadratic damping
coefficient H2 on the response of the parametrically driven cantilever beam.

3. Perturbation analysis and numerical simulations

In order to address the effects of the quadratic damping (H2) on the structure’s response, a
solution of the (2.19) is required. Such a solution is here developed by employing the method
of multiple scales (MME) [19]. For that purpose, it is more convenient to rewrite (2.19) in a
slight different way by considering zero-order (ε0) and first-order (ε1) terms as follows:

ε0ẅ∗o + ε0(2π)2w∗o = −ε1w∗2o ẅ∗o − ε1ẇ∗2o w∗o − ε1H1ẇ
∗
o − ε1H2ẇ

∗
o

∣∣ẇ∗o∣∣
− ε1H3 cos

(
Θt∗ + ϕ

)
w∗o + ε1H4 cos

(
Θt∗ + ϕ

)
w∗3o + ε1H5w

∗3
o

(3.1)

in which the dimensionless coefficients ε1H1, ε
1H2, . . . , ε

1H5 are defined according to (2.20). To
apply the MME technique, first we express w∗o as

w∗o
(
ε; t∗

)
= w0

(
T0, T1

)
+ εw1

(
T0, T1

)
, (3.2)

where T0 = t is the fast time scale associated with changes occurring at the frequency Θ and
T1 = ε1t is a slow time scale associated with the modulations in amplitude and phase.

As it is known, the principal parametric resonance occurs when the parametric excitation
Θ assumes a value that is equal to twice the undamped natural frequency ωn. Therefore, the
normalized undamped natural frequency ωn = 2π can be written as

(2π)2 =
(

1
2
Θ
)2

− εσ (3.3)

in which εσ is a tuning parameter that flags the proximity of the principal parametric
resonance.

By carrying out the standard details of the method of multiple scales, the first
approximation to the solution of (3.1) is obtained as

w∗o = a
(
T1
)
cos

[
2πT0 + β

(
T1
)]

+O(ε) (3.4)

in which a(T1) and β(T1) are given by

a
′
=
(
− 1

4Θ
εH4a

3 +
1

2Θ
εH3a

)
sin(2β) − 1

2
εH1a −

2
3π

εH2Θa2,

aβ
′
=
(
− 1

2Θ
εH4a

3 +
1

2Θ
εH3a

)
cos(2β) +

ε

8Θ
(
− 6H5 −Θ2)a3 − εσa

Θ

(3.5)
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and (3.5) are known as modulation equations. As stated in [19], steady state motions
correspond to fixed points (constant solutions) of these modulation equations. Mathematically,
this condition is reached when a

′

i = β
′

i = 0. Hence, in steady-state condition the modulation
equations are rewritten as

(
− 1

4Θ
εH4a

3 +
1

2Θ
εH3a

)
sin(2β) − 1

2
εH1a −

2
3π

εH2Θa2 = 0,

(
− 1

2Θ
εH4a

3 +
1

2Θ
εH3a

)
cos(2β) +

1
8Θ

(
− 6εH5 −Θ2)a3 − εσa

Θ
= 0,

(3.6)

where a describes the steady-state vibration amplitude. Trivial solutions of this system of
equations are immediately apparent and correspond to the case where a = 0. Nontrivial
solutions (a/= 0) are obtained by solving (3.6) in terms of the amplitude a and phase angle
β. The solution process for these quantities is laborious and can be found in detail in the work
by da Silva [19]. The final expression for a is given as

a = ±

√
−2E4E2 ± 2E4

√
E2

2 − 4E4E0

2E4
, (3.7)

where the Ei are given as

E4 = −9π2εH4εH3Θ2εσ − 54π2εH4εH3εH5εσ + 9π2εH2
4εσ

2 − 117
4

π2εH2
4εH

2
3

− 32Θ4εH4εH3εH
2
2 +

9
16

π2εH2
3Θ

4 +
81
4
π2εH2

3εH
2
5 +

27
4
π2εH2

3εH5Θ2,

E2 = 27π2εH4εH
3
3 + 54π2εH2

3εH5εσ + 16Θ4εH2
3εH

2
2 + 9π2εH2

3Θ
2εσ − 36π2εH4εH3εσ

2,

E0 = 36π2εH2
3εσ

2 − 9π2εH4
3 ,

(3.8)

and the phase angle β is written as

β =
1
2

tan−1
(
G1

G2

)
(3.9)

with coefficients G1 and G2 given as

G1 = 8Θ
(
4εH2ΘεH4a

3 − 4εH2ΘεH3a
)
,

G2 = 3π
(
6εH5εH4a

4 + εH4Θ2a4 + 8εH4εσa
2)

+ 3π
(
− 12εH3εH5a

2 − 2εH3Θ2a2 − 16εH3εσ
)
.

(3.10)

Hence, the solution for the modulation equations is given as a function of the parametric
excitation frequency Θ, the frequency tuning parameter εσ, and the dimensionless coefficients
Hi. Particularly, we are interested in investigating the effects of variations of the dimensionless
quadratic damping coefficient H2 on the amplitude of the response. For that purpose, a series of
simulations were performed by varying this parameter on the above equations and computing
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the resulting response. Figure 4 shows the computed response a from (3.7) for different values
of εH2. It is seen that variations of this parameter do not alter the critical points C and E.
Additionally the nonsymmetric shape of the amplitude-frequency curve tends to decrease as
εH2 increases. It is also noticed that two characteristics of the response are strongly influenced
by variations on the quadratic damping coefficient, namely, the amplitude of the response
and stability of the nontrivial ramification CG. The maximum value of the amplitude of
response amax represents an important information of the system under investigation. In this
sense, it is equally important to assess the influence of variations of the nonlinear damping
coefficient on amax. Figure 5 shows the behavior of this parameter when variations on εH2

are introduced. The results were obtained for three different values of the amplitude of the
parametric excitation, represented by the dimensionless coefficient εH3. Figure 5(a) shows that
for small values of εH2 (0 < εH2 < 0.1), amax is relatively insensitive to variations on εH2. The
largest impact of εH2 on amax occurs in the 0.2 < εH2 < 0.5 range, becoming less sensitive
as εH2 approaches the end of the range. Figure 5(b) shows essentially the same trend where
the values of the relative reduction of the amplitude are depicted. As previously pointed out
in Figure 4, the stability of the nontrivial ramification CG is strongly affected by the nonlinear
quadratic damping since it involves the definition of the bifurcation shown in point G. This
bifurcation is responsible for the jump phenomenon when the values of the tuning parameter
εσ are varied in the ascending order. From the numerical solution of (3.7) we can identify
critical values of εH2 in the response-frequency curve that will make the bifurcation disappear.
These critical values can be found from the following expression:

εHcrit
2 = −0.012εH2

3 + 0.14εH3 + 0.14 (3.11)

and they are represented in Figure 6. Hence, from this equation it is possible to estimate
values for the εH2 for a given known excitation condition (εH3) that would make the jump
phenomenon to completely disappear from the system’s response. Figure 7 shows the effects
of variations of the εH2 in the system’s response when the excitation amplitude is varied. It
can be seen that the critical point C is not affected by the different values of εH2. On the other
hand, the vibration amplitude and the stability of the nontrivial ramification CF are strongly
affected when varying the values of the quadratic damping coefficient. It is also interesting to
observe in Figure 7 the magnitude of the response at D and F, here referred to as aD and aF ,
respectively. The value of aD indicates the minimum value of the vibration amplitude as soon
as the parametric resonance occurs, or, if the critical point C is exceeded. The value of aF reflects
the minimum value of the amplitude at the moment that the principal parametric resonance
condition ceases. The variation of aD and aF with respect to εH2 is shown in Figure 8.

3.1. Response-nonlinear damping curves

In the previous analysis, a series of numerically simulated results have shown in detail how
the nonlinear quadratic damping affects the response of the cantilever beam under parametric
excitation. In this section, we continue to explore these effects from the numerical standpoint
by defining the response-nonlinear damping curves. This curve is obtained from a specific
vibration condition imposed to the structure under test by the excitation mechanism, and
Figure 9 defines three distinct operating regions (marked as I, II, and III) that differ essentially
in terms of the excitation frequency imposed to the system as well as resulting vibration
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Figure 4: Typical response-frequency curve showing the effects of varying the quadratic dimensionless
term H2 and εH1 = 0.0 (nontrivial), εH1 = 0.016 (trivial), εH3 = 2.1352, εH4 = 3.4674, εH5 = 62.7218 [19].
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Figure 5: Influence of quadratic damping variation on the nontrivial response solution a: (a) variation of
the maximum value of a with the nonlinear damping and (b) percent reduction of the maximum value of
a for vacuum operation. Curves obtained for (—) εH1 = 0.0, εH3 = 2.62, εH4 = 4.25, εH5 = 62.72; (· · · )
εH1 = 0.0, εH3 = 2.13, εH4 = 3.46, εH5 = 62.72; (– –) εH1 = 0.0, εH3 = 1.57, εH4 = 2.55, εH5 = 62.72
[19].

amplitude. Two operation points P1 and P2 are chosen in regions I and II, respectively, with
corresponding amplitudes given by aP1 and aP2. Figure 10 shows how variations on εH2 affect
the amplitude aP1. Two ramifications form this curve, one stable (solid line) and one unstable
(dashed line). In case εH2 is decreased to the value εH2 = 0, the structure still remains vibrating
but with an amplitude approximately 4% larger. Similarly, if εH2 increases beyond point P1,
the vibration amplitude decreases on the stable nontrivial ramification until point C is reached.
At this point, aP1 is reduced by 19%. If εH2 exceeds point C, the nontrivial stable solution
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Figure 7: Typical response-amplitude curve demonstrating the effects of varying the quadratic nonlinear
damping term (εH2) for εσ = −0.73. Also εH1 = 0.0 (nontrivial), εH1 = 0.016 (trivial), and εH5 = 62.7218
[19].

looses stability through a bifurcation and the vibration is extinct. When the structure vibrates
according to point P2, the magnitude of the response is given by aP2. Figure 11 shows the
effects on the system’s response aP2 produced by varying the values of εH2. In this case, a
single stable ramification is observed, and independently on how εH2 is varied the response
continues being nontrivial and stable. On the other hand, there is a strong reduction in the
value of aP2.
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Figure 9: Typical response-frequency curve showing two specific operation points, designated as P1 and
P2. Results obtained with εH1 = 0.0 (nontrivial), εH1 = 0.016 (trivial), εH2 = 0.1, εH3 = 2.1352, εH4 =
3.4674, εH5 = 62.7218 [19].

4. Experimental analysis

This section describes an experimental analysis that was performed on the structure shown
in Figure 1. Initially some basic properties of the cantilever beam-mass system such as first
bending damped natural frequency and modal damping ratio were obtained by standard
modal testing procedures. In this case, the step relaxation method was employed to excite
the system in order to get the driving point frequency response function (FRF) at the beam’s
end point [25]. The resulting values found for the first bending damped natural frequency
and viscous modal damping ratio were ωd = 18.066 Hz and ζm = 0.1272%, respectively. These
results were used to correlate the experimental results with the analytical prediction as well
as in the planning of nonlinear tests. A detailed explanation of this procedure can be found in
[19, 23].
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magnitude of the response. Results obtained with εH1 = 0.0 (nontrivial), εH1 = 0.016 (trivial), εH3 =
2.1352, εH4 = 3.4674, εH5 = 62.7218, and εσ = 0 [19].

Once these basic linear characteristics were found, the system of Figure 1 was subjected
to a base driven test according to the experimental setup shown in Figure 12. The beam
carrying the lumped mass at one end is first attached at the opposite end to a steel block
in order to properly simulate the fixed end boundary condition. This assembly is then
mounted on the vibrating table of a B&K type 4810 electrodynamic vibration exciter that
will drive the system in the vertical direction. The excitation signal is provided by the HP
Agilent E1432A data acquisition board that is controlled by the MTS I-Deas 10 modal testing
software. The sinusoidal input signal was first sent to a B&K power amplifier type 2707
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Figure 12: Experimental layout employed to obtain the experimental frequency-response and amplitude-
response curves [19–21].

and further sent to a B&K type 4810 electrodynamic vibration exciter. The beam’s transverse
output signal was monitoring using an HP Agilent oscilloscope type 54621D. To minimize
the rocking and translation, the shaker was clamped securely to the floor in the testing room.
The sensing mechanism employed is three piezoelectric accelerometers, two for monitoring
the base’s motion and one for the beam-mass-system’s motion. The base’s linear translation
motion was measured using an accelerometer B&K model 4371 (9.84 pC/g), and possible
rocking motion about Y axis was measured using a Kistler angular accelerometer model
8836M01 (34μV/rad/s2). The beam-mass-system’s translation motion was measured using
an accelerometer B&K model 4374 (1.06 pC/g) and mass of 0.64 g.

In order to perform a coherent comparative analysis with the theoretical results, four
experimental tests were conducted. In two of these tests, the amplitude of the base excitation
acceleration was maintained constant at 39.24 m/s2 and the sinusoidal excitation signal was
slowly varied upward and downward in the frequency range of interest. The remaining tests
were performed by keeping the excitation frequency constant at 36.132 Hz, and then increasing
the amplitude of the input excitation signal in the power amplifier. It should be noticed that the
excitation frequency of 36.132 Hz corresponds to the so-called principal parametric excitation
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Figure 13: Experimental and theoretical response-frequency curves of the first flexural mode when εH2 =
0.00 and for εH1 = 0.0160 (trivial), εH1 = 0.0160 (nontrivial), εH3 = 2.1352; εH4 = 3.4674; εH5 = 62.7218.
Experimental results for parametric excitation frequency at 36.132 Hz and 39.24 m/s2. (—) stable solution;
(· · · ) unstable solution [20].

frequency since it is approximately twice the system’s first bending natural frequency thus
satisfying the 2 : 1 relationship that is required to drive such a system into a principal
parametric resonance condition [26].

The process of obtaining the experimental frequency-response curve consists of varying
the excitation frequency while keeping the magnitude of the input base acceleration constant.
The input base acceleration was maintained constant during the tests. A similar process was
used to obtain the amplitude-response curves, however the frequency of excitation was kept
constant and the amplitude was changed in small increments.

Figure 13 shows the experimental and theoretical frequency-response curves for the first
bending mode. The theoretical curve was obtained in the absence of quadratic damping (i.e.,
εH2 = 0.00), while the experimental was obtained in atmospheric conditions.

The theoretical results in the upward direction show that by increasing the excitation
frequency starting at point A, the trivial solution loses stability at point C, which corresponds
to the critical value εσ = −εH3/2, through a subcritical pitchfork bifurcation and jumps up to
point D. This point belongs to the nontrivial stable branch GDE. From point D, the steady-state
amplitude of parametric response ã decreases as the excitation frequency is increased, until
point E is reached. From this point, the nontrivial solution loses stability through a supercritical
pitchfork bifurcation and the trivial solution is reached again.

On the other hand, theoretical results in the downward direction show that decreasing
the frequency of excitation form point F, the trivial solution looses stability at point E,
corresponding to the critical value εσ = εH3/2, through a supercritical pitchfork bifurcation,
and the nontrivial stable branch GDE is reached. From the point E, the response amplitude
ã increases as the frequency is decreased. The solution loses stability though a turning point
at point G and the response amplitude jumps down to point B where only the trivial solution
exists thereafter.
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Figure 14: Experimental and theoretical amplitude-response curves of the first flexural mode when εH2 =
0.00 and for εH1 = 0.0160 (trivial), εH1 = 0.0160 (nontrivial), εH3 = 2.2236; εH4 = 3.6109; εH5 = 62.7218
and εσ = −0.725. Experimental results for parametric excitation frequency at 36.132 Hz. (—) stable solution;
(· · · ) unstable solution [20].

When the theoretical behavior described above is confronted with the experimental
results, it can be claimed that a good qualitative match between theory and experiment
exists, mainly in the vicinity of the bifurcation frequencies. However, quantitatively there is
an enormous difference between the amplitudes of theoretical and experimental results. The
maximum theoretical value for the response amplitude is about ã ≈ 0.225, while the maximum
experimental value is about ã ≈ 0.1, that is, about 125% smaller. This difference suggests the
existence of important dissipative forces acting on the structure.

From this last result, it can be seen that by introducing the nonlinear quadratic damping
a strong reduction of response amplitude has been achieved. Particularly, by using εH2 =
0.333, an excellent agreement between the experimental and theoretical results was obtained.
However, a slight discrepancy was observed in terms of the bifurcation points mainly in the
upward sweep. Consequently, there is no exact agreement around point C. An analogous result
was obtained for bifurcation point E.

Figure 14 shows the experimental and theoretical amplitude-response curves also for the
first bending mode. Since an exact resonance condition (εσ = 0) is difficult to be achieved, the
theoretical curve was obtained for εσ < 0. In addition, the result shown was obtained in the
absence of quadratic damping (i.e., εH2 = 0.00) while the experimental result was obtained in
atmospheric conditions.

The theoretical results in the upward direction shows that by increasing the excitation
amplitude from point A, the trivial solution loses stability at point C, corresponding to the

critical value εH3 =
√

4εσ2 + εH1
2Θ2, through a subcritical pitchfork bifurcation and jumps up

to point D. This point belongs to the nontrivial stable branch FDE. A further increase in the
excitation amplitude leads to higher response amplitudes tracing the branch DE.

On the other hand, the theoretical results in the downward direction shows that
by decreasing the excitation amplitude from point E, the amplitude response continually
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0.227 and for εH1 = 0.0160 (trivial), εH1 = 0.00 (nontrivial), εH3 = 2.2236, εH4 = 3.6109, εH5 = 62.7218,
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decreases until point F is reached. Then, the nontrivial solution loses stability through a turning
point bifurcation, leading to a jump down to point B whereby only the trivial solution exists
thereafter.

When the theoretical behavior described above is confronted with the experimental
results, a very good qualitative as well as quantitative disagreement between them exists.
These two characteristics also suggest the existence of important dissipative force acting on the
structure. In order to prove this point, an additional theoretical amplitude-response curve was
obtained, but now, including the nonlinear quadratic damping effects. The results are shown
in Figure 15.

In this last figure, it can be claimed that by introducing the nonlinear quadratic damping
a much better match between theory and experiment was obtained, specially when εH2 =
0.227 is used. However, some discrepancies related to response amplitude, as well as with
the bifurcation point F, were observed. A close view in region between 30 m/s2 and 50 m/s2

revealed 20% difference in the amplitude response. On the other hand, this discrepancy tends
to decrease with the increase of the excitation amplitude. Also, there is a discrepancy related
with the bifurcation point F. In the theoretical prediction, it occurs about 35 m/s2, whereas in
the experimental results it is shown at 30 m/s2 showing a 17% difference.

5. Concluding remarks

This article addressed numerically and experimentally the effects of viscous fluid medium on
the dynamic response of a cantilever beam carrying a lumped mass. Numerically simulated
results showed the effects of variations induced in the nonlinear damping on the acceleration
response of the test structure when it undergoes a principal parametric resonance condition.
Experimental assessment on the effects of quadratic damping due to frictional turbulent force
on the structure’s dynamic response has been obtained. Generally speaking, good agreement
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between experimental and numerically simulated results was achieved in terms of frequency
and amplitude response curves. It was observed that the quadratic damping due to frictional
turbulent force plays an important role in the response of parametrically excited cantilever
beam carrying a lumped mass. The inclusion of the quadratic damping significantly improves
the theoretical predictions, and it should be included in the mathematical models when the
problem involves the principal parametric response. Although the results shown in this paper
were obtained for the first bending mode, similar conclusions may be obtained for higher
natural frequencies.
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