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Lie point symmetry analysis is performed for an unsteady nonlinear heat diffusion problem
modeling thermal energy storage in a medium with a temperature-dependent power law thermal
conductivity and subjected to a convective heat transfer to the surrounding environment at the
boundary through a variable heat transfer coefficient. Large symmetry groups are admitted even
for special choices of the constants appearing in the governing equation. We construct one-
dimensional optimal systems for the admitted Lie algebras. Following symmetry reductions, we
construct invariant solutions.
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1. Introduction

For many years, considerable attention has been paid to the collection, storage, and use of
thermal energy to meet various energy demands. The use of solar energy to meet the thermal
demands of industries, electronics devices, and residential establishments, and so forth, is fast
growing in many countries of the world [1]. Solar energy is provided by the light energy that
comes from the sun. An important component of thermal systems designed for such purposes
is a thermal energy storage unit. Solar collectors transform short wavelengths into long
wavelengths and trap this energy in the form of heat which is transferred and transported
into a heat storage vault. The medium in which the energy is stored may be fluid or solid
[2]. For instance, in middle- and low-temperature solar energy systems, water and stones
are the best and cheapest storing energy medium [3]. The heat energy collected by solar
energy collectors increases the temperature of the medium, so the heat energy is stored in
the medium. When needed, the heat energy is desorbed for use. The effectiveness of a liquid
thermal storage system is determined by how the temperature of the system decays as a result
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of heat losses to the environment [2, 4]. The thermal energy storage problem in a medium
with temperature-dependent thermal conductivity constitutes an unsteady nonlinear heat
diffusion problem and the solutions in space and time may reveal the appearance of thermal
decay in the system. In order to predict the occurrence of such phenomena, it is necessary
to analyze a simplified mathematical model from which insight might be gleaned into an
inherently complex physical mechanism.

Meanwhile, the solution of unsteady nonlinear heat diffusion equations in rectangular,
cylindrical, and spherical coordinates remains a very important problem of practical
relevance in the engineering sciences [5]. Recently, the ideas of hybrid analytical-numerical
schemes for solving nonlinear differential equations have experienced a revival (see, e.g.,
[6]). One such trend is related to the combination of group theoretic approach and Adomian
decomposition method [7]. This hybrid analytical-numerical approach is also extremely
useful in the validation of purely numerical schemes.

In the present work, we study an unsteady nonlinear heat diffusion problem modeling
thermal energy storage in a medium with power law temperature-dependent thermal
conductivity and subjected to a convective heat transfer to the surrounding environment at
the boundary. The mathematical formulation of the problem is established in Section two. In
Section three, we introduce and apply some rudiments of Lie group techniques. In Section
four, we construct the one-dimensional optimal systems, and perform reductions by one
variable and construct invariant solutions in Section five. Some discussions and conclusions
are presented in Section six.

2. Governing equations

Consider an unsteady thermal storage problem in a body whose surface is subjected to heat
transfer by convection to an external environment having a heat transfer coefficient that
varies with respect to time. The energy equation in a rectangular, cylindrical, or spherical
coordinate system can be used to find the temperature distribution through a region defined
in an interval 0 < r < a. The unsteady heat conduction problem can be described by the
following governing equation [1, 6]:

o0 1 0 00
P 5y = e (K15 ) ~Q(6-e.) @)
with the initial condition
O(r,t)=6;, att=0, (2.2)

and the boundary conditions
g—f =0, atr=0,
50 (2.3)
K(G)a =-h(t)(0-0y), atr=a,

where 6 is the temperature, K(0) = Ko((6 — 05)/(0; — 65))" is the power law temperature-
dependent thermal conductivity, n is a constant, ¢ is time, 0; is the initial temperature of the
body, 0, is the temperature of the environment, p is the density, c, is the specific heat at a
constant pressure, Q is the heat loss parameter, and h(t) = ho f (t) is the time-dependent heat
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transfer coefficient, with hy and K, being constants. The geometry of the body is specified
by m = 0,1,2 representing rectangular, cylindrical, and spherical coordinates, respectively.
Equations (2.1)—(2.3) are made dimensionless by introducing the following quantities:
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Neglecting the bar symbol for clarity, the dimensionless boundary value problem
(BVP) becomes

00 1 0/,, 00
E—ﬁg(@ r §>—59 (25)
subject to
% =0, atr=0,
(2.6)
00

0" — =-Bif(t)0, atr=1,
P if (t) atr
where Bi is the Biot number and s is the heat loss parameter.

3. Classical Lie point symmetry analysis

In brief, a symmetry of a differential equation is an invertible transformation of the
dependent and independent variables that does not change the original differential equation.
Symmetries depend continuously on a parameter and form a group; the one-parameter group of
transformations. This group can be determined algorithmically. The theory and applications of
Lie groups may be obtained in excellent texts such as those of [8-13]. In essence, determining
symmetries for the governing equation (2.5) implies seeking transformations of the form

. =r+eR(t,1,0) + O(?),
te=t+eT(tr,0)+0(e), (3.1)
0, =0+eO(t,r,0)+ O(ez),

generated by the vector field
0 0 0
F—T(t,r,Q)a +R(t,r,9)§ +@(t,r,9)%, (32)

which leaves the governing equation invariant. Note that we seek symmetries that leave a
single equation (2.5) invariant rather than the entire boundary value problem, and apply the
boundary condition to the obtained invariant solutions. It is well known that the dimension
of symmetry algebra admitted by the governing equation may be reduced if one seeks
invariance of the entire BVP (see, e.g., [9]). The action of I' is extended to all the derivatives
appearing in the governing equation through second prolongation

r<2>=r+emi+e 0 0

30, [r] 6_9, + O Wrr’ (3.3)
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Table 1: Extra-admitted symmetries.

Constants Symmetries
3n+4 F(-2-2m)/ (24m) 3 5
= Ij=——{2n+4)0— - ("> +4n+4)r—
"2 YT Dnm+) {( )05 - (' +dn+ )rar}
m=1,n=-1 Iy =-2(lo r+1)92+r1 r2
e $7Tevos 56 "8 o
0
= I[h=—
m=0 T or
4 0 0
m—O,n——g F5——39r@+ra
where

O = Di(©) — 0,D¢(R) - 6:D(T),
@[r] = DT(@) - 6rl)r(R) - 6tl)r(T)r (34)
e[rr] = Dr(@[r]) - erDr(R) - ertDr(T)/

and D, and D; are the operators of total differentiation with respect to r and ¢, respectively.
The operator I' is a point symmetry of the governing equation (2.5), if

I (Eqn(2.5)) lggnas) = O0- (3.5)

Since the coefficients of I do not involve derivatives, we can separate (3.5) with respect to the
derivatives of 8 and solve the resulting overdetermined system of linear homogeneous partial
differential equations known as the determining equations. Further calculations are omitted at
this stage as they were facilitated by a freely available package Dimsym [14], a subprogram
of Reduce [15].

The admitted Lie algebra is three-dimensional and spanned by the base vectors

0 e"st o 0 20 0 0
neg =S (055)  B=hwta G0

Extra symmetries may be obtained for the cases (a) m = (3n+4)/(n+2); (b)m =0, n =
0;(c)n=0,m=2;,(d)m=1,n=-1;and (e) m = 0, n = —4/3. One may note that except for
case (a), all these cases are realistic. n = 0 renders the governing equation (2.5) linear and we
herein omit this case. Extra symmetries, for which n #0, are listed in Table 1. Physically the
parameters m and n are not related (since m represents the geometry and n is exponent of
the thermal conductivity). However, it is interesting from symmetry analysis point of view to
note that the given relationship between m and n leads to extra symmetries being admitted.

4. One-dimensional optimal systems of subalgebras

In this section, we determine nonequivalent subalgebras of the symmetry algebra admitted
by (2.5) that is, we construct the one-dimensional optimal system of the symmetry algebra
given in (3.6). Reduction of independent variables by one is possible using any linear
combination of the admitted base vectors. In order to ensure that a minimal complete set
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Table 2: Commutator table.

[T, T] I I I3
I 0 nsl, 0
I -nsl’, 0 0
I 0 0 0

Table 3: Adjoint representation for the base vectors given in (3.6).

Ad I Iy I3
I Iy e Ty Is
Iy I'1 + ensl;, Iy I3
I3 Iy I Is

of reductions is obtained from the admitted Lie algebra, an optimal system is constructed
(see, e.g., [11, 12]). An optimal system of a Lie algebra is a set of I dimensional subalgebras
such that every I dimensional subalgebra is equivalent to a unique element of the set under
some element of the adjoint representation [11]:

X e n 62
Ad(exp (el"l))l"] = Z;(Adrl) 1"] = 1", - e[l"i,l",-] + ? [l"i, [1"1,1",]] —ee, (41)

n=0""

where [I;,T;] = IiI['; - I';T; is the commutator of I'; and I';. To compute the one-dimensional
optimal system of the algebra in (3.6), first a commutator table is constructed and given by
Table 2.

The adjoint representation is constructed using formula (4.1). We wish to simplify as
much as possible the coefficients ay, a,, and a3z by carefully applying the adjoint maps to

I'=aiI'1 + ax]n + asl's. (42)

Starting with a nonzero vector (4.2) with a; # 0 and rescaling I' such that a; = 1, it follows
from Table 3 that acting on I' by Ad(exp((—ax/ns)I2)), one obtains I'y + al's. No further
simplification is possible. For a = 0 and assuming az # 0 (say, az = 1 by rescaling); acting
on the remaining vector (4.2) by Ad(exp(ciI2)) yields a,e“™I'; +I's. However, depending on
the sign ay, the coefficient of I'; can be assigned to either +1, -1, or 0. Finally, for a; = 0, we
obtain I';. Thus the one-dimensional optimal system is given by

{Fl +als; I'3+15; I3, 1 }, (4.3)

where a is an arbitrary constant.

5. Symmetry reductions and invariant solutions

In this subsection, we reduce the variables of the governing BVP by one. We provide the
invariant solution constructed using I'; in (3.6) which satisfies the prescribed boundary
condition. Reductions by members of the one-dimensional optimal system are listed in
Table 4. In order to find invariants of I';, we have to solve the system

do _dt _dr

B 0 (5.1)
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Table 4: Reductions by elements of the optimal systems.

Symmetry Reductions

p=re™; 0 = 2*/"G(p), where G satisfies

Iy +al’
e 2 GGG = <ﬂ + ap> G + GG
n P
ze—nst
p=rexp(e™h); 0 = exp{ < —st- >t}G(p), where G satisfies
F3 +1I m
25G = nspG' +nG™1(G')* + FG"G’ +G"G".
2/n . . . G/(t) = 2 1 Gn+1 G
I3 0 = r*/"G(t); with G satisfying (H=(m+ n + - sG.

The system (5.1) yields the invariants J; = In0+st and ], = r which give rise to the functional
form

0 =e*G(r). (5.2)

The time-dependent heat transfer coefficient may be represented by f(t) = e . This
choice of f(t) renders the boundary condition invariant under I'; and it is also realistic (note
that the form of f(¢) is obtained by substituting (5.2) into (2.6)) (see also [6, 16]). Substituting
this expression for f(t) and the functional form (5.2) into the governing equation (2.5), one
obtains

nG (G + ?G’ +G" =0, (5.3)

and the boundary conditions (2.6) transform to

d—G =0, r=0,

dr

4G (5.4)
— =-BiG"™", r=1.

o iG™", r

Note that the trivial solution to (5.3) is given by a constant. Four cases arise for the
nontrivial solution of (5.3) subject to different choices of m and # (see also [17, page 365]).

Case (a) n=-1,m #1,
G = cexp{eir' ™). (5.5)
Case (b)yn=-1,m=1,
G = cor. (5.6)
Case(c)n# -1, m=1,

G=+[cilnr+ cz]_("+1). (5.7)
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Figure 1: Graphical representation of the invariant solution (5.11). Parameters used n = 0.5,s = 1, and
r = 0.55. The temperature profile is given for varying Biot number.

Case(d)n# -1, m#1,

[ams Drim s n-1(n+ e

m-—1

G=

(5.8)

We consider cases (a) and (d) only as examples. For case (a) and in terms of original
variables we obtain

€1 (m - 1) 1-m
Q:Teclexp{—st+c1r }. (5.9)
The invariant solution (5.9) satisfies the prescribed boundary condition (2.6) at r = 0
only if m = 2 (spherical geometry) and for any constant ¢; < 0. One may rewrite (5.9) as
- _a -1
0= Feclexp{ —st+cor . (5.10)
Without loss of generality we let c; = 0in case (d) and in terms of original variables, the
invariant solution satisfying the boundary conditions (2.6) for m = 0 (rectangular geometry)
is given by

0= (-Bi)"/"(n+1)"/" et /(1) (5.11)

where values of n must be chosen such that the singularity at r = 0 is avoided. Furthermore,
we obtain real solutions for -1 < n < 0 and 0 < n < 1. Invariant solution (5.11) is depicted in
Figures 1 and 2.

Symmetry analysis may lead to extra solutions, if we use the linear combinations of
the admitted symmetries or elements of the optimal systems as listed in Table 4. For example,
the I's-invariant is given by

-1
_ em|mnt 2+n+cinset] "

ns

0

(5.12)
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Figure 2: Graphical representation of the invariant solution (5.11). Parameters used n = -0.33, s = 1, and
t = 1. Temperature is plotted against spatial variable.

6. Some discussions and conclusions

We have determined some examples of group invariant solutions which satisfy the realistic
boundary conditions (it is a well-known fact that more often symmetries do not lead to
solutions which satisfy the boundary conditions). In this manuscript, Lie group analysis
resulted in some exotic admitted point symmetries. Furthermore, reduction by one variable
of the governing equation has been performed using members of the optimal system.

The invariant solution (5.11) shows thermal decay due to heat losses by convection
to the surrounding environment. Figure 1, depicts an increase in the Biot number due to
the resistance of the medium surface heat losses which leads to an increase in the medium
temperature, and hence enhancing its energy storage capabilities. The medium temperature
decreases with time. In Figure 2, temperature is much lower at the device surface than at
r = 0, and this is due to heat loss to the surrounding.

We have given some exact (invariant) solutions to nonlinear heat diffusion equations
with temperature-dependent conductivity and time-dependent heat transfer coefficient.
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