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Synchronization is an essential feature for the use of digital systems in telecommunication networks,
integrated circuits, and manufacturing automation. Formerly, master-slave (MS) architectures, with
precise master clock generators sending signals to phase-locked loops (PLLs) working as slave os-
cillators, were considered the best solution. Nowadays, the development of wireless networks with
dynamical connectivity and the increase of the size and the operation frequency of integrated cir-
cuits suggest that the distribution of clock signals could be more efficient if distributed solutions
with fully connected oscillators are used. Here, fully connected networks with second-order PLLs
as nodes are considered. In previous work, how the synchronous state frequency for this type of net-
work depends on the node parameters and delays was studied and an expression for the long-term
frequency was derived (Piqueira, 2006). Here, by taking the first term of the Taylor series expansion
for the dynamical system description, it is shown that for a generic network with N nodes, the syn-
chronous state is locally asymptotically stable.

Copyright q 2008 José R. C. Piqueira et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Digital engineering technologies for communications, control, and computation require reli-
able clock distribution systems to guarantee the correct temporal order in the information pro-
cessing by the several parts of a spatially distributed system [1–4]. Synchronization network is
the general denomination of the part of the whole system responsible for this temporal order
and the several possible solutions for its design are presented in [5].

Originally, master-slave architectures were used to distribute a precise clock signal gen-
erated by a master node to the other points of the systems where PLLs regenerate the phase
and frequency information [1, 5].
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The evolution of the telecommunication services to wireless and dynamical networks
hasshown the inadequacy of centralized clock distribution structures in these cases, motivating
the study of fully connected architectures to generate reference signals with the phase-locked
loops operating as nodes of the synchronization networks [1, 5–7].

Besides telecommunication networks, the main fields for the application of fully con-
nected systems are time signal distribution in digital electronic circuits [2, 7–9] and wireless
sensor networks [10]. Another very important application of networks is the implementa-
tion of oscillatory neural-computing devices, where the vector of phase-differences amongst
a group of synchronized oscillators is associated with some memory information [11, 12].

In this work, a fully connected N-node PLL network is studied, starting with a review
of the model for a single node and the derivation of the synchronous state frequency [13].
Then, the dynamical equation for the phase differences between nodes is presented providing
a model for the whole N-node network.

As it was shown in [13, 14], this kind of network presents a synchronous state that is
reachable for any possible combination of node parameters. Consequently, the linear approxi-
mation gives practical hints about the lock-in operation of the network [15]. Then, considering
the first term of the Taylor series development around the synchronous state [16], it is shown
that the synchronous state is locally asymptotically stable for any number N of nodes.

2. Nodes in a fully connected architecture and synchronous state frequency

In this section, the nodes of the fully connected network are analyzed, considering that they
are second-order phase-locked loops modeled as the classical analog version [17]. The results
shown in [13] are summarized and the expression of synchronous state frequency is derived.
This expression will be used to determine the stability conditions. PLL nodes are closed loops
composed of a phase detector (PD), a low-pass filter (F), and a voltage-controlled oscillator
(VCO) [17]. The double frequency jitter in the output of the phase detector is neglected [18–
20].

The N nodes are geographically distributed and mutually coupled by using two-way
connections. Each i-node exchanges clock signals with all the j-nodes such that j /= i. Each
VCO belonging to a PLL is described by its free-running frequency ωi and by its phase φi(t).
The whole network has its dynamics described by phase errors and frequency errors defined by
Δφji(t) and Δφ̇ji(t), respectively. Time delays τji corresponding to the propagation of signals
from the node j VCO output to the node i PD input are considered, as shown in Figure 1,
containing the model of the signal processed in node 1.

It can be noticed that in an N-node fully connected PLL network, the nodes need N − 1
phase detectors [21] where the local VCO output signal is multiplied by the delayed signals
sent by the VCO of the other nodes. As there is no integrated circuit with this architecture,
the implementation of the nodes requires a combination of several PLL chips with the outputs
of their phase detectors weighted and the result being the input of a single filter that feeds a
single VCO. For the node 1 from Figure 1, the definitions are as follows:

(i) τ21: delay from node 2 to node 1;

(ii) τ31: delay from node 3 to node 1;

(iii) τN1: delay from node N to node 1;

(iv) v1(t): VCO output of the node 1;
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Figure 1: Node 1 signal processing in a fully connected PLL network.

(v) v2(t − τ21): VCO output of the node 2 with a delay τ21;

(vi) v3(t − τ31): VCO output of the node 3 with a delay τ31;

(vii) vN(t − τN1): VCO output of the node N with a delay τN1;

(viii) vd21(t): output of PD 2;

(ix) vd31(t): output of PD 3;

(x) vdN1(t): output of PD N;

(xi) vc1(t): output of F that controls the VCO.

The instantaneous individual VCO phases and the instantaneous phase errors, φi(t) and
Δφji(t), are expressed in the forms

φi(t) = ωit + θi(t),

Δφji(t) = φj(t) − φi(t).
(2.1)

The node parameters related to PLL operation can be characterized by the following:

(i) PD multiplying factors: km1 = km2 = · · · = kmi
= km, in volts−1, with i = 1, 2, . . . ,N;

(ii) gains of the VCOs: k1 = k2 = · · · = ki = k0, in rad/sV, with i = 1, 2, . . . ,N;

(iii) cut-off frequencies of F: μ11 = μ12 = μ1i = · · · = μ1, in rad/s, with i = 1, 2, . . . ,N.

The constitutive parameters of the nodes are considered to be the same, in order to simplify the
analytical reasoning. If the filters cut-off frequencies are different, but sufficient to avoid double
frequency jitter [18], the results derived here are basically the same and only the acquisition
times change [13]. If VCO and PD gains are considered to be different, the problem has to
be numerically treated, and the expression of the synchronous state frequency derived here
changes [22].

Under the assumption that all nodes have the same constitutive parameters, the output
of each VCO is

vi(t) = V cosφi(t); (2.2)
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and signals received by the phase detector of node i from node j, with propagation delays τji,
can be written as

vj
(
t − τji

)
= V sin

[
φj
(
t − τji

)]
, (2.3)

where V is the controlled amplitude of the outputs of VCOs and PDs. Considering that each
phase detector j /= i, belonging to node i, is a signal multiplier [17]:

vdji(t) = kmvj
(
t − τji

)
vi(t), (2.4)

replacing (2.2) and (2.3) in (2.4), and neglecting the double frequency components [18–20] as
their frequency are much greater than the filter cut-off frequency, the output of each phase
detector j /= i, belonging to node i, is given by

vdji(t) = kmV
2[ sinφj

(
t − τji

)
cosφi(t)

]
. (2.5)

Each resulting signal given by (2.5) is multiplied by 1/(N − 1) and added, in order to compose
the filter input as below:

vdi(t) =
(

1
N − 1

)(
kmV

2

2

){ N∑
j=1, j /= i

sin
[
φj
(
t − τji

)
− φi(t)

]}
. (2.6)

Defining kd = (1/2)(kmV 2), expression (2.6) is simplified to

vdi(t) =
kd

N − 1

{
N∑

j=1,j /= i

sin
[
φj
(
t − τji

)
− φi(t)

]}
. (2.7)

The filters are considered to be first-order low-pass implying second-order nodes. This
choice is a common practice because second-order PLLs always reach a synchronous state
when submitted to phase steps and ramps [17] in spite of the double-frequency jitter [19, 20]. If
more accurate transient responses are necessary, second-order filters are used, but complicated
behaviors like bifurcation and chaos appear [23], worsening the operation.

Consequently, equations for the dynamics of the VCO phase are obtained by considering
the filter transfer function Fi(s) = μ1/(s + μ1) [15], resulting in the expression

v̇ci(t) + μ1vci(t) = μ1vdi(t). (2.8)

Replacing vdi , given by (2.7), and the VCO control signal vci = θ̇i(t)/k0 in (2.8), the
equation for the node phase is

θ̈i(t) + μ1θ̇i(t) − μ1

(
kokd

(N − 1)

){ N∑
j=1, j /= i

sin
[
φj
(
t − τji

)
− φi(t)

]}
= 0. (2.9)
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Then, considering φi(t) = wit + θi(t) in (2.9) and defining μ2 = kokd and k = μ1μ2/(N − 1), the
dynamics of each VCO phase in a fully connected network is given by

φ̈i(t) + μ1φ̇i(t) − μ1ωi − k
{

N∑
j=1, j /= i

sin
[
φj
(
t − τji

)
− φi(t)

]}
= 0. (2.10)

Equation (2.10) is similar to the pendulum equation, containing a dissipation component
μ1φ̇i(t), a delayed conservative term k

∑N
j=1,j /= i sin[φj(t − τji) − φi(t)], and a forcing part μ1ωi

[16]. Consequently, it is reasonable to suppose that the long-term solution of the system is a
synchronous state, as shown in [14, 18], with the phases of all nodes oscillating with the same
frequency ωs that can be estimated. Thus, in order to estimate this frequency, the following
hypotheses are considered [13]:

(a) φ̇i(t) = ωs,

(b) φ̈i(t) = 0,

(c) φj(t − τji) ≈ φj(t) + φ̇i(t)(−τji) ≈ φj(t) −ωsτji.

Therefore,

μ1
(
ωs −ωi

)
− k
[

N∑
j=1, j /= i

sin
(
Δφji −ωsτji

)]
= 0. (2.11)

The values of (Δφji − ωsτji) are considered to be small because in the majority of the practical
situations, the network is operating in the lock-in mode [17]. Consequently, (2.11) can be writ-
ten as a linear approximation considering sin[Δφji −ωsτji] ≈ Δφji −ωsτji. Hence, for each node
i,

μ1ωs − μ1ωi − k
[

N∑
j=1, j /= i

Δφji

]
+ kωs

[
N∑

j=1, j /= i

τji

]
= 0. (2.12)

Using (2.12) for an N-node network, with i, j = 1, . . . ,N, and j /= i, as well as adding the N
resulting equations, as the sum of the terms Δφji is equal to zero because Δφji = −Δφij , one can
write

Nμ1ωs − μ1

N∑
i=1

ωi + kωs

(
N∑
i=1

N∑
j=1, j /= i

τji

)
= 0. (2.13)

Calculating ωs from (2.13),

ωs =
μ1

(∑N
i=1ωi

)
Nμ1 + k

(∑N
i=1
∑N

j=i, j /= iτji
) . (2.14)

Dividing (2.14) by Nμ1, and replacing k = μ1μ2/(N − 1), the estimation of the synchronous
state frequency (ωs) is obtained:

ωs =
(1/N)

(∑N
i=1ωi

)
1 + (μ2/N(N − 1))

(∑N
i=1
∑N

j=i, j /= iτji
) . (2.15)
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Therefore, expression (2.15) is an estimation for the frequency of the synchronous state for
a fully connected second-order PLL network, depending on the individual free-running fre-
quencies and propagation delays. Notice that when the delays are zero, ωs is given by the
mean value of ωi. As it was considered that all free-running frequencies are different, there are
phase shifts between the nodes in the synchronous state. In practical cases, as in communica-
tion networks, these phase differences are object of delay compensation techniques [5].

In previous work [13], numerical simulations were conducted to investigate the accuracy
of expression (2.15) and to analyze how gains and delays change the behavior of the network.
Here, the dynamic equations for the phase differences are derived allowing the analytic study
of the local stability of the synchronous state.

3. Phase difference equations

In this section, the equations describing the dynamics of the phase errors, Δφji(t), are derived.
A set of N − 1 second-order ordinary differential equations is obtained, expressing the phase
differences between all the nodes and the node 1, taken as reference.

Starting with the individual dynamical equations for each VCO phase and expressing
the differences between the nodes 2, 3, . . . ,N and node 1, equations for Δφj1(t), j = 2, 3, . . . ,N
are written as below:

VCO 1: φ̈1(t) + μ1φ̇1(t) − μ1ω1 − k

×
{

sin
[
φ2
(
t − τ21

)
− φ1(t)

]
+ sin

[
φ3
(
t − τ31

)
− φ1(t)

]
+ sin

[
φ4
(
t − τ41

)
− φ1(t)] + · · · + sin

[
φN
(
t − τN1

)
− φ1(t)

]}
= 0;

VCO 2: φ̈2(t) + μ1φ̇2(t) − μ1ω2 − k

×
{

sin
[
φ1
(
t − τ12

)
− φ2(t)

]
+ sin

[
φ3
(
t − τ32

)
− φ2(t)

]
+ sin

[
φ4
(
t − τ42

)
− φ2(t)

]
+ · · · + sin

[
φN
(
t − τN2

)
− φ2(t)

]}
= 0;

VCO 3: φ̈3(t) + μ1φ̇3(t) − μ1ω3 − k

×
{

sin
[
φ1
(
t − τ13

)
− φ3(t)

]
+ sin

[
φ2
(
t − τ32

)
− φ3(t)

]
+ sin

[
φ4
(
t − τ43

)
− φ3(t)

]
+ · · · + sin

[
φN
(
t − τN3

)
− φ3(t)

]}
= 0;

...

VCO N − 1: φ̈N−1(t) + μ1φ̇N−1(t) − μ1ωN−1 − k

×
{

sin
[
φ1
(
t − τ1N−1

)
− φN−1(t)

]
+ sin

[
φ2
(
t − τ2N−1

)
− φN−1(t)

]
+ sin

[
φ3
(
t − τ3N−1

)
− φN−1(t)

]
+ · · · + sin

[
φN
(
t − τN−1N

)
− φN−1(t)

]}
= 0;

VCO N: φ̈N(t) + μ1φ̇N(t) − μ1ωN − k

×
{

sin
[
φ1
(
t − τ1N

)
− φN(t)

]
+ sin

[
φ2
(
t − τ2N

)
− φN(t)

]
+ sin

[
φ3
(
t − τ3N

)
− φN(t)] + · · · + sin

[
φN−1

(
t − τN−1N

)
− φN(t)

]}
= 0.

(3.1)
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Using the condition φi(t − τji) ≈ φi(t) −ωsτji and considering Δφj1(t) = φj(t) − φ1(t), then

VCO 1: φ̈1(t) + μ1φ̇1 − μ1ω1 − k

×
{

sin
[
Δφ21(t) −ωsτ21

]
+ sin

[
Δφ31(t) −ωsτ31

]
+ sin

[
Δφ41(t) −ωsτ41

]
+ · · · + sin

[
ΔφN1(t) −ωsτN1

]}
= 0;

VCO 2: φ̈2(t) + μ1φ̇2(t) − μ1ω2 − k

×
{

sin
[
Δφ12(t) −ωsτ12

]
+ sin

[
Δφ32(t) −ωsτ32

]
+ sin

[
Δφ42(t) −ωsτ42

]
+ · · · + sin

[
ΔφN2(t) −ωsτN2

]}
= 0;

VCO 3: φ̈3(t) + μ1φ̇3(t) − μ1ω3 − k

×
{

sin
[
Δφ13(t) −ωsτ13

]
+ sin

[
Δφ23(t) −ωsτ23

]
+ sin

[
Δφ43(t) −ωsτ43

]
+ · · · + sin

[
ΔφN3(t) −ωsτN3

]}
= 0;

...

VCO N − 1: φ̈N−1(t) + μ1φ̇N−1(t) − μ1ωN−1 − k

×
{

sin
[
Δφ1N−1(t) −ωsτ1N−1

]
+ sin

[
Δφ2N−1(t) −ωsτ2N−1

]
+ sin

[
Δφ3N−1(t) −ωsτ3N−1

]
+ · · · + sin

[
ΔφNN−1(t) −ωsτNN−1

]}
= 0;

VCO N: φ̈N(t) + μ1φ̇N(t) − μ1ωN − k

×
{

sin
[
Δφ1N(t) −ωsτ1N

]
+ sin

[
Δφ2N(t) −ωsτ2N

]
+ sin

[
Δφ3N(t) −ωsτ3N

]
+ · · · + sin

[
ΔφN−1N(t) −ωsτN−1N

]}
= 0.

(3.2)

Expressing the differences with node 1 as reference,

VCOs 1 and 2: φ̈2(t) − φ̈1(t) + μ1
(
φ̇2(t) − φ̇1(t)

)
− μ1

(
ω2 −ω1

)
− k sin

[
Δφ12(t) −ωsτ12

]
− k sin

[
Δφ32(t) +ωsτ32

]
− k sin

[
Δφ42(t) −ω2τ42

]
− · · · − k sin

[
ΔφN2(t) −ωsτN2

]
+ k sin

[
Δφ21(t) −ωsτ21

]
+ · · · + k sin

[
ΔφN1(t) −ωsτN1

]
= 0;

VCOs 1 and 3: φ̈3(t) − φ̈1(t) + μ1
(
φ̇3(t) − φ̇1(t)

)
− μ1

(
ω3 −ω1

)
− k sin

[
Δφ13(t) −ωsτ13

]
− k sin

[
Δφ23(t) −ωsτ23

]
− k sin

[
Δφ43(t) −ω2τ43

]
− · · · − k sin

[
ΔφN3(t) −ωsτN3

]
+ k sin

[
Δφ21(t) +ωsτ21

]
+ k sin

[
Δφ31(t) +ωsτ31

]
+ k sin

[
Δφ41(t) +ωsτ41

]
+ · · · + k sin

[
φN1(t) −ωsτN1

]
= 0;

...



8 Mathematical Problems in Engineering

VCOs 1 and N: φ̈N(t) − φ̈1(t) + μ1
(
φ̇N(t) − φ̇1(t)

)
− μ1

(
ωN −ω1

)
− k sin

[
Δφ1N(t) −ωsτ1N

]
− k sin

[
Δφ2N(t) −ωsτ2N

]
− k sin

[
Δφ3N(t) −ω2τ3N

]
− · · · − k sin

[
ΔφN−1N(t) −ωsτN−1N

]
+ k sin

[
Δφ21(t) +ωsτ21

]
+ k sin

[
Δφ31(t) +ωsτ31

]
+ k sin

[
Δφ41(t) +ωsτ52

]
+ · · · + k sin

[
φN1(t) −ωsτN1

]
= 0.

(3.3)

Replacing the terms Δφj1(t) = φj(t) − φ1(t), Δφ̇j1(t) = φ̇j(t) − φ̇1(t), Δφ̈j1(t) = φ̈j(t) − φ̈1(t), and
using the identity sin[Δφj1(t) − ωsτj1] + sin[Δφji(t) + ωsτji] = 2 sinΔφji cosωsτji in the former
expressions, the VCO phase differences become

VCOs 1 and 2: Δφ̈21(t) + μ1Δφ̇21(t) − μ1Δω21 + 2k sinΔφ21(t) cos
(
ωsτ21

)
− k sin

[
Δφ32(t) +ωsτ32

]
− k sin

[
Δφ42(t) −ω2τ42

]
− · · · − k sin

[
ΔφN2(t) −ωsτN2

]
+ k sin

[
Δφ31(t) −ωsτ31

]
+ k sin

[
Δφ41(t) −ωsτ41

]
+ · · · + k sin

[
ΔφN1(t) −ωsτN1

]
= 0;

VCOs 1 and 3: Δφ̈31(t) + μ1Δφ̇31(t) − μ1Δω31 + 2k sinΔφ31(t) cos
(
ωsτ31

)
− k sin

[
Δφ23(t) +ωsτ23

]
− k sin

[
Δφ43(t) −ω2τ43

]
− · · · − k sin

[
ΔφN3(t) −ωsτN3

]
+ k sin

[
Δφ21(t) −ωsτ21

]
+ k sin

[
Δφ31(t) −ωsτ31

]
+ · · · + k sin

[
ΔφN1(t) −ωsτN1

]
= 0;

...

VCOs 1 and N: Δφ̈N1(t) + μ1Δφ̇N1(t) − μ1ΔωN1 + 2k sinΔφN1(t) cos
(
ωsτN1

)
− k sin

[
Δφ2N(t) +ωsτ2N

]
− k sin

[
Δφ3N(t) −ω2τ3N

]
− · · · − k sin

[
ΔφN−1N(t) −ωsτN−1N

]
+ k sin

[
Δφ21(t) −ωsτ21

]
+ k sin

[
Δφ31(t) −ωsτ31

]
+ · · · + k sin

[
ΔφN−11(t) −ωsτN−11

]
= 0.

(3.4)

These equations give the general expression that describes the dynamical behavior of the phase
differences for the network VCOs as below:

Δφ̈j1(t) + μ1Δφ̇j1(t) − μ1Δωj1 + 2k sinΔφj1(t) cos
(
ωsτj1

)
− k
{

N∑
m=2, m /= j

sin
[
Δφmj(t) −ωsτmj

]}
+ k

{
N∑

m=2, m /= j

sin
[
Δφm1(t) −ωsτm1

]}
= 0.

(3.5)
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The nonlinear differential equation (3.5), for small-phase deviations, can be approximately
expressed by the linear term of the Taylor series expansion [16]. Then, rewriting (3.5)

Δφ̈j1(t) + μ1Δφ̇j1(t) − μ1Δωj1 + 2kΔφj1(t)

− k
{

N∑
m=2, m /= j

[
Δφmj(t) −Δφm1(t)

]}
+ kωs

{
N∑

m=1, m /= j

[
τmj − τm1

]}
= 0.

(3.6)

Expressions (3.5) and (3.6) describe the dynamics of the phase adjustments of a fully connected
PLL network depending on the PLL node parameters μ1 and k, the number of nodesN, as well
as the individual free-running frequencies and the delays. These equations allow the research
of the synchronous state stability that is conducted in the next section.

4. Synchronous state stability

In Section 2, an expression for the synchronous state frequency for the fully connected network
was derived and, in this section, the stability of the synchronous state is studied, that is, if the
reachable synchronous state is robust under small perturbations. The analysis is performed
considering that the solutions of the linear equation (3.6) can be topologically equivalent to
the solutions of (3.5) in a small neighborhood of the synchronous state if it is a hyperbolic
equilibrium point [16]. The procedure will be shown for three-node and four-node networks
providing the identification of patterns in the expressions for the eigenvalues of the Jacobian
matrix representing the linear equivalent system around the synchronous state.

4.1. Three-node network

For a three-node network, the phase differences are Δφ12 and Δφ13. By using (3.5), the system
is described by

VCOs 1 and 2: Δφ̈12 + μ1Δφ̇12 + 2kΔφ12 + kΔφ13 − kΔφ23 + μ1Δω21 + kωs

(
τ13 − τ23

)︸ ︷︷ ︸
a

= 0;

VCOs 1 and 3: Δφ̈13 + μ1Δφ̇13 + 2kΔφ13 + kΔφ12 + kΔφ23 + μ1Δω31 + kωs

(
τ12 − τ32

)︸ ︷︷ ︸
b

= 0.

(4.1)

The system composed of two second-order equations (4.1) can be described by the state vari-
ables:

x1 ≡ Δφ12, x3 ≡ Δφ13,

x2 ≡ Δφ̇12, x4 ≡ Δφ̇13.
(4.2)

Considering that Δφ23 = x3 − x1, the following first-order equations result:

ẋ1 = x2,

ẋ2 = −3kx1 − μ1x2 − a,

ẋ3 = x4,

ẋ4 = −3kx3 − μ1x4 − b.

(4.3)
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Consequently, the Jacobian matrix J from (4.3) is

J =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0

−3k −μ1 0 0

0 0 0 1

0 0 −3k −μ1

⎤
⎥⎥⎥⎥⎥⎦ . (4.4)

The eigenvalues of J are the roots of the characteristic polynomial

(
λ2 + μ1λ + 3k

)2
= 0, (4.5)

which have multiplicity two, and are given by

λ1 = −
μ1

2
+

√
μ2

1 − 12k

2
,

λ2 = −
μ1

2
−

√
μ2

1 − 12k

2
.

(4.6)

4.2. Four-node network

The calculation of the eigenvalues for the four-node network follows the same procedure of
the former case. The phase differences are represented by Δφ12, Δφ13, and Δφ14. By using (3.5),
the system is written as

VCOs 1 and 2: Δφ̈12 + μ1Δφ̇12 + 2kΔφ12 + kΔφ13 − kΔφ23 + kΔφ14 − kΔφ24

+ μ1Δω21 + kωs

(
τ13 − τ23 + τ14 − τ24

)︸ ︷︷ ︸
a

= 0;

VCOs 1 and 3: Δφ̈13 + μ1Δφ̇13 + 2kΔφ13 + kΔφ12 + kΔφ23 + kΔφ14 − kΔφ34

+ μ1Δω31 + kωs

(
τ12 − τ32 + τ14 − τ34

)︸ ︷︷ ︸
b

= 0;

VCOs 1 and 4: Δφ̈14 + μ1Δφ̇14 + 2kΔφ14 + kΔφ12 + kΔφ24 + kΔφ13 + kΔφ34

+ μ1Δω41 + kωs

(
τ12 − τ42 + τ13 − τ43

)︸ ︷︷ ︸
c

= 0.

(4.7)

The second-order expressions (4.7) can be rewritten in terms of state variables:

x1 ≡ Δφ12, x3 ≡ Δφ13, x5 ≡ Δφ14,

x2 ≡ Δφ̇12, x4 ≡ Δφ̇13, x6 ≡ Δφ̇14.
(4.8)



José R. C. Piqueira et al. 11

Considering that Δφ23 = x3 − x1, Δφ24 = x5 − x1, and Δφ34 = x3 − x5, the following first-order
equations result:

ẋ1 = x2,

ẋ2 = −4kx1 − μ1x2 − a,

ẋ3 = x4,

ẋ4 = −4kx3 − μ1x4 − b,

ẋ5 = x6,

ẋ6 = −4kx5 − μ1x6 − c.

(4.9)

Consequently, the Jacobian matrix J from (4.9) is

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

−4k −μ1 0 0 0 0

0 0 0 1 0 0

0 0 −4k −μ1 0 0

0 0 0 0 0 1

0 0 0 0 −4k −μ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.10)

The eigenvalues of J are given by the roots of the characteristic polynomial:

(
λ2 + μ1λ + 4k

)3
= 0, (4.11)

which have multiplicity 3, and are

λ1 = −
μ1

2
+

√
μ2

1 − 16k

2
,

λ2 = −
μ1

2
−

√
μ2

1 − 16k

2
.

(4.12)

4.3. N-node network

As it was shown, for a fully connected PLL network, the Taylor series development around the
synchronous state results in Jacobian matrices with a canonical Jordan form [24]. Table 1 shows
the characteristic polynomials and the expressions of the eigenvalues and their multiplicities,
m, corresponding to fully connected networks dynamic equations, around the synchronous
state, for different number, n, of nodes.

It can be observed that for any number of nodes, the eigenvalues from Table 1 are with
negative real parts, implying that the synchronous state is locally asymptotically stable.
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Table 1: Eigenvalues for an N-node network.

n
Eigenvalues and multiplicities

Polynomial λ1 m λ2 m

2 (λ2 + μ1λ + 2k) −
μ1

2
+

√
μ2

1 − 8k

2
1 −

μ1

2
−

√
μ2

1 − 8k

2
1

3 (λ2 + μ1λ + 3k)2 −
μ1

2
+

√
μ2

1 − 12k

2
2 −

μ1

2
−

√
μ2

1 − 12k

2
2

4 (λ2 + μ1λ + 4k)3 −
μ1

2
+

√
μ2

1 − 16k

2
3 −

μ1

2
−

√
μ2

1 − 16k

2
3

5 (λ2 + μ1λ + 5k)4 −
μ1

2
+

√
μ2

1 − 20k

2
4 −

μ1

2
−

√
μ2

1 − 20k

2
4

6 (λ2 + μ1λ + 6k)5 −
μ1

2
+

√
μ2

1 − 246k

2
5 −

μ1

2
−

√
μ2

1 − 24k

2
5

7 (λ2 + μ1λ + 7k)6 −
μ1

2
+

√
μ2

1 − 28k

2
6 −

μ1

2
−

√
μ2

1 − 28k

2
6

...
...

...
...

...
...

N (λ2 + μ1λ +Nk)(N−1) −
μ1

2
+

√
μ2

1 − 4Nk

2
(N − 1) −

μ1

2
−

√
μ2

1 − 4Nk

2
(N − 1)

5. Conclusions

As the fully connected architecture started to be used in large scale in clock distribution sys-
tems, (2.15) can be applied by network designers as an estimation for the frequency of the
synchronous state when second-order PLLs are used to extract the timing information in the
nodes.

Besides, because the synchronous state is a hyperbolic locally asymptotically stable equi-
librium point, the network can recover synchronization after perturbation. The eigenvalues
presented in Table 1 can be used for determining the transient behavior of such a resynchro-
nization process.
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