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Variational iteration method is applied to examine the temperature distribution within a single fin
with a one-dimensional steady-state nonlinear heat conduction equation. Variation of temperature
due to different levels of nonlinearities is analyzed. The results obtained by means of variational
iteration method are compared with the results obtained from finite element method. A fourth
iteration variational iteration solution is used in all cases considered. An error analysis is also
conducted to evaluate the performance of proposed solution technique. The results have shown
that variational iteration method is a powerful solution technique in the analysis of power-law fin-
type problems.
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1. Introduction

Heat conduction problems for the fins and finned surfaces with a non-uniform heat transfer
coefficient along the fin have been studied extensively [1]. Heat transfer coefficient depends
on the local temperature difference between the fin surface and the surrounding medium and
can be expressed as a power law.

The temperature distribution along a fin of constant cross-sectional area and the thermal
conductance at the fin base can be modeled as a one-dimensional steady-state heat conduction
equation, which in dimensionless form is given by (2, 3]

2
%—NG’"=O, 0<x<l. (1.1)
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Figure 1: Geometry of one-dimensional heat conduction problem in a straight fin.

Subjected to following boundary conditions:
0'(0) =0, 0(1) =1, (1.2)

where the differentiation is with respect to the dimensionless coordinate x, measured along
the fin length from its adiabatic and 0 is the dimensionless temperature, N is the convective-
conductive parameter of the fin and the exponent m depends on the heat transfer mode.
Physical values of the power m of some practical interest are related to free convection,
nucleate boiling and radiation. Some physical cases are defined in [2] with the geometry of
the problem. For example, for the convecting fin problem m = 1, N = (2hL?/ bk)l/z,e =
(T-T.)/(T'-Tp), x = X/L, and for the fin radiating to the zero environment temperature m = 4,
N = (2ET;L*/ bk)l/z, 0 =T/Tp, x = X/L where E is emissivity, h is heat transfer coefficient, L
is fin length, T is temperature, T}, is fin base temperature, T, environment temperature, b is fin
thickness, k is thermal conductivity, and X is distance from fin tip. The problem is depicted in
Figure 1.

The role of the fin-tip heat transfer has been comprehensively studied in [4] and hence
to avoid additional parameters in the current problem, only the case of a fin with an insulated
tip, see (1.2), is considered in this paper.

The problem governed by (1.1)-(1.2) possesses an analytical solutions for certain values
of m [3, 5-9]. The analytical solution given in [5] includes a three-parameter hyper geometric
function, and also a Dawson’s integral in [3].

Previously, fin-type problems have been solved by using different methods of analysis.
Yu and Chen [10] used Taylor transformation method to optimize rectangular fins with
variable thermal parameters. Yu and Chen [11] used differential transformation method for
circular fins with variable thermal parameter. Chiu and Chen [12] used decomposition method
for the analysis of circular fins. Arslantiirk [13, 14] applied Adomian decomposition method
successfully for the analysis of convective fins and space radiators. Lesnic and Heggs [15] also
used Adomian decomposition method for power-law fin-type problems.

In recent years a solution technique called variational iteration method (VIM) [16] has
been given great importance for solving nonlinear differential equations. VIM is a kind of
variational-based analytical technique in efficient solution of nonlinear differential equations
including boundary value and initial value problems, nonlinear system of differential
equations, nonlinear partial differential equations [17-19]. Coskun and Atay [20, 21] used
VIM for the analysis of convective straight and radial fins with temperature-dependent
thermal conductivity and examined the effect of temperature-dependent thermal conductivity
considering various cases. These successful applications of the method to the fin-type problems
are the reasons for choosing VIM in present problem.
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VIM directly gives the solution of corresponding equation which is one of its advantages
when compared to ADM. The formulation and solution process of VIM is much easier when
compared to decomposition methods, in this respect; VIM is an easy-to-apply method for the
analysis of nonlinear problems in engineering.

In this study, power-law fin-type problems will be analyzed using VIM. In the analysis,
the effects of convective-conductive parameter of the fin (IN) and exponent of the power-
law fin-type (m) which corresponds to heat transfer mode will be studied in detail. An error
analysis will also be conducted by comparing VIM results with the finite element solution of
the same equation.

2. VIM formulation of the problem
According to VIM, the following differential equation may be considered:
Lu+ Nu = g(x), (2.1)

where L is a linear operator, N is a nonlinear operator, and g(x) is an inhomogeneous term.
Based on VIM, a correct functional can be constructed as follows:

Upe1(X) = uy(x) + J‘O)L(g){Lun(T) + Nii, (1) - g(7) }dr, (2.2)

where A is a general Lagrangian multiplier, which can be identified optimally via the
variational theory, the subscript n denotes the nth-order approximation, # is considered as
a restricted variation, that is, 611 = 0. By using this formulation, a differential equation for
obtaining the Lagrangial multiplier 1(¢) is

V(@) =0 (23)
with corresponding conditions,
A@)ls—x =0,
[1 -V (@)]le=x = 0.

By solving (2.3) with respect to boundary conditions in (2.4), Lagrangial multiplier A(¢) is
obtained as follows:

(2.4)

M) =¢—x. (2.5)

If the above VIM formulation is applied to (1.1), following iteration formula can be obtained
accordingly:

81 (x) = 0,(x) + fomr:) (00(8) - NOI(2))de, (2.6)

where N is previously defined as nonlinear operator in (2.1). Lagrange multiplier A is obtained
as follows by assuming that L = d?/d¢* with the restricted variation 6ii,, = 0.

The iteration formula given in (2.6) is a simple approximation when compared to ADM
formulation of the same problem [14]. This is due to the fact that new formulation directly
gives the expression instead of summing recursive approximations which is a tedious work.



4 Mathematical Problems in Engineering
3. Solutions for fin temperature distribution

As a starting approximation for VIM solution, 60 is assumed as constant, which was assumed
as constant also in ADM solution [14]. For simplicity, first few iterations of VIM corresponding
to N =1 with m = 2,3, 4 are presented.

For N =1, m = 2, first three iterations are

0o(x) = B, (3.1a)

2.2
01(x) = B+ DX (3.1b)

B2x2 B3x* B%®

6,(x) =B+ 5 + 0 + 30 (3.1¢)
B2x2 B3x4 B4x6 B5x8 11B6x10 B7.X'12 B8x14
-B , 3.1d
O(x) =B+ ——+ =5+ 7+ 560 * 64800 ' 95040 ' 2620800 (3.1d)
For N =1, m = 3, first three iterations are
90(X) = B/ (32&)
B3 2
01(x) = B+~ (3.2b)
B3x? B°x* B7x® Bx®
_ 3.2¢
6,(x) =B+ 5 + 3 + 0 + 113 (3.2¢)
Bx2 Box* 3B7x% 23B%® 83BlUx10 101BBx1
- 3.2d
O(x) =B+ ——+ ==+~ * a0 T 33600 T 197120 (3.2d)
For N =1, m = 4, first three iterations are
Oo(x) = B, (3.3a)
B4 2
0,(x) =B+ 2’“ , (3.3b)
B4x2 B7x4 B10x6 B13x8 B16x10
0,(x) = B ) 3.3¢
() =B+ =+ =+ 5t 1 T 14w (3.3¢)
B'x2 B’x* 13B0x6 17BBx® 1789B1x10  701BYx12
05(x) = B 3.3d
5() =B+t~ + g0t se0 T 151200 ' 166320 (3.3d)

Analysis of the problem is conducted for N = 0.1,0.5,1,2,5 with m = 2,3, 4 for each N up
to fourth iteration of 8(04(x)). By using these parameters, the effect of increasing convective-
conductive parameter of the fin (IN) and exponent of the power-law fin-type (m) which
corresponds to heat transfer mode is studied. These parameters cause nonlinearity in (1.1).
Hence, with the performed analysis, the effect of degree of nonlinearity in the solution of this
equation is examined. For this purpose an error criterion is defined and calculated for each case
by using the finite element solution of the equation and VIM solution with fourth iteration.
Error criterion is defined as

n _ 2\ 172
Error = <ZI_1|9FEM 9VIM|> , (3.4)

S [6reml?

where Oggy is the finite element solution, Oy is the fourth iteration VIM solution, and # is the
number of points where the solution is considered.
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Figure 2: Dimensionless temperature distribution for convective-conductive parameter N = 0.1.

4. Numerical results

Proposed solution technique is applied for different cases explained in previous section. These
different parameters represent the degree of nonlinearity in the corresponding equation. In this
study, finite element solutions of (1.1) are obtained using the software FlexPDE Version 5. In
finite element analysis quadratic basis functions are used and a modified Newton-Raphson
algorithm is employed with a root mean square error criterion of order 107 or less to solve
nonlinear set of resulting equations.

First, the problem is solved for small values of convective-conductive parameter N with
varying m values. To this aim, N is chosen as 0.1 and 0.5.

Figure 2 shows the variation of 6 with respect to x for N = 0.1. From the figure it seems
that VIM solution is in excellent agreement with FEM solutions. From Figure 8, a very small
error of order 107® can be observed.

For N = 0.5, the results produced by using both methods are shown in Figure 3. Again,
an excellent agreement can be seen from this figure with the same order of errors as in previous
case.

At the next stage, the analysis is conducted for N = 1 and N = 2. Figures 4 and 5 show
the results obtained for these cases. From the graphs the results obtained from both methods
are still in very good agreement, however as shown in Figures 7 and 8 errors are increased
gradually for these cases when compared to first two cases.

Last case study is performed for N = 5 with the same m values. The results are shown
in Figure 6. From the analysis, it can be observed that VIM and FEM results are still in good
agreement but maximum errors are obtained as it can be seen form Figures 7 and 8 for this case
when compared to previous cases.

Case studies have shown that increasing nonlinearity due to the increasing parameters
N and m resulted in increasing error values. However, obtained VIM results are still in good
agreement with the FEM results even for the maximum values of N and m considered.

In order to show the effect of nonlinearity in the solutions obtained, two different error
analyses are conducted with respect to N and m parameters. In all cases considered, a fourth
iteration solution in VIM analysis is used. From Figure 7, it can be observed that errors increase
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Figure 3: Dimensionless temperature distribution for convective-conductive parameter N = 0.5.
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Figure 4: Dimensionless temperature distribution for convective-conductive parameter N = 1.
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Figure 5: Dimensionless temperature distribution for convective-conductive parameter N = 2.
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Figure 6: Dimensionless temperature distribution for convective-conductive parameter N = 5.
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with increasing m for each N values. Also, maximum errors are obtained for maximum N
value (N = 5). Figure 8 describes variation of error with respect to N for different m values.
From the graph, it can be observed that error increases with increasing N even though N
is a constant value. Equation (1.1) includes a nonlinear term multiplied by this constant N.
Figure 8 shows that N has a significant effect on the solution of the governing equation given
in (1.1). Hence, with the increasing multiplier for the nonlinear term in (1.1), more iteration
may be required for an accurate analysis. However, fourth iteration VIM solution used in this
study is accurate enough for the analysis of the problem with the values considered in this
study.

5. Conclusions

In this paper, power-law fin-type problems have been considered. The nonlinear fin equation
has been solved by using the VIM which provides an analytical expression converging to
the solution of the governing equation. These results were compared with the FEM results of
the same equation and the effect of nonlinearity due to the convective-conductive parameter
of the fin (IN) and exponent of the power-law fin-type (m) has been analyzed. The results
have shown that VIM can be efficiently used in the analysis of power-law fin-type problems
and another remarkable point is that the analysis with VIM requires not much effort with
respect to formulation of the problem and iteration required. An additional important point
is that the error obtained has been increased with the parameters affecting the nonlinearity of
the governing equation. However, VIM handles the nonlinearity successfully even with less
iteration for the cases considered. Another advantage of the VIM is that the method gives
an analytical expression as a solution. This is a superiority when compared to mesh-based
numerical methods.
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