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Metric spaces are among the most important widely studied topics in mathematics. In recent
years, Mathematicians began to investigate using other metrics different from Euclidean metric.
These metrics also find their place computer age in addition to their importance in geometry. In
this paper, we consider the plane geometry with the generalized absolute value metric and define
trigonometric functions and norm and then give a plane tiling example for engineers underlying
Schwarz’s inequality in this plane.
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1. Introduction

In the late 1800’s, Minkowski [1] published a whole family of metrics providing new insight
into the study of plane geometry. In recent years, mathematicians and engineers begin to
investigate non-Euclidean metrics used in real-life applications. For example, Eisenberg and
Khabbaz [2] discussed the applications of taxicab metric in geometry and network theory.
Similarly, Burman et al. [3] utilized the concept of λ-geometry and discussed its applications
in the problem of global routing of multiterminal nets.

Our goal is to further develop the plane geometry with the generalized absolute value
metric dg suggested by Kaya et al. [4], and to see how it can lead to future researches in
related areas. In R

2, the dg-distances between X = (x1, y1) and Y = (x2, y2)are defined by

dg(X,Y ) = dg
((
x1, y1

)
,
(
x2, y2

))

= a max
{∣∣x1 − x2

∣∣,
∣∣y1 − y2

∣∣} + b min
{∣∣x1 − x2

∣∣,
∣∣y1 − y2

∣∣}
(1.1)

for all a, b ∈ R, a ≥ b ≥ 0, a /= 0. According to the definition of dg-distances, the shortest way
between two points X and Y is the union of a vertical or a horizontal line segment and a line
segment with the slope ±2ab/(a2 − b2).
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We will show that the dg-distance defined above is a metric. First, it is positive definite
and symmetric, and it can be shown that dg satisfies the triangle inequality as follows. For
X = (x1, y1), Y = (x2, y2), and Z = (x3, y3), since

∣
∣x1 − x2

∣
∣ =

∣
∣x1 − x3 + x3 − x2

∣
∣ ≤

∣
∣x1 − x3

∣
∣ +

∣
∣x3 − x2

∣
∣,

∣
∣y1 − y2

∣
∣ =

∣
∣y1 − y3 + y3 − y2

∣
∣ ≤

∣
∣y1 − y3

∣
∣ +

∣
∣y3 − y2

∣
∣,

(1.2)

one obtains

dg(X,Y ) = amax
{∣∣x1 − x2

∣
∣,
∣
∣y1 − y2

∣
∣} + b min

{∣∣x1 − x2
∣
∣,
∣
∣y1 − y2

∣
∣}

= a max
{∣∣x1 − x3 + x3 − x2

∣
∣,
∣
∣y1 − y3 + y3 − y2

∣
∣}

+ bmin
{∣∣x1 − x3 + x3 − x2

∣
∣,
∣
∣y1 − y3 + y3 − y2

∣
∣}

≤ a max
{∣∣x1 − x3

∣∣ +
∣∣x3 − x2

∣∣,
∣∣y1 − y3

∣∣ +
∣∣y3 − y2

∣∣}

+ b min{
∣∣x1 − x3

∣∣ +
∣∣x3 − x2

∣∣,
∣∣y1 − y3

∣∣ +
∣∣y3 − y2

∣∣} = k.

(1.3)

Let us examine the following four cases:

(i) |x1 − x3| ≥ |y1 − y3| and |x3 − x2| ≥ |y3 − y2|;

(ii) |x1 − x3| ≥ |y1 − y3| and |x3 − x2| ≤ |y3 − y2|;

(iii) |x1 − x3| ≤ |y1 − y3| and |x3 − x2| ≤ |y3 − y2|;

(iv) |x1 − x3| ≤ |y1 − y3| and |x3 − x2| ≥ |y3 − y2|.

We will only prove the first two cases since the remaining cases can be proved
similarly.

If |x1 − x3| ≥ |y1 − y3| and |x3 − x2| ≥ |y3 − y2|, then

dg(X,Y ) ≤ k = a
(∣∣x1 − x3

∣∣ +
∣∣x3 − x2

∣∣) + b
(∣∣y1 − y3

∣∣ +
∣∣y3 − y2

∣∣)

= a
∣∣x1 − x3

∣∣ + b
∣∣y1 − y3

∣∣ + a
∣∣x3 − x2

∣∣ + b
∣∣y3 − y2

∣∣

= dg(X,Z) + dg(Z, Y ).

(1.4)

If |x1 − x3| ≥ |y1 − y3| and |x3 − x2| ≤ |y3 − y2|, then there are two possible situations.
(i) Let |x1 − x3| + |x3 − x2| ≥ |y1 − y3| + |y3 − y2|. Then

dg(X,Y ) ≤ k = a
(∣∣x1 − x3

∣∣ +
∣∣x3 − x2

∣∣) + b
(∣∣y1 − y3

∣∣ +
∣∣y3 − y2

∣∣). (1.5)

Using |x1 − x3| ≥ |y1 − y3| and |x3 − x2| ≤ |y3 − y2|,

dg(X,Z) = a
∣∣x1 − x3

∣∣ + b
∣∣y1 − y3

∣∣,

dg(Z, Y ) = a
∣∣y3 − y2

∣∣ + b
∣∣x3 − x2

∣∣.
(1.6)
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Also, dg(X,Y ) ≤ dg(X,Z) + dg(Y,Z) if and only if

dg(X,Y ) ≤ k = a
(∣∣x1 − x3

∣∣ +
∣∣x3 − x2

∣∣) + b
(∣∣y1 − y3

∣∣ +
∣∣y3 − y2

∣∣)

k ≤ a
(∣∣x1 − x3

∣
∣ +

∣
∣y3 − y2

∣
∣) + b

(∣∣y1 − y3
∣
∣ +

∣
∣x3 − x2

∣
∣)

⇐⇒ a
(∣∣x3 − x2

∣
∣ −

∣
∣y3 − y2

∣
∣) + b

(∣∣y3 − y2
∣
∣ −

∣
∣x3 − x2

∣
∣) ≤ 0

⇐⇒ (a − b)
(∣∣x3 − x2

∣
∣ −

∣
∣y3 − y2

∣
∣) ≤ 0

⇐⇒
∣
∣x3 − x2

∣
∣ ≤

∣
∣y3 − y2

∣
∣.

(1.7)

(ii) Let |x1 − x3| + |x3 − x2| ≤ |y1 − y3| + |y3 − y2|. Then

dg(X,Y ) ≤ k = a
(∣∣y1 − y3

∣
∣ +

∣
∣y3 − y2

∣
∣) + b

(∣∣x1 − x3
∣
∣ +

∣
∣x3 − x2

∣
∣). (1.8)

Using |x1 − x3| ≥ |y1 − y3| and |x3 − x2| ≤ |y3 − y2|,

dg(X,Z) = a
∣∣x1 − x3

∣∣ + b
∣∣y1 − y3

∣∣,

dg(Z, Y ) = a
∣∣y3 − y2

∣∣ + b
∣∣x3 − x2

∣∣,

dg(X,Y ) ≤ dg(X,Z) + dg(Y,Z)⇐⇒
dg(X,Y ) ≤ k = a

(∣∣y1 − y3
∣∣ +

∣∣y3 − y2
∣∣) + b

(∣∣x1 − x3
∣∣ +

∣∣x3 − x2
∣∣)

k ≤ a
(∣∣x1 − x3

∣∣ +
∣∣y3 − y2

∣∣) + b
(∣∣y1 − y3

∣∣ +
∣∣x3 − x2

∣∣)

⇐⇒ a
(∣∣y1 − y3

∣∣ −
∣∣x1 − x3

∣∣) + b
(∣∣x1 − x3

∣∣ −
∣∣y1 − y3

∣∣) ≤ 0

⇐⇒ (a − b)
(∣∣y1 − y3

∣∣ −
∣∣x1 − x3

∣∣) ≤ 0

⇐⇒
∣∣y1 − y3

∣∣ ≤
∣∣x1 − x3

∣∣.

(1.9)

Note that the generalized absolute value metric dg is a generalization of the taxicab
metric dT , maximum metric dmax, and Chinese checker metric dC in the following manner:
dg = dT if a = b = 1; dg = dmax if a = 1 and b = 0; dg = dC if a = 1 and b =

√
2 − 1, respectively.

Furthermore, the unit circle in (R2, dg) is the set of points (x, y) in the plane which satisfies

a max
{
|x|, |y|

}
+ b min

{
|x|, |y|

}
= 1, a ≥ b ≥ 0,a/= 0. (1.10)

It is well known that Schwarz’s inequality is a fundamental inequality of the Euclidean
plane, which states that the magnitude of the inner product of two vectors cannot exceed
the product of the lengths of these two vectors in the plane. Our main goal is to show
the validity of Schwarz’s inequality in (R2, dg). To achieve this goal, our presentation is
organized as follows. After the definitions of trigonometric functions in (R2, dg) are given,
we define the norm, prove Schwarz’s inequality, and give an area formula of a triangle in this
plane (Section 3). Finally, we give a plane tiling example underlying Schwarz’s inequality in
Section 4.

2. The trigonometric functions

We know that if X = (x, y) is a point on the Euclidean unit circle, then x = cosθ and y = sin θ,
where θ is the angle with the positive x-axis as the initial side and the radial line passing
through point (x, y) as the terminal side. Now, we can define the trigonometric functions



4 Mathematical Problems in Engineering

cosine and sine of the angle θ in (R2, dg) in the same way as the Euclidean cosine and sine
functions. Let (x, y) be a point on the unit circle in (R2, dg). Since the unit circle is an octagon
in (R2, dg) (see [4]), trigonometric functions can be defined according to eight quadrants. If
we show the cosine and sine functions by cosgθ and singθ, they can be given as follows with
the method in [5]:

cosgθ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cosθ
a|cosθ| + b| sin θ| if | tan θ| ≤ 1,

cosθ
b|cosθ| + a| sin θ| if | tan θ| ≥ 1,

singθ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sin θ
a|cosθ| + b| sin θ| if | tan θ| ≤ 1,

sin θ
b|cosθ| + a| sin θ| if | tan θ| ≥ 1.

(2.1)

One can easily see that if θ
′
is the related angle in first or second quadrant of given angle θ in

quadrant i, (π/4)(i − 1) ≤ θ ≤ (π/4)i, i = 1, . . . , 8. The relationship between cosgθ and cosgθ
′

or singθ and singθ
′
is the same as the Euclidean one.

We note that there is the nonuniform increment in arc length when the angle is
incremented by a fixed amount whereas on the Euclidean unit circle. So, we want to define
trigonometric functions any angle θ between any two lines by using reference angle α of θ
[6].

Definition 2.1. Let θ be an angle with the reference angle α which is the angle between θ and
the positive direction of the x-axis in dg-unit circle. Then the cosine and sine functions of
angle θ with the reference anglesα, gcosθ, and g sin θ are defined by

gcos θ := cosg(α + θ) · cosgα + sing(α + θ) · singα,

g sin θ := sing(α + θ) · cosgα − cosg(α + θ) · singα.
(2.2)

One can easily see that if α = 0, then gcosθ = cosgθ and g sin θ = singθ.

2.1. Variation of dg-lengths under rotations

It is well known that all translations and rotations of the plane preserve the Euclidean
distance. It is obvious that dg-distances are invariant under all translations. Now, we want
to investigate the change of dg-lengths of a line segment after rotations as in [7].

Theorem 2.2. Let any two points beA and B in (R2, dg), and let the line segmentAB be not parallel
to the x-axis and the angle α between the line segmentAB and the positive direction of x-axis. IfA

′
B
′

is the image of AB under the rotations with the angle θ, then

dg(A
′
, B

′
) =

√√√
√ cos2

gα + sin2
gα

cos2
g(α + θ) + sin2

g(α + θ)
·dg(A,B). (2.3)
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Proof. We can translate the line segment AB to the line segment OX such that

dg(A,B) = dg(O,X) = k (2.4)

since all the translations preserve the dg-distance. X = (k · cosgα, k · singα) and under the
rotation θ, OX transforms to OX

′
, X

′
= (k · cosg(α + θ), k · sing(α + θ)). If we calculate

dg(O,X
′
) = k

′
by using dE(O,X) = dE(O,X

′
), we obtain

k
′
= k ·

√√
√
√ cos2

gα + sin2
gα

cos2
g(α + θ) + sin2

g(α + θ)
. (2.5)

Corollary 2.3. If the segment AB is parallel to the x-axis, then

dg(A
′
, B

′
) =

dg(A,B)
√

cos2
gθ + sin2

gθ
. (2.6)

Proof. In this situation, since α = 0, the proof is obvious.

3. Norm in (R2, dg)

In this section, we will define the norm in (R2, dg) by using the standard inner product in R
2

as in [8] .

Definition 3.1. Let A = (x, y) be any vector in (R2, dg). Then the norm of A is defined by

‖A‖g =

√√√
√ 〈A,A〉

cos2
gα + sin2

gα
, (3.1)

where α is the reference angle of A.

Corollary 3.2. ‖A‖g = dg(O,A).

Proof. If A = (x, y) = (dg(O,A)cosgα, dg(O,A)singα) is used,

dE(O,A) =
√

cos2
gα + sin2

gα ·dg(O,A). (3.2)

If we use dE(O,A) =
√
〈A,A〉 and Definition 3.1,

‖A‖g = dg(O,A) (3.3)

is obtained.
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As in Euclidean geometry, it is easily seen that the norm function ‖ · ‖g satisfies the
following properties. So, the following proposition is given without proof.

Proposition 3.3. Let A = (x1, y1), B = (x2, y2), and C = (x3, y3) be any three vectors in (R2, dg)
and r ∈ R. Then

(i) ‖A‖g ≥ 0 and (‖A‖g = 0⇔ A = 0),

(ii) ‖rA‖g = |r| · ‖A‖g ,
(iii) ‖A + B‖g ≤ ‖A‖g + ‖B‖g ,
(iv) ‖A − B‖g ≥ ‖A‖g − ‖B‖g ,
(v) ‖A − B‖g ≤ ‖A − C‖g + ‖C − B‖g .

It is important that Schwarz’s inequality is valid for a metric. For example, matched
filters are found in nearly every communication device, such as cell phones and television
broadcasts. The detector utilizes Cauchy-Schwarz’s inequality to compare functions. When
the inner product of the functions is “large,” then there are significant similarities between
the two signals. This detector will help us better select which tile is appropriate for a small
section of the final image. If a quantized block of the target image is mostly one color on one
side but another color on the opposite side, then the matched filter detector will find a tile
with similar attributes.

The following proposition shows that Schwarz’s inequality is valid for some restricted
cases of dg .

Proposition 3.4 (Schwarz’s inequality). If A = (x1, y1) and B = (x2, y2) are any two vectors in
(R2, dg) and b ≥ 1, then

∣∣〈A,B〉
∣∣ ≤ ‖A‖g · ‖B‖g . (3.4)

Proof. (i) If A = 0, then 〈A,B〉 = 0 and |〈A,B〉| = 0. Furthermore, ‖A‖g = 0 and ‖A‖g · ‖B‖g =
0.

(ii) Let A/= 0, then we know that

∣∣〈A,B〉
∣∣ =

∣∣x1x2 + y1y2
∣∣ ≤

∣∣x1x2
∣∣ +

∣∣y1y2
∣∣, (3.5)

‖A‖g · ‖B‖g =
(
amax

{∣∣x1
∣∣,
∣∣y1

∣∣} + bmin
{∣∣x1

∣∣,
∣∣y1

∣∣})·
(
amax

{∣∣x2
∣∣,
∣∣y2

∣∣}+bmin
{∣∣x2

∣∣,
∣∣y2

∣∣})

= a2∣∣x1x2
∣∣ + ab

(∣∣x1y2
∣∣ +

∣∣y1x2
∣∣) + b2∣∣y1y2

∣∣.
(3.6)

In this case, there are four subcases.

(1) |x1| ≥ |y1| and |x2| ≥ |y2|.
(2) |x1| ≥ |y1| and |x2| ≤ |y2|.
(3) |x1| ≤ |y1| and |x2| ≥ |y2|.
(4) |x1| ≤ |y1| and |x2| ≤ |y2|.

Here, subcase (1) is proved; the others can be similarly proved.
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If the right-hand sides of (3.4) and (3.5) are observed,

ab
∣
∣x1y2

∣
∣ + ab

∣
∣y1x2

∣
∣ + a2∣∣x1x2

∣
∣ + b2∣∣y1y2

∣
∣ ≥

∣
∣x1x2 + y1y2

∣
∣ (3.7)

is valid since b ≥ 1, |x1| ≥ |y1|, and |x2| ≥ |y2|. This completes the proof.

Now, we will give the area of the triangle
Δ

ABC .

Theorem 3.5. Let
Δ

ABC be any triangle in (R2, dg) and let θ be the angle betweenAC and BC. Then

the areaA of the triangle
Δ

ABC is

A =
1
2
· ‖AC‖g · ‖BC‖g · g sin θ. (3.8)

Proof. One can take that C is the origin since all the translations preserve dg-distance. One
can easily obtain the following relation between g sin θ and sin θ:

g sin θ =
‖OA‖ · ‖OB‖
‖OA‖g · ‖OB‖g

· sin θ. (3.9)

From (3.9) and 2A = ‖OA‖ · ‖OB‖ · sin θ for 0 ≤ θ ≤ π ,

A =
1
2
· ‖AC‖g · ‖BC‖g · g sin θ. (3.10)

4. Application

In Latin, tessella was a small cubical piece of clay, stone, or glass used to make mosaics as
mentioned in [9, 10]. The word “tessella” means “small square” (from “tessera,” square,
derived from the Greek word for “four”). It also corresponds to the everyday term “tiling”
which refers to the applications of tessellation, often made of glazed clay.

Certain shapes of tiles, most obviously rectangles, can be replicated to cover a surface
with no gaps. These shapes are said to tessellate (from the Latin tessella, “tile”). Over the
centuries, many ceramic engineers and artists have employed plane tiling in their work.
They used tiles for floors and walls because they are durable, waterproof, and beautiful. If
you are mathematically inclined, no doubt you see some mathematics in the tiling. There are
some examples where plane tiling on floors, walls, and in paintings underlies proofs of some
well-known (and some not so well-known) theorems. However, tilings provide “picture
proofs” for many theorems. They also illustrate inequalities such as the arithmetic mean-
geometric mean inequality. Squares and rectangles are some of the most popular tiling used
by engineers and artists to tile the plane. The design of geometric shapes, which fit together
to cover a surface without gaps or overlapping, has a long history. Now, we will give a plane
tiling example satisfying Schwarz’s inequality in (R2, dg) as an application.

Suppose that the road is tiled with bricks of two different sizes as illustrated in
Figure 1. Let A = (x1, y1) and B = (x2, y2) be any two vectors in (R2, dg) and the side lengths
of two bricks are |x1|, |x2| and |y1|, |y2|, respectively; let dg satisfy the condition b ≥ 1 such



8 Mathematical Problems in Engineering

+ =

|y1|

|y2|

|x1|

|x2|

||C||g ||D||g

||C||g

||D||g

|x1x2 + y1y2| ≤ |x1||x2| + |y1||y2| = ||D||g · ||C||g · g sin θ ≤ ||D||g · ||C||g

Figure 1

that C = (x2, y1) and D = (x1, y2). Then the following tiling forms part of a proof of some
special cases of Schwarz’s inequality in two dimensions.
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suggestions.

References

[1] H. Minkowski, Gesammelte Abhandlungen, Chelsea, New York, NY, USA, 1967.
[2] B. Eisenberg and S. Khabbaz, “Optimal locations,” The College Mathematics Journal, vol. 23, no. 4, pp.

282–289, 1992.
[3] S. Burman, H. Chen, and N. Sherwani, “Improved Global Routing using λ-geometry,” in Proceedings of

the 29th Annual Allerton Conference on Communication, Control, and Computing, pp. 1083–1092, Urbana,
Ill, USA, October 1991.
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