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The effect of geometric imperfections and viscous damping on the type of nonlinearity (i.e., the
hardening or softening behaviour) of circular plates and shallow spherical shells with free edge is
here investigated. The Von Kármán large-deflection theory is used to derive the continuous models.
Then, nonlinear normal modes (NNMs) are used for predicting with accuracy the coefficient,
the sign of which determines the hardening or softening behaviour of the structure. The effect
of geometric imperfections, unavoidable in real systems, is studied by adding a static initial
component in the deflection of a circular plate. Axisymmetric as well as asymmetric imperfections
are investigated, and their effect on the type of nonlinearity of the modes of an imperfect plate is
documented. Transitions from hardening to softening behaviour are predicted quantitatively for
imperfections having the shapes of eigenmodes of a perfect plate. The role of 2:1 internal resonance
in this process is underlined. When damping is included in the calculation, it is found that the
softening behaviour is generally favoured, but its effect remains limited.
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1. Introduction

When continuous structures such as plates and shells undergo large amplitude motions, the
geometrical nonlinearity leads to a dependence of free oscillation frequencies on vibration
amplitude. The type of nonlinearity describes this dependency, which can be of the hardening
type (the frequency increases with amplitude), or of the softening type (the frequency
decreases). A large amount of literature is devoted to predicting this type of nonlinearity for
continuous structures, and especially for structures with an initial curvature such as arches or
shells because the presence of the quadratic nonlinearity makes the problem more difficult to
solve. On the other hand, the hardening behaviour of flat structures such as beams and plates
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is a clearly established fact, on the theoretical as well as the experimental viewpoint, (see, e.g.,
[1–6]). The presence of the quadratic nonlinearity may change the behaviour from hardening
to softening type, depending on the relative magnitude of quadratic and cubic nonlinear
terms.

Among the available studies concerned with this subject, quite all of them that were
published before 1992 could not be considered as definitive since they generally restrict to the
case of a single-mode vibration through Galerkin method, see, for example, [7–9] for shallow
spherical shells, or [10] for imperfect circular plates. Unfortunately, it has been shown by a
number of more recent investigations that too severe truncations lead to erroneous results in
the prediction of the type of nonlinearity, see, for example, [11, 12], or the abundant literature
on circular cylindrical shells, where the investigators faced this problem for a long time [13–
18]. As a consequence, a large number of modes must mandatory be kept in the truncation of
the partial differential equations (PDEs) of motion, in order to accurately predict the type of
nonlinearity. Recent papers are now available where a reliable prediction is realized, for the
case of buckled beams [19], circular cylindrical shells [20], suspended cables [21], and shallow
spherical shells [22].

However, these last studies are restricted to the case of perfect structures, and the
damping is neglected in the computations; and both of them have an influence on the type
of nonlinearity, so that a complete and thorough theoretical study that could be applied
to real structures need to address the effect of imperfections and damping. The geometric
imperfections have a first-order effect on the linear as well as the nonlinear characteristics of
structures. A large amount of studies are available, where the effect of imperfections on the
eigenfrequencies and on the buckling loads are generally addressed, see, for example, [23–
28] for the case of circular cylindrical shells, [29] for shallow cylindrical panels, and [30] for
the case of rectangular plates. Nonlinear frequency-responses curves are shown in [31, 32] for
clamped circular plates, [33–35] for rectangular plates, [36] for circular cylindrical shells, and
[37] for circular cylindrical panels. Even though the presence of geometric imperfection has
been recognized as a major factor that could make the hardening behaviour of the flat plate
turn to softening behaviour for an imperfection amplitude of a fraction of the plate thickness
[10, 38], a quantitative study, which is not restricted to axisymmetric modes and that does not
perform too crude truncations in the Galerkin expansion, is still missing.

To the authors’ knowledge, the role of the damping in the prediction of the type of
nonlinearity has been only recently detected as an important factor that could change the
behaviour from hardening to softening type [39]. In particular, it is shown in [39] on a simple
two degrees-of-freedom (dofs) system, that the damping generally favours the softening
behaviour. The aim of the present study is thus to apply this theoretical result to the practical
case of a damped shallow spherical shell, so as to quantitatively assess the effect of structural
damping of the viscous type on the type of nonlinearity of a two-dimensional vibrating
structure.

The article is organized as follows. In Section 2, local equations and boundary conditions
for an imperfect circular plate with free edge are given. Then the method used for computing
the type of nonlinearity is explained. Section 3 investigates how typical imperfections may turn
the hardening behaviour of flat plates to softening behaviour. Quantitative results are given
for selected imperfections having the shape of eigenmodes of the perfect structure. Section 4
is devoted to the effect of viscous damping. The particular case of a spherical imperfection is
selected, and the results are shown for three different damping dependances on frequency.
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Figure 1: (a) Top view and (b) cross-section of an imperfect circular plate of radius a and thickness h. (c)
The particular case of a spherical imperfection, with radius of curvature R.

2. Theoretical formulation

2.1. Local equations and boundary conditions

A thin plate of diameter 2a and uniform thickness h is considered, with h � a, and free-
edge boundary condition. The local equations governing the large-amplitude displacement
of a perfect plate, assuming the nonlinear Von Kármán strain-displacement relationship and
neglecting in-plane inertia, are given, for example, in [5, 40]. An initial imperfection, denoted
by w0(r, θ) and associated with zero inital stresses is also considered, see Figure 1. The shape
of this imperfection is arbitrary, and its amplitude is small compared to the diameter (shallow
assumption): w0(r, θ) � a. The local equations for an imperfect plate deduce from the perfect
case [18, 41, 42]. With w(r, θ, t) being the transverse displacement from the imperfect position
at rest, the equations of motion write

DΔΔw + ρhẅ = L(w,F) + L
(
w0, F

)
− cẇ, (2.1a)

ΔΔF = −Eh
2
[
L
(
w,w

)
+ 2L

(
w,w0

)]
, (2.1b)

where D = Eh3/12(1−ν2) is the flexural rigidity, Δ stands for the laplacian operator, c accounts
for structural damping of the viscous type, F is the Airy stress function, and L is a bilinear
operator, whose expression in polar coordinates reads

L(w,F) = w,rr

(
F,r

r
+
F,θθ

r2

)
+ F,rr

(
w,r

r
+
w,θθ

r2

)
− 2

(
w,rθ

r
−
w,θ

r2

)(
F,rθ

r
−
F,θ

r2

)
. (2.2)

The equations are then written with nondimensional variables, by introducing

r = ar, t = a2
√
ρh/Dt, w = hw, w0 = hw0,

F = Eh3F, c =
[
Eh3/a2]

√
ρh/Dc.

(2.3)
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As nondimensional equations will be used in the remainder of the study, overbars are now
omitted in order to write the dimensionless form of the equations of motion

ΔΔw + ẅ = ε
[
L(w,F) + L

(
w0, F

)
− cẇ

]
, (2.4a)

ΔΔF = −1
2
[
L(w,w) + 2L

(
w,w0

)]
, (2.4b)

where ε = 12(1 − ν2).
The boundary conditions for the case of a free edge write, in nondimensional form [5]

F,r + F,θθ = 0, F,rθ + F,θ = 0, at r = 1, (2.5a)

w,rr + νw,r + νw,θθ = 0, at r = 1, (2.5b)

w,rrr +w,rr −w,r + (2 − ν)w,rθθ − (3 − ν)w,θθ = 0, at r = 1. (2.5c)

In order to discretize the PDEs, a Galerkin procedure is used. As the eigenmodes cannot
be computed analytically because the shape of the imperfection is arbitrary, the eigenmodes
of the perfect plate Ψp(r, θ) are selected as basis functions. Analytical expressions of Ψp(r, θ)
involve Bessel functions and can be found in [5]. The unknown displacement is expanded with

w(r, θ, t) =
+∞∑

p=1

qp(t)Ψp(r, θ), (2.6)

where the time functions qp are now the unknowns. In this expression, the subscript p refers to
a specific mode of the perfect plate, defined by a couple (k, n), where k is the number of nodal
diameters and n the number of nodal circles. If k /= 0, a binary variable is added, indicating the
preferential configuration considered (sine or cosine companion mode). Inserting the expansion
(2.6) into (2.4a) and (2.4b) and using the orthogonality properties of the expansion functions,
the dynamical equations are found to be, for all p = 1 · · ·N,

q̈p + 2ξpωpq̇p + ε

[
+∞∑

i=1

α
p

i qi +
+∞∑

i,j=1

β
p

ijqiqj +
+∞∑

i,j,k=1

Γp
ijk
qiqjqk

]

= 0. (2.7)

Linear coupling terms between the oscillator equations are present, as the natural modes have
not been used for discretizing the PDEs. Analytical expressions of the coupling coefficients
(αp

i , β
p

ij ,Γ
p

ijk
) are given in [42]. The generic viscous damping term c of (2.4a) has been

specialized in the discretized equations so as to handle the more general case of a modal
viscous damping term of the form 2ξpωpq̇p, where ξp is the damping factor and ωp the
eigenfrequency of mode p. On the other hand, external forces have been cancelled, as the
remainder of the study will consider free vibrations only.

In order to work with diagonalized linear parts, the matrix of eigenvectors P of the linear
part L = [αp

i ]p,i is numerically computed. A linear change of coordinates is processed, q = PX,
where X = [X1 · · ·XN]T is, by definition, the vector of modal coordinates, and N is the number
of expansion function kept in practical application of the Galerkin’s method. Application of
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P makes the linear part diagonal, so that the discretized equations of motion finally writes,
∀ p = 1 · · ·N,

Ẍp + 2ξpωpẊp +ω2
pXp + ε

[
N∑

i,j=1

g
p

ijXiXj +
N∑

i,j,k=1

h
p

ijk
XiXjXk

]

= 0. (2.8)

The temporal equations (2.8) describe the dynamics of an imperfect circular plate. The
type of nonlinearity can be inferred from these equations. Unfortunately, too severe truncations
in (2.8), for example, by keeping only one degree-of-freedom (dof) (N = 1) when studying the
nonlinear behaviour of the pth mode, lead to incorrect predictions. Nonlinear normal modes
(NNMs) offer a clean framework for deriving a single oscillator equation capturing the correct
type of nonlinearity [12]. This is recalled in Section 3, where the analytical expression of the
coefficient dictating the type of nonlinearity is given.

2.2. Type of nonlinearity

Non-linear oscillators differ from linear ones by the frequency dependence on vibration
amplitude. The type of nonlinearity defines the behaviour, which can be of the hardening or
the softening type.

As shown in [12], NNMs provide an efficient framework for properly truncating
nonlinear oscillator equations like (2.8) and predict the type of nonlinearity (hardening
or softening behaviour). The method has already been successfully applied to the case of
undamped shallow spherical shells in [22]. The main idea is to derive a nonlinear change
of coordinates, allowing one to pass from the modal Xp coordinates to new-defined normal
coordinates Rp, describing the motions in an invariant-based span of the phase space. The
nonlinear change of coordinates is computed from Poincaré and Poincaré-Dulac’s theorems,
by successive elimination of nonessential coupling terms in the nonlinear oscillator equations.
Formally, it reads

Xp = Rp +
N∑

i=1

N∑

j≥i

(
a
p

ijRiRj + b
p

ijSiSj

)
+

N∑

i=1

N∑

j=1

c
p

ijRiSj

+
N∑

i=1

N∑

j≥i

N∑

k≥j

(
r
p

ijk
RiRjRk + s

p

ijk
SiSjSk

)
+

N∑

i=1

N∑

j=1

N∑

k≥j

(
t
p

ijk
SiRjRk + u

p

ijk
RiSjSk

)
,

(2.9a)

Yp = Sp +
N∑

i=1

N∑

j≥i

(
α
p

ijRiRj + β
p

ijSiSj

)
+

N∑

i=1

N∑

j=1

γ
p

ijRiSj

+
N∑

i=1

N∑

j≥i

N∑

k≥j

(
λ
p

ijk
RiRjRk + μ

p

ijk
SiSjSk

)
+

N∑

i=1

N∑

j=1

N∑

k≥j

(
ν
p

ijk
SiRjRk + ζ

p

ijk
RiSjSk

)
.

(2.9b)

A third-order approximation of the complete change of coordinates is thus computed.
The analytical expressions of the introduced coefficients {ap

ij , b
p

ij , c
p

ij , r
p

ijk
, s

p

ijk
, t

p

ijk
, u

p

ijk
, } and

{αp

ij , β
p

ij , γ
p

ij , λ
p

ijk
, μ

p

ijk
, ν

p

ijk
, ζ

p

ijk
, } are not given here for the sake of brevity. The interested reader

may find them in [12] for the undamped case, and in [39] for the damped case.
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Once the nonlinear change of coordinates operated, proper truncations can be realized.
In particular, keeping only the normal coordinates Rp allows prediction of the correct type of
nonlinearity for the pth mode. The dynamics onto the pth NNM reads

R̈p +ω2
pRp + 2ξpωpṘp +

(
εh

p
ppp +A

p
ppp

)
R3

p + B
p
pppRpṘ

2
p + C

p
pppR

2
pṘp = 0, (2.10)

where A
p
ppp, B

p
ppp, and C

p
ppp are new coefficients coming from the change of coordinates.

Their expressions involve the quadratic coefficients {gp

ij} only, together with some of the

transformation coefficients, {ap

ij , b
p

ij , c
p

ij} from (2.9a) and (2.9b) [39]:

A
p
ppp = ε

[
N∑

l≥i
g
p

pl
al
pp +

∑

l≤i
g
p

lp
al
pp

]

, (2.11a)

B
p
ppp = ε

[
N∑

l≥i
g
p

pl
blpp +

∑

l≤i
g
p

lp
blpp

]

, (2.11b)

C
p
ppp = ε

[
N∑

l≥i
g
p

pl
clpp +

∑

l≤i
g
p

lp
clpp

]

. (2.11c)

The asymptotic third-order approximation of the dynamics onto the pth NNM given
by (2.10) allows one to accurately predict the type of nonlinearity of mode p. A first-order
perturbative development from (2.10) gives the dependence of the nonlinear oscillation
frequency ωNL on the amplitude of vibration a by the relationship:

ωNL = ωp

(
1 + Tpa

2), (2.12)

where ωp is the natural angular frequency. In this expression, Tp is the coefficient governing
the type of nonlinearity. If Tp > 0, then hardening behaviour occurs, whereas Tp < 0 implies
softening behaviour. The analytical expression for Tp writes [12, 22]

Tp =
1

8ω2
p

[
3
(
A

p
ppp + εh

p
ppp

)
+ω2

pB
p
ppp

]
. (2.13)

Finally, the method used for deriving the type of nonlinearity can be summarized as
follows. For a geometric imperfection of a given amplitude, the discretization leading to the
nonlinear oscillator (2.8) is first computed. The numerical effort associated to this operation is
the most important but remains acceptable on a standard computer. Then the nonlinear change
of coordinates is computed, which allows derivation of the A

p
ppp and B

p
ppp terms occuring in

(2.13), the sign of which determines the type of nonlinearity. Numerical results are given in
Section 3 for specific imperfections.

3. Effect of imperfections

This section is devoted to numerical results about the effect of typical imperfections on the
type of nonlinearity of imperfect plates. Two typical imperfections are selected. The first one
is axisymmetric and has the shape of mode (0,1), the second one has the shape of the first
asymmetric mode (2,0). Consequently, damping is not considered, so that in each equation we
have: ∀ p = 1 · · ·N, ξp = 0. The study of the effect of damping will be done separately and is
postponed to Section 4.
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Figure 2: (a) Three-dimensional view and (b) cross-section of the circular plate with geometric imperfection
having the shape of the first axisymmetric mode. As nondimensional quantities are used, a = 1 and the
amplitude a(0,1) of the imperfection is made nondimensional with respect to the thickness h.

3.1. Axisymmetric imperfection

In this section, the particular case of an axisymmetric imperfection having the shape of mode
(0,1) (i.e., with one nodal circle and no nodal diameter) is considered. The expression of the
static deflection writes

w0(r) = a(0,1)Ψ(0,1)(r), (3.1)

where Ψ(0,1)(r) is the mode shape, depending only on the radial coordinate r as a consequence
of axisymmetry, and a(0,1) the considered amplitude. The mode shape Ψ(0,1)(r) depends
on Bessel function [5], and is shown in Figure 2. The eigenmode is normalized so that
∫1

0Ψ
2
(0,1)(r)dr = 1.

Figure 3 shows the effect of the imperfection on the eigenfrequencies, for an imperfection
amplitude from 0 (perfect plate) to 10 h. It is observed that the purely asymmetric modes
(k, 0), having no nodal circle and k nodal diameters, are marginally affected by the
axisymmetric imperfection. The computation has been done by keeping 51 basis functions:
purely asymmetric modes from (2,0) to (10,0), purely axisymmetric modes from (0,1) to
(0,13); and mixed modes from (1,1) to (6,1), (1,2), (2,2), (3,2) and (1,3). More details and
comparisons with a numerical solution based on finite elements are provided in [42, 43]. The
slight dependence of purely asymmetric eigenfrequencies on an axisymmetric imperfection
has already been observed in [44] with the case of the shallow spherical shell.

First, the effect of the imperfection on the axisymmetric modes (0,1) and (0,2) is studied.
In this case, the problem is fully axisymmetric so that all the truncations can be limited to
axisymmetric modes only, which drastically reduces the numerical burden. The result for mode
(0,1) is shown in Figure 4. It is observed that the huge variation of the eigenfrequency with
respect to the amplitude of the imperfection results in a quick turn of the behaviour from the
hardening to the softening type, occuring for an imperfection amplitude of a(0,1) = 0.38 h. This
small value has direct implication for the case of real plates. As the behaviour changes for
a fraction of the plate thickness, it should not be intriging to measure a softening behaviour
with real plates having small imperfections. This result can also be compared to an earlier
result obtained by Hui [10]. Although Hui did not study free-edge boundary condition, he
reported a numerical result for the case of simply supported boundary conditions, where
the behaviour changes for an imperfection amplitude of 0.28 h. The second main observation
inferred from Figure 4 is the occurrence of 2:1 internal resonance between eigenfrequencies,
leading to discontinuities in the coefficient T(0,1) dictating the type of nonlinearity. This fact
has already been observed and commented for the case of shallow spherical shells in [22].
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Figure 4: Type of nonlinearity for mode (0,1) with an axisymmetric imperfection having the shape of mode
(0,1).

It has also been observed for buckled beams and suspended cables [19, 21]. This is a small
denominator effect typical of internal resonance, that is, when the frequency of the studied
mode (0,1) exactly fulfills the relationship 2ω(0,1) = ω(0,n) with another axisymmetric mode. 2:1
resonance arises here with mode (0,2) at 1.85 h and with mode (0,3) at 5.66 h. On a practical
point of view, one must bear in mind that when 2:1 internal resonance occurs, single-mode
solution does not exist anymore, only coupled solutions are possible. Hence the concept of the
type of nonlinearity, intimately associated with a single dof behaviour, loses its meaning in a
narrow interval around the resonance.

The numerical result for mode (0,2) is shown in Figure 5. Once again, the geometric effect
is important and leads to a change of behaviour occurring at a(0,1) = 0.75 h, that is, for a small
level of imperfection. 2:1 internal resonance also occurs, thus creating narrow region where
hardening behaviour could be observed. This result extends Hui’s analysis since only mode
(0,1) was studied. Moreover, as a single-mode truncation was used in [10], 2:1 resonances were
missed.

Finally, the effect of the imperfection on asymmetric modes is shown in Figure 6 for
modes (2,0) and (4,0). The very slight variation of the eigenfrequencies of these modes versus
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Figure 5: Type of nonlinearity for mode (0,2) with an axisymmetric imperfection having the shape of mode
(0,1). 2:1 internal resonances with modes (0,3), (0,4), and (0,5) occurs, respectively, for a(0,1)/h = 1.74, 5.43,
and 9.92.

the axisymmetric imperfection results in a very slight effect of the geometry. It is observed that
before the first 2:1 internal resonance, the type of nonlinearity shows small variations. Hence it
is the behaviour of the other eigenfrequencies and the occurrence of 2:1 internal resonance that
makes, in these cases, the behaviour turn from hardening to softening behaviour. For mode
(2,0), this occurs for an imperfection amplitude of a(0,1) = 0.44 h, where 2:1 resonance with
mode (0,1) is observed. For mode (4,0), the first 2:1 resonance occurs with mode (0,2) at a(0,1) =
1.39 h, but do not change the behaviour. It is the resonance with mode (0,1) at a(0,1) = 4 h which
makes the behaviour turn from hardening to softening.

These results corroborate those obtained on shallow spherical shells [22]. The
fundamental importance of axisymmetric modes in the study of asymmetric ones is confirmed,
showing once again that reduction to single mode has no chance to deliver correct results.
The behaviour of purely asymmetric modes is found to be of the hardening type until the 2:1
internal resonance with mode (0,1) occurs. However, a specificity of mode (2,0) with regard
to all the other purely asymmetric modes is that after this resonance, hardening behaviour
(though with a very small value of T(2,0)) is observed. This was also the case for shallow
spherical shells [22]. Finally, for very large values of the imperfection, the behaviour tends
to be neutral.

3.2. Asymmetric imperfection

In this section, the effect of an imperfection having the shape of mode (2,0) is studied.
Due to the loss of symmetry, degenerated modes are awaited to cease to exist : the equal
eigenfrequencies of the sine and cosine configuration of degenerated modes split. In the
following, distinction is made systematically between the sine or cosine configuration of
companion modes, for example, mode (2,0,C) (resp., (2,0,S)) refers to the cosine (resp., sine)
configuration. More precisely, the imperfection has the shape of (2,0,C) and is shown in
Figure 7.

The behaviour of the eigenfrequencies with the imperfection is shown in Figure 8. As
expected, the variation of the eigenfrequency corresponding to (2,0,C) is huge, whereas (2,0,S)
keep quite a constant value. The symmetry is not completely broken. One can show that only
eigenmodes of the type (2k, n) split. On the other hand, as shown in Figure 8, modes (3,0),
(5,0), and (1,1) are still degenerated.
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Figure 6: Type of nonlinearity for (a): mode (2,0), and (b): mode (4,0) with an axisymmetric imperfection
having the shape of mode (0,1).

The numerical results for type of nonlinearity relative to the two configurations (2,0,C)
and (2,0,S) are shown in Figure 9. The natural frequency of mode (2,0,C) undergoes a huge
variation, which results in a quick change of behaviour, occurring at 0.54 h. Then, a 2:1 internal
resonance with (0,2) is noted, but without a noticeable change in the type of nonlinearity,
as the interval where the discontinuity present is very narrow. In this case, the behaviour
of T(2,0,C) looks like the one observed in the precedent case, that is, the variation of T(0,1)
versus an imperfection having the same shape. On the other hand, the eigenfrequency of mode
(2,0,S) remains quite unchanged, so that the behaviour of T(2,0,S) is not much affected by the
imperfection until the 2:1 internal resonance is encountered. In that case, the resonance occurs
with the other configuration, that is, mode (2,0,C).

Finally, the results for the first two axisymmetric modes (0,1) and (0,2) are shown in
Figure 10. Mode (0,1) shows a very slight variation of its eigenfrequency with respect to the
asymmetric imperfection (2,0,C). Consequently, the type of nonlinearity is not much affected,
until the eigenfrequency of (2,0,C) comes to two times ω(0,1): 2:1 internal resonance occurs,
and the behaviour becomes softening. On the other hand, the eigenfrequency of (0,2) is more
affected by the imperfection. This result in an important decrease of T(0,2) while still remaining
positive. A 2:1 internal resonance with (0,3) is encountered for 3.51 h, and two others 2:1
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Figure 7: (a) 3D view, (b) top view, and (c) cross-section along θ = 0 for the plate with imperfection having
the shape of mode (2,0,C).
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Figure 8: Nondimensional natural frequencies ω(k,n) of the imperfect plate versus the amplitude of the
imperfection having the shape of mode (2,0,C).

resonance, with (0,4) and (0,5), occur around 8 h. However, the interval on which the type
of nonlinearity changes its sign is so narrow that it can be neglected. The behaviour is thus
mainly of the hardening type for (0,2).

4. Effect of damping

In this section, the effect of viscous damping on the type of nonlinearity is addressed. The
particular case of the shallow spherical shell is selected to establish the results. The equations
of motion are first briefly recalled. Then specific cases of damping are considered, hence
complementing the results of [22], that were limited to the undamped shell.

4.1. The shallow spherical shell equations

The local equations of motions for the shallow spherical shell can be obtained directly, see [44]
for a thorough presentation. They can also be obtained from (2.4a) and (2.4b), by selecting an
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Figure 9: Type of nonlinearity for (a): mode (2,0,C) and (b): (2,0,S); for an imperfection having the shape
of mode (2,0,C).

imperfection having a spherical shape, as shown in Figure 1(c), see [42]. With R, the radius of
curvature of the spherical shell (R � a to fulfill the shallow assumption), the local equations
write [44]

ΔΔw + εqΔF + ẅ = ε
[
L(w,F) − cẇ + p(r, θ, t)

]
, (4.1a)

ΔΔF −
√
κΔw = −1

2
L(w,w), (4.1b)

where the aspect ratio κ of the shell has been introduced:

κ =
a4

R2h2
, (4.2)

and εq = 12(1 − ν2)
√
κ. The boundary conditions for the case of the spherical shell with free

edge write exactly as in the case of the imperfect circular plates so that (2.5a), (2.5b) and (2.5c)
are still fulfilled [42, 44]. A peculiarity of the spherical shell is that all the involved quantities,
linear (eigenfrequencies and mode shapes), and nonlinear (coupling coefficients and type of
nonlinearity) only depends on κ, which is the only free-geometric parameter. Hence all the
results will be presented as functions of κ.
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Figure 10: Type of nonlinearity for (a): mode (0,1) and (b): (0,2); for an imperfection having the shape of
mode (2,0,C).

A Galerkin expansion is used for discretizing the PDEs of motion. As the eigenmodes
Φp(r, θ) are known analytically [44], they are used for expanding the unknown transverse
displacement:

w(r, θ, t) =
+∞∑

p=1

Xp(t)Φp(r, θ). (4.3)

The modal displacements Xp are the unknowns, and their dynamics are governed by, ∀p ≥ 1

Ẍp + 2ξpωpẊp +ω2
pXp + εq

+∞∑

i,j=1

g̃
p

ijXiXj + ε
+∞∑

i,j,k=1

h̃
p

ijk
XiXjXk = 0. (4.4)

The analytical expressions for the quadratic and cubic coupling coefficients (g̃p

ij , h̃
p

ijk
) involve

integrals of products of eigenmodes on the surface, they can be found in [22, 44]. As in
Section 3, a modal viscous damping term of the form 2ξpωpẊp is considered, whereas external
forces have been cancelled as only free responses are studied.
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Figure 11: Type of nonlinearity for (a): mode (0,1) and (b): (4,0) versus the aspect ratio κ of a shallow
spherical shell. Increasing values of damping for Case 1 (∀ p = 1 · · ·N, ξp = ξ/ωp) are shown, with ξ = 0
and 0.01 (red), 0.1 (cyan) and 0.3 (violet).

The type of nonlinearity can be inferred from (4.4) by using the NNM method. The
results for an undamped shell have already been computed and are presented in [22].
However, an extension of the NNM-method, taking into account the damping term, has been
proposed in [39]. Amongst other things, it has been shown on a simple two dofs system of
coupled oscillators, that the type of nonlinearity depends on the damping. The aim of this
section is thus to complement the results presented in [22] for documenting the dependence of
a shell on viscous damping and for assessing its effect.

4.2. Numerical results

Three cases are selected in order to derive results for a variety of damping behaviours:

Case 1. For all p = 1 · · ·N, ξp = ξ/ωp;

Case 2. For all p = 1 · · ·N, ξp = ξ;

Case 3. For all p = 1 · · ·N, ξp = ξωp;
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Figure 12: Type of nonlinearity for (a): mode (0,1) and (b): (4,0) versus the aspect ratio κ. Increasing values
of damping for Case 2 (∀ p = 1 · · ·N, ξp = ξ) are shown, with ξ = 0 and 0.01 (red), 0.1 (cyan), and 0.3
(violet).

In the above cases, ξ is a constant value, ranging from 0 to 0.3. Case 1 corresponds to
a decay factor (2ξpωp = 2ξ) that is independent from the frequency, that is, with a constant
2ξ value for any mode. With a small value of ξ, it may model the low-frequency (i.e., below
the critical frequency) behaviour of thin metallic structures such as aluminium plates [45, 46].
Case 2 describes a decay factor that is linear with the frequency, and may model, for instance,
damped structures as glass plates in the low-frequency range [45]. Finally, Case 3 accounts for
a strongly damped structure, with a center manifold limited to a few modes.

The effect of increasing damping is shown for modes (0,1) and (4,0), for Case 1 in
Figure 11, Case 2 in Figure 12, and Case 3 in Figure 13. Mode (0,1) undergoes a rapid change
of behaviour: the transition from hardening to softening type nonlinearity occurs at κ = 1.93.
Then 2:1 internal resonance with mode (0,2) occurs at κ = 36, but the behaviour remains of the
softening type. Mode (4,0) displays a hardening behaviour until the 2:1 resonance with mode
(0,1) at κ = 174.1. The first resonance with (0,2) at κ = 36.9 does not change the behaviour
on a large interval. Adding the damping of Case 1 shows that the discontinuity ocurring
at 2:1 internal resonance is smoothened. However, it happens for a quite large amount of
damping in the structure. Damping values of 0, 1e-4, 1e-3, and 1e-2 have been tested and
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Figure 13: Type of nonlinearity for (a): mode (0,1) and (b): (4,0) versus the aspect ratio κ. Increasing values
of damping for Case 3 (∀ p = 1 · · ·N, ξp = ξωp) are shown, with ξ = 0 and 1e-4 (black), 1e-3 (magenta), and
1e-2 (red).

give exactly the same behaviour so that only one curve is visible in Figure 11. Large values
of the damping term ξ, namely, 0.1 and 0.3 (which correspond to strongly damped structures)
must be selected to see the discontinuity smoothened. Moreover, outside the narrow intervals
where 2:1 resonance occurs, the effect of damping is not visible. As a conclusion for Case 1, it
appears that this kind of damping has a really marginal effect on the type of nonlinearity, so
that undamped results can be estimated as reliable for lightly damped structures with modal
damping factor below 0.1.

Case 2 corresponds to a more damped structure than Case 1. However, it is observed
in Figure 12 that the discontinuity is not smoothened at the 2:1 internal resonance. Inspecting
back the analytical results shows that this is a natural consequence of the expression of the
coefficients of the nonlinear change of coordinates for asymptotic NNMs. When the specific
Case of constant damping factors is selected, small denominators remain present. On the other
hand, outside the regions of 2:1 resonance, the effect of damping is pronounced and enhances
the softening behaviour. But once again, very large values of damping factors such as 0.3 must
be reached to see a prominent influence.

Finally, Case 3 depicts the case of a rapidly increasing decay factor with respect to the
frequency. As the overall damping in the structure is thus larger, smaller values of ξ have been
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selected, namely, 1e-4, 1e-3, and 1e-2. ξ = 1e-4 gives quite coincident results with ξ = 0. But
from ξ = 1e-3, the effect of the damping is very important: the discontinuities are smoothened,
except the larger one occurring for mode (4,0) with mode (0,1). For ξ = 1e-2, 2:1 resonance
are not visible anymore. A particular result with this value is for mode (4,0): the smoothening
effect is so important that the nonlinearity remains of the hardening type. Finally, the fact that
the damping generally favours the softening behaviour cannot be declared as a general rule,
as one counterexample has been exhibited here. From these results, it can be inferred that the
damping has little incidence on the type of nonlinearity for thin structures, until very large
values are attained. It is observed that the damping generally favours the softening behaviour,
but this rule is not true in general. In particular when the transition from hardening to softening
type nonlinearity is due to a 2:1 internal resonance and is not the direct effect of the change of
geometry, a large value of damping may favours hardening behaviour, as observed here for
mode (4,0) in Case 3.

5. Conclusion

The effect of geometric imperfections on the hardening/softening behaviour of circular
plates with a free edge has been studied. Thanks to the NNMs, quantitative results for the
transition from hardening to softening behaviour has been documented, for a number of
modes and for two typical imperfections. Two general rules have been observed from the
numerical results: for modes which eigenfrequency strongly depends on the imperfection,
the type of nonlinearity changes rapidly, and softening behaviour occurs for a very small
imperfection with an amplitude being a fraction of the plate thickness. On the other hand,
some eigenfrequencies show a slight dependence with the considered imperfection. For these,
2:1 internal resonances are the main factor for changing the type of nonlinearity. In a second
part of the paper, the effect of viscous damping on the type of nonlinearity of shallow spherical
shells has been studied. It has been shown quantitatively that this effect is slight for usual
damping values encountered in thin structures.
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